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A graph-based classification method is proposed both for
semi-supervised learning in the case of Euclidean data and for
classification in the case of graph data. Our manifold learning
technique is based on a convex optimization problem involv-
ing a convex regularization term and a concave loss function
with a trade-off parameter carefully chosen so that the objec-
tive function remains convex. As shown experimentally, the
advantage of considering a concave loss function is that the
learning problem becomes more robust in the presence of noisy
labels. Furthermore, the loss function considered is then more
similar to a classification loss while several other methods treat
graph-based classification problems as regression problems.

1 Introduction

Nowadays there is an increasing interest in the study of graph-
based data, either because the information is directly available
as a network or a graph, or because the data points are assumed
to be sampled on a low dimensional manifold whose structure
is estimated by constructing a weighted graph with the data
points as vertices. Moreover, fitting a function of the nodes of
a graph, as a regression or a classification problem, can be a
useful tool for example to cluster the nodes using some partial
knowledge about the partition and the structure of the graph
itself.

In this paper, given some labelled data points and several
other unlabelled ones, we consider the problem of predicting
the label class of the latter. Following the manifold learn-
ing framework, the data are supposed to be positioned on a
manifold that is embedded in a high dimensional space, or to
constitute a graph by themselves. In the first case, the usual
assumption is that the classes are separated by low density re-
gions, whereas in the second case is that the connectivity is
weaker between classes than inside each of them [1]. On the
other side, the robustness of semi-supervised learning methods
and their behaviour in the presence of noise, in this case just
wrongly labelled data, has been recently discussed in [2], where
a robustification method was introduced.

We propose here a different optimization problem, based on
a concave error function, which is specially well-suited when
the number of available labels is small and which can deal with
flipped labels naturally. The major contributions of our work
are:

(i) We propose a manifold learning method phrased as an op-
timization problem which is robust to label noise. While
many other graph-based methods involve a regression-like
loss function, our loss function intuitively corresponds to
a classification loss akin to the well-known hinge loss used
in Support Vector Machines.
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(ii) We prove that, although the loss function is concave, the
optimization problem remains convex provided that the
positive trade-off parameter is smaller than the second
least eigenvalue of the normalized combinatorial Laplacian
of the graph.

(iii) Computationally, the solution of the classification problem
is simply given by solving a linear system.

(iv) We introduce a heuristic method to automatically set the
parameter in order to get a parameter-free approach.

Let us also emphasize that the method proposed in this paper
can be naturally phrased in the framework of kernel methods,
as a function estimation in a Reproducing Kernel Hilbert Space.
Indeed, the corresponding kernel is then given by the Moore-
Penrose pseudo-inverse of the normalized Laplacian. In this
sense, this work can be seen as a continuation of [3].

The paper is structured as follows. Section 2 introduces the
context of the classification task and it reviews two state-of-
the-art methods for solving it. In Section 3 we introduce our
proposed robust approach, which is numerically compared with
the others in Section 4. The paper ends with some conclusions
in Section 5.

2 Classification of Graph-Based Data

2.1 Preliminaries

The datasets analysed in this paper constitute the nodes V of
a connected graph G = (V, E), where the undirected edges E
are given as a symmetric weight matrix W with non-negative
entries. This graph can be obtained in different settings:

• Given a set of data point {xi}Ni=1, with xi ∈ Rd and a pos-
itive kernel k(x, y) ≥ 0, the graph weights can be defined
as wij = k(xi, xj).

• Given a set of data point {xi}Ni=1, with xi ∈ Rd, the weights
are constructed as follows: wij = 1 if j is among the
k nearest neighbours of i for the `2-norm, and wij = 0
otherwise. Then, the weight matrix W is symmetrized as
(W +W ᵀ)/2.

• The dataset is already given as a weighted undirected
graph.

Some nodes are labelled by ±1 and we denote by VL ⊂ V
the set of labelled nodes. For simplicity, we identify VL with
{1, . . . , s} and V with {1, . . . , N}, with s < N the number of
available labels. Any labelled node i ∈ VL has a class label
ci = ±1. We denote by y the label vector defined as follows

yi =

{
ci if i ∈ VL,

0 if i ∈ V \ VL.
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The methods discussed in this paper are formulated in the
framework of manifold learning. Indeed, the classification of
unlabelled data points relies on the definition of a Laplacian
matrix, which can be seen as a discrete Laplace-Beltrami oper-
ator on a manifold [4].

Let L = D−W be the matrix of the combinatorial Laplacian,
where D = diag(d) and where the degree vector is d = W1,
e.g., di =

∑N
j=1 wij . We will write i ∼ j iff wij 6= 0. The

normalized Laplacian, defined by LN = D−1/2LD−1/2 = I −
D−1/2WD−1/2, accounts for a non-trivial sampling distribution
of the data points on the manifold. The normalized Laplacian
has an orthonormal basis of eigenvectors {v`}N−1

`=0 , with vᵀkv` =
δk`, associated to non-negative eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤
λN−1 ≤ 2. Noticeably, the zero eigenvector of LN is simply
specified by the node degrees, i.e., we have v0,i ∝

√
di for all

i = 1, . . . , N . Notice that the Laplacian can be expressed in
this basis according to the lemma below.

Lemma 1. The normalized Laplacian admits the following
spectral decomposition, which also gives a resolution of the iden-
tity matrix I ∈ RN×N :

LN =

N−1∑
`=1

λ`v`v
ᵀ
` , I =

N−1∑
`=0

v`v
ᵀ
` .

Proof. See [5].

For simplicity, we assume here that each eigenvalue is associ-
ated to a one-dimensional eigenspace. The general case can be
phrased in a straightforward manner.

Following Belkin and Niyogi [6], we introduce the smoothing
functional associated to the normalized Laplacian:

SG(f) =
1

2
fᵀLNf =

1

2

∑
i,j|i∼j

wij

(
fi√
di

− fj√
dj

)2

, (1)

where fi denotes the i-th component of f .

Remark 1. The smoothest vector according to the smoothness
functional (1) is the eigenvector v0, which corresponds to a 0
value, SG(v0) = 0.

2.2 Belkin–Niyogi Approach

In [6], a semi-supervised classification problem is phrased as the
estimation of a (discrete) function written as a sum of the first
p smoothest functions, that is, the first p eigenvectors of the
combinatorial Laplacian. The classification problem is defined
by

min
a∈Rp

s∑
i=1

∥∥∥∥∥ci −
p−1∑
`=0

a`v`,i

∥∥∥∥∥
2

2

, (2)

where a0, . . . , ap−1 are real coefficients. The solution of Prob-
lem 2, a?, is obtained by solving a linear system. The predicted
vector is then

f? =

p∑
`=1

a?
`v`.

Finally, the classification of an unlabelled node i ∈ V \ VL is
given by sign(f?

i ). Indeed, Problem 2 is minimizing a sum of
errors of a regression-like problem involving only the labelled
data points. The information known about the position of the
unlabelled data points is included in the eigenvectors v` of the
Laplacian (Fourier modes), which is the Laplacian of the full
graph, including the unlabelled nodes. Only a small number p
of eigenvectors is used in order to approximate the label func-
tion. This number p is a tuning parameter of the model.

We will denote this model as Belkin–Niyogi Graph Classifi-
cation (BelkGC).

2.3 Zhou et al. Approach

In [7], the following regularized semi-supervised classification
problem is proposed:

min
f∈RN

1

2
fᵀLNf +

γ

2
‖f − y‖22, (3)

where γ > 0 is a regularization parameter which has to be se-
lected. We notice that the second term in the objective function
of Problem 3, involving the `2-norm of the label vector, can be
interpreted as the error term of a least-squares regression prob-
lem. Intuitively, Problem 3 will have a solution f? ∈ RN such
that f?

i ≈ 0 if i ∈ V \ VL (unlabelled nodes), that is, it will
try to fit zeroes. Naturally, we will have f?

i ≈ ci for all the
labelled nodes i ∈ VL. Finally, the prediction of the unlabelled
node class is given by calculating sign(f?

i ) for i ∈ V \ VL. The
key ingredient is the regularization term which will make the
solution smoother by increasing the bias.

Notice that the original algorithm solves Problem 3 once per
each class, using as target the indicator vector of the nodes la-
belled as that class, and then classifying the unlabelled nodes
according to the maximum prediction between all the classes.
Nevertheless, in this work we consider only binary problems,
in which both formulations (using two binary target vectors
and predicting with the maximum, or using a single target vec-
tor with ±1 and zero values and predicting with the sign) are
equivalent. We will denote this model as Zhou et al. Graph
Classification (ZhouGC).

In the recent work [2], it is emphasized that this method is
implicitly robust in the presence of graph noise, since the pre-
diction decays towards zero preventing the errors in far regions
of the network from propagating to other areas. Moreover, a
modification of this algorithm is proposed to add an additional
`1 penalization, so that the prediction decays faster according
to an additional regularization parameter. However, the resul-
tant method is still qualitatively similar to ZhouGC since the loss
term is still the one of a regression problem, with the additional
disadvantage of having an extra tuning parameter.

2.4 Related Methods

Other semi-supervised learning methods impose the label values
as constraints [8, 9]. The main drawback is that, as discussed
in [2], the rigid way of including the labelled information makes
them more sensible to noise, specially in the case of mislabelled
nodes.

On the other side, there are techniques with completely dif-
ferent approaches as Laplacian SVM [10], a manifold learning
model for semi-supervised learning based on an ordinary Sup-
port Vector Machine (SVM) classifier supplemented with an
additional manifold regularization term. This method was orig-
inally designed for Euclidian data, hence its scope is different
from the previous models. In order to apply this method to
graph data, an embedding of the graph has to be performed,
what requires the computation of the inverse of a dense Gram
matrix entering in the definition of an SVM problem. Hence,
the training involves both a matrix inversion of the size of the la-
belled and unlabelled training data set and a quadratic problem
of the same size. In order to reduce the computational cost, a
training procedure in the primal was proposed in [11] where the
use of a preconditioned conjugate gradient algorithm with an
early stopping criterion is suggested. However, these methods
still require the choice of two regularization parameters besides
the kernel bandwidth. This selection requires a cross-validation
procedure which is especially difficult if the number of known
labels is small.
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3 Robust Method

The two methods presented in Sections 2.2 and 2.3 can be in-
terpreted as regression problems, which intuitively estimate a
smooth function f? such that its value is approximately the
class label, i.e., f?

i ≈ ci for all the labelled nodes i ∈ VL. We
will propose in this section a new method based on a concave
loss function and a convex regularization term, which is best
suited for classification tasks. Moreover, with the proper con-
straints, the resulting problem if convex and can be solved using
a dual formulation.

We keep as a main ingredient the first term of Problem 3,
1
2
fᵀLNf , which is a well-known regularization term requiring a

maximal smoothness of the solution on the (sampled) manifold.
However, if the smooth solution is f?, we emphasize that we
have to favour sign(f?

i ) = ci instead of imposing f?
i ≈ ci for all

i ∈ VL. Hence, for γ > 0, we propose the minimization problem min
f∈RN

1

2
fᵀLNf − γ

2

N∑
i=1

(yi + fi)
2

s.t. fᵀv0 = 0,

(4)

where γ has to be bounded from above as stated in Theorem 1.
The constraint means that we do not want the solution to have
a component directed along the vector v0, since its components
all have the same sign (an additional justification is given in
Remark 2). We will denote our model as Robust Graph Clas-
sification (RobustGC).

Notice that Problem 4, corresponding to RobustGC, can be
written as Problem 3, corresponding to ZhouGC, by doing the
following changes: γ → −γ, y → −y, and by supplementing the
problem with the constraint fT v0 = 0. Both problems can be
compared by analysing the error term in both formulations. In
ZhouGC this term simply corresponds to the Squared Error (SE),
namely (fi − yi)

2. In RobustGC, a Concave Error (CE) is used
instead, −(fi + yi)

2. As illustrated in Fig. 1, this means that
ZhouGC tries to fit the target, both if it is a known label ±1, or if
it is zero. On the other side, RobustGC tries to have predictions
far from 0, biased towards the direction marked by the label for
labelled points. Nevertheless, as shown in Fig. 1a, the model is
also able to minimize the CE in the opposite direction to the one
indicated by the label, what provides robustness with respect
to label noise. Finally, if the label is unknown, the CE only
favours large predictions in absolute value. As an additional
remark, let us stress that the interplay of the Laplacian-based
regularization and the error term, which are both quadratic
functions, is yet of fundamental importance. As a matter of
fact, in the absence of the regularization term, the minimization
of the unbounded error term is meaningless.

RobustGC can be further studied by splitting the error term
to get the following equivalent problem: min

f∈RN

1

2
fᵀLNf + γ

N∑
i=1

(−yifi) + γ

N∑
i=1

(
−f2

i

2

)
s.t. fᵀv0 = 0,

where the two error terms have the following meaning.

• The first error term is a penalization term involving a sum
of loss functions L(fi) = −yifi. This unbounded loss func-
tion term is reminiscent of the hinge loss in Support Vector
Machines: max(0, 1− yifi). Indeed, for each labelled node
i ∈ VL, this terms favours values of fi which have the sign
of yi. However, for each unlabelled node i ∈ V \ VL, the
corresponding term L(fi) = 0 vanishes. This motivates the
presence of the other error term.

+−

−1 0 +1

(a) Positive label.

+−

−1 0 +1

(b) Unknown label.

Figure 1: Comparison of the Squared Error and the proposed
Concave Error, both for a labelled node with ci = 1 (the case
ci = −1 is just a reflection of this one) and for an unlabelled
point.
Legend: [ ] SE; [ ] CE.

• The second error term is a penalization term forcing the
value fi to take a non-zero value in order to minimize
−f2

i /2. In particular, if i is unlabelled, this terms favours
fi to take a non-zero value which will be dictated by the
neighbours of i in the graph.

The connection between our method and kernel methods
based on a function estimation problem in a Reproducing Ker-
nel Hilbert Space (RKHS) is explained in the following remark.

Remark 2. The additional condition fᵀv0 = 0 in Problem 4
can also be justified as follows. The Hilbert space HK ={
f ∈ RN s.t. fᵀv0 = 0

}
is an RKHS endowed with the inner

product 〈f |f ′〉K = fᵀLNf ′ and with the reproducing kernel

given by the Moore–Penrose pseudo-inverse K =
(
LN
)†
. More

explicitly, we can define Ki =
(
LN
)†
ei ∈ RN , where ei is the

canonical basis element given by a vector of zeros with a 1 at
the i-th component. Furthermore, the kernel evaluated at any

nodes i and j is given by K(i, j) = eᵀi
(
LN
)†
ej . As a conse-

quence, the reproducing property is merely [12]

〈Ki|f〉K =

((
LN
)†

ei

)ᵀ

LNf = fi,

for any f ∈ HK . As a result, the first term of Problem 4 is
equal to ‖f‖2K/2 and the problem becomes a function estima-
tion problem in an RKHS.

Notice that the objective function involves the difference of
two convex functions and therefore, it is not always bounded
from below. The following theorem states the values of the
regularization parameter such that the objective is bounded
from below on the feasible set and so that the optimization
problem is convex.

Theorem 1. Let γ > 0 be a regularization parameter. The
optimization problem

min
f∈RN

1

2
fᵀLNf − γ

2
‖f + y‖22 s.t. fᵀv0 = 0,

is strictly convex if and only if γ < λ1 (the second smallest
eigenvalue of LN). In that case, the unique solution is given by
the vector:

f? =

(
LN

γ
− I

)−1

p0(y),

with p0(y) = y − v0(v
ᵀ
0y).
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Algorithm 1 Algorithm of RobustGC.

Input:
· Graph G given by the weight matrix W ;
· Regularization parameter 0 < η < 1 ;

Output:
· Predicted labels ŷ ;

1: dii ←
∑

j Wij ;

2: S ← D−1/2WD−1/2 ;
3: LN ← I − S ;
4: (v0)i ←

√
dii ;

5: v0 ← v0/‖v0‖ ;

6: Compute λ1, second smallest eigenvalue of LN, or, alternatively,
largest eigenvalue of S − v0v

ᵀ
0 ;

7: γ ← ηλ1 ;

8: f ←
(
LN/γ − I

)−1(
y − v0

(
vᵀ
0 y

))
;

9: return ŷ ← sign(f) ;

Proof. Using Lemma 1, any vector satisfying the constraint
fᵀv0 = 0 can be written as f =

∑N−1
`=1 f̃`v`, where f̃` = vᵀ` f ∈ R

is the projection of f over v`. Furthermore, we also expand the
label vector in the basis of eigenvectors y =

∑N−1
`=0 ỹ`v`, with

ỹ` = vᵀ` y. Then, the objective function is the finite sum

F
(
f̃1, . . . , f̃N−1

)
=

N−1∑
`=1

(
λ` − γ

2
f̃2
` − γỹ`f̃`

)
− γ

2
‖y‖22,

where we emphasize that the term ` = 0 is missing. As a result,

the function F
(
f̃1, . . . , f̃N−1

)
is clearly strictly convex if and

only if γ < λ` for all ` = 1, . . . , N − 1, that is, iff γ < λ1. Since
the objective F is quadratic, its minimum is merely given by(
f̃?
1 , . . . , f̃

?
N−1

)
, with

f̃?
` =

ỹ`
λ`
γ

− 1
, (5)

for ` = 1, . . . , N − 1. Then, the solution of the minimization
problem is given by

f? =

N−1∑
`=1

f̃?
` v` =

N−1∑
`=1

ỹ`
λ`
γ

− 1
v`

=

(
LN

γ
− I

)−1

(y − v0(v
ᵀ
0y)),

which is obtained by using y − v0(v
ᵀ
0y) =

∑N−1
`=1 ỹ`v`. This

completes the proof.

By examining the form of the solution of Problem 4 given in
(5) as a function of the regularization constant 0 < γ < λ1, we
see that taking γ close to the second eigenvalue λ1 will give more
weight to the first eigenvector, while the importance of the next
eigenvectors decreases as 1/λ`. Regarding the selection of γ in
practice, as shown experimentally just fixing a value of γ =
0.9λ1 leads to a parameter-free version of RobustGC (denoted
PF-RobustGC) that keeps a considerable accuracy.

The complete procedure to apply this robust approach is
summarized in Algorithm 1, where γ is set as a percentage
η of λ1 to make it problem independent. Notice that, apart
from building the needed matrices and vectors, the algorithm
only requires to compute the largest eigenvalue of a matrix and
to solve a well-posed linear system.

Illustrative Example

A comparison of ZhouGC, BelkGC and RobustGC is shown in
Fig. 2, where the three methods are applied over a very simple
graph: a chain with strong links between the first ten nodes,

strong links between the last ten nodes, and a weak link con-
necting the tenth and the eleventh nodes (with a weight ten
times smaller). This structure clearly suggests to split the graph
in two halves.

In Fig. 2a one node of each cluster receives a label, whereas in
Fig. 2b one node of the positive class and four of the negative
are labelled, with a flipped label in the negative class. The
predicted values of f? show that ZhouGC (with γ = 1) is truly
a regression model, fitting the known labels (even the flipped
one) and pushing towards zero the unknown ones. BelkGC (with
two eigenvectors, p = 2) fits much better the unknown labels
for nodes far from the labelled ones, although the flipped label
push the prediction towards zero in the second example for the
negative class. Finally, RobustGC (with η = 0.5) clearly splits
the graph in two for the first example, where the prediction is
almost a step function, and it is only slightly affected by the
flipped label of the second example. Of course, this experiment
is only illustrative, since tuning the parameters of the different
models could affect significantly the results.

4 Experiments

In this section we will show empirically how the proposed robust
method RobustGC can be successfully applied to the problem of
classifying nodes over different graphs, and we will also illus-
trate the robustness of our method with respect to labelling
noise.

The following four models will be compared:

ZhouGC It corresponds to Problem 3, where the parameter γ is
selected from a grid of 51 points in logarithmic scale in the
interval

[
10−5, 105

]
.

BelkGC It corresponds to Problem 2. The number p of eigen-
vectors used is chosen between 1 and 51.

RobustGC It corresponds to Problem 4, where the parameter γ
is selected from a grid of 51 points in linear scale between
0 and λ1.

PF-RobustGC It corresponds to Problem 4, where γ is fixed as
γ = 0.9λ1, so it is a parameter-free method. As shown
in Fig. 3, the stability of the prediction with respect to γ
suggests to use such a fixed value.

Regarding the selection of the tuning parameters, these mod-
els are divided in two groups:

• For ZhouGC, BelkGC and RobustGC, a perfect validation cri-
terion is assumed, so that the best parameter is selected
according to the test error. Although this approach pre-
vents from estimating the true generalization error, it is
applied to the three models so that the comparison be-
tween them should still be fair, and this way we avoid the
crucial selection of the parameter, which can be particu-
larly difficult for the small sizes of labelled set considered
here. Obviously, any validation procedure will give results
at best as good as these ones.

• PF-RobustGC does not require to set any tuning parameter,
hence its results are more realistic than those of the previ-
ous group, and it is in disadvantage with respect to them.
This means that, if this model outperforms the others in
the experiments, it is expected to do it in a real context,
where the parameters of the previous methods have to be
set without using test information.
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? ? ? ? ? ? ? ? + ? ? − ? ? ? ? ? ? ? ?

(a) Example with two correct labels.

? ? ? ? ? ? ? ? + ? ? − + − − ? ? ? ? ?

(b) Example with four correct labels and a flipped one.

Figure 2: Comparison of the different methods over a chain with two clearly separable clusters, where the link between the
two middle nodes is ten times smaller than the other links.
Legend: [ ] ZhouGC; [ ] BelkGC; [ ] RobustGC.

4.1 Accuracy of the Classification

The first set of experiments consist in predicting the label of
the nodes over the following six supervised datasets:

digits49-s and digits49-w The task is to distinguish be-
tween the handwritten digits 4 and 9 from the USPS
dataset [13]; the suffix -s denotes that the weight ma-
trix is binary and sparse corresponding to the symmetrized
20-Nearest Neighbours graph, whereas the suffix -w corre-
sponds to a non-sparse weight matrix built upon a Gaus-
sian kernel with σ = 1.25. The total number of nodes is
250 (125 of each class).

karate This dataset corresponds to a social network of 34 peo-
ple of a karate club, with two communities of sizes 18 and
16 [14].

polblogs A symmetrized network of hyperlinks between we-
blogs on US politics from 2005 [15]; there are 1222 nodes,
with two clusters of 636 and 586 elements.

polbooks A network of books about US politics around 2004
presidential election, with 92 nodes and two classes of 49
and 43 elements.

synth This dataset is composed by three clusters of 100 points
with a connectivity of 30% inside each cluster and 5% be-
tween clusters; the positive class is composed by one cluster
and the negative by the other two.

For each dataset, 6 different training sizes (or number of labelled
nodes) are considered, corresponding to 1%, 2%, 5%, 10%, 20%
and 50% the total number of nodes, provided that this number
is larger than two, since at least one sample of each class is
randomly selected. Moreover, each experiment is repeated 20
times varying the labelled nodes in order to average the result
and check if the differences between them are significant. In
order to compare the models we use the accuracy over the non-
labelled samples.

The results are included in Table 1, where the significant dif-
ferences1 are given by the colours (the darker, the better). We
can see that the proposed RobustGC method outperforms both
ZhouGC and BelkGC at least for the smallest training sizes, and
for all the sizes in the cases of karate, polblogs (the largest
one) and polbooks. In the case of digits49-s and digits49-

w RobustGC beats the other methods for the three first sizes,
being then beaten by BelkGC in the former and ZhouGC in the
latter. Finally, for synth the robust RobustGC is the best model
for the smallest training size, but it is then outperformed by
BelkGC until the largest training size, where both of them solve
the problem perfectly. Notice that this dataset is fairly sim-
ple, and a spectral clustering approach over the graph (with-
out any labels) could be near a correct partition; BelkGC can
benefit for this partition just regressing over the first eigenvec-
tors to get a perfect classification with a very small number of
labels. Turning our attention to the parameter-free heuristic
approach PF-RobustGC, it is comparable to the approach with
perfect parameter selection RobustGC in 3 out of the 6 datasets.
In digits49-s, digits49-w and synth, PF-RobustGC is compa-
rable to RobustGC for the experiments with a small number of
labels, although it works slightly worse when the number of
labels is increased. Nevertheless, the results show that the pro-
posed heuristic performs quite well in practice.

Dependence on the Tuning Parameter

As mentioned before, for the smallest training sets used here,
some of them composed by only two labelled nodes, it is impos-
sible to perform a validation procedure. To analyse the depen-
dence of ZhouGC, BelkGC and RobustGC on their tuning param-
eters, Fig. 3 shows the evolution of the average test accuracy,
both for the smallest and largest training sizes. The proposed
RobustGC has the most stable behaviour, although as expected
it sometimes drops near the critical value γ = λ1. Nevertheless,
this should be the easiest model to tune. ZhouGC shows also a
quite smooth dependence, but with a sigmoid shape, where the

1Using a Wilcoxon signed rank test for zero median, with a significance
level of 5%.
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Table 1: Accuracy of the Classification

D
a
t
a

Labs. ZhouGC BelkGC RobustGC PF-RobustGC

d
i
g
i
t
s
4
9
-
s

2 76.6± 14.7 74.5± 19.6 79.1± 16.4 77.4± 20.1

5 80.1± 9.4 81.6± 11.5 86.9± 4.7 85.7± 1.9

12 85.8± 4.0 88.2± 2.4 88.7± 2.7 85.0± 1.6

25 89.3± 2.6 91.1± 4.5 89.2± 2.2 85.0± 1.0

50 92.3± 2.4 94.5± 2.6 89.7± 1.9 84.8± 1.4

125 94.8± 2.0 98.1± 1.0 90.1± 1.9 84.5± 2.0

d
i
g
i
t
s
4
9
-
w

2 70.1± 13.4 74.4± 9.9 75.5± 13.3 75.1± 14.0

5 81.6± 9.8 70.6± 15.7 82.7± 7.4 81.4± 8.7

12 87.9± 4.7 85.4± 9.4 85.5± 5.1 84.4± 5.2

25 93.9± 2.1 89.3± 5.9 90.1± 4.7 89.1± 4.0

50 95.7± 1.3 91.9± 2.6 92.5± 2.8 89.7± 3.5

125 96.9± 1.3 95.4± 1.7 94.5± 2.6 89.6± 2.9

k
a
r
a
t
e

— — — — —

— — — — —

2 90.3± 12.2 95.5± 7.3 98.9± 1.5 98.9± 1.5

3 89.4± 8.2 92.7± 6.5 98.4± 1.7 98.2± 1.6

6 85.5± 8.6 96.2± 5.2 99.1± 1.6 97.9± 1.8

17 96.5± 4.8 99.4± 1.8 99.4± 1.8 98.2± 2.8

p
o
l
b
l
o
g
s

12 92.3± 3.1 92.0± 4.3 95.6± 0.2 95.5± 0.2

24 93.1± 1.8 94.1± 1.4 95.6± 0.2 95.5± 0.2

61 94.5± 0.9 94.7± 0.6 95.6± 0.2 95.5± 0.2

122 94.6± 0.7 95.1± 0.6 95.6± 0.2 95.6± 0.2

244 94.8± 0.5 95.2± 0.5 95.6± 0.3 95.6± 0.3

611 95.3± 0.6 95.6± 0.7 95.8± 0.8 95.7± 0.7

p
o
l
b
o
o
k
s

— — — — —

2 97.0± 2.0 97.8± 0.8 97.8± 0.0 97.8± 0.0

4 97.8± 1.0 97.4± 1.0 97.7± 0.0 97.7± 0.0

9 97.5± 1.7 97.5± 0.7 97.7± 0.3 97.7± 0.3

18 97.8± 1.3 97.4± 0.6 97.5± 0.5 97.5± 0.5

46 97.8± 1.7 97.4± 1.7 97.4± 1.7 97.4± 1.7

s
y
n
t
h

3 79.7± 13.5 86.4± 11.8 87.0± 12.9 85.5± 12.6

6 81.8± 9.2 100.0± 0.0 91.3± 11.3 90.8± 11.7

15 88.2± 8.5 100.0± 0.0 94.3± 8.9 92.1± 10.2

30 93.4± 5.3 100.0± 0.0 98.0± 4.2 96.1± 6.8

60 97.9± 1.8 100.0± 0.0 99.6± 0.6 98.7± 2.7

150 99.6± 0.5 100.0± 0.0 100.0± 0.1 99.5± 0.5

maximum tends to be located in a narrow region at the middle.
Finally, BelkGC (the model comparable to RobustGC in terms of
accuracy) presents the sharpest plot with large changes in the
first steps, and hence it is expected to be more difficult to tune.

4.2 Robustness of the Classification with respect to Label
Noise

The second set of experiments aims to test the robustness of
the classification of the different models with respect to label
noise. In particular, a very simple graph of 200 nodes with
two clusters is generated with an intra-cluster connectivity of
70%, whereas the connectivity between clusters is either 30%
(a well-separated problem) or 50% (a more difficult problem).
For each of these two datasets, the performance of the models
is compared for different numbers of labels and different levels
of noise, which correspond to the percentage of flipped labels.
Each configuration is repeated 50 times varying the labelled
nodes to average the accuracies.

The results are included in Figs. 4 and 5, where the solid lines
represent the average accuracy, and the striped regions the ar-
eas between the minimum and maximum accuracies. In the
case of the low inter-cluster connectivity dataset of Fig. 4, Ro-
bustGC is able to perfectly classify all the points independently
of the noise level. Moreover, PF-RobustGC is almost as good as
RobustGC, and only slightly worse when the noise is the highest
and the number of labels is small. These two models outper-
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Figure 3: Comparison of the accuracy with respect to the dif-
ferent tuning parameters, for the smallest and largest training
sets, and for the six datasets.
Legend: [ ] ZhouGC; [ ] BelkGC; [ ] RobustGC.

form BelkGC, and also ZhouGC, which is clearly the worse of the
four approaches. Regarding the high inter-cluster connectiv-
ity dataset of Fig. 5, for this more difficult problem RobustGC
still gets a perfect classification except when the noise level is
very high, where the accuracy drops a little when the number
of labels is small. BelkGC is again worse than RobustGC, and
the difference is more noticeable when the noise increases. On
the other side, the heuristic PF-RobustGC is in this case worse
than BelkGC (the selection of γ is clearly not optimal) but it
still outperforms ZhouGC.

5 Conclusions

Starting from basic spectral graph theory, a novel graph-based
classification method applicable to semi-supervised classifica-
tion and graph data classification has been derived in the frame-
work of manifold learning, namely Robust Graph Classification
(RobustGC). The method has a clear interpretation in terms of
loss functions and regularization. Noticeably, even though the
loss function is concave, we have stated the conditions so that
the optimization problem is convex. A simple algorithm to solve
this problem has been proposed, which only requires to solve
a linear system. The results of the method on artificial and
real data show that RobustGC is indeed more robust to the pres-
ence of wrongly labelled data points, and it is also particularly
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well-suited when the number of available labels is small.
As further work, we intend to study with more detail the

possibilities of the concave loss functions in supervised prob-
lems, bounding the solutions using either regularization terms
or other alternative mechanisms. Regarding the selection of γ,
according to our results the predictions of RobustGC are quite
stable with respect to changes in γ in an interval containing the
best parameter value. Hence, it seems that a stability criterion
could be useful to tune γ.
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Figure 4: Robust comparison for the graph with low inter-
cluster connectivity.
Legend:[ ]

ZhouGC;
[ ]

BelkGC;
[ ]

RobustGC;
[ ]

PF-RobustGC.
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Figure 5: Robust comparison for the graph with high inter-
cluster connectivity.
Legend:[ ]

ZhouGC;
[ ]

BelkGC;
[ ]

RobustGC;
[ ]

PF-RobustGC.
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