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Abstract— In this study we propose to classify short echo-
time brain MRSI data by using multimodal information com-
ing from magnetic resonance imaging (MRI), magnetic reso-
nance spectroscopic imaging (MRSI) and high resolution
magic angle spinning (HR-MAS), and to develop an advanced
pattern recognition method that could help clinicians in diag-
nosing brain tumors. We study the impact of using HR-MAS
information in combination with ir vive information for classi-
fying brain tumors and we investigate which parameters influ-
ence our classification results.

To integrate HR-MAS, MRSI and MRI information a har-
monization of all the input spaces is required due to the fact
that we have to manage the use of very different informa-
tion/data, obtained with different measurement techniques, as
well as the use of data coming from different clinical centers.
The problem is overcome by extracting common characteristic
features from all the different data types.

The pattern recognition technique used in this study is Ca-
nonical Correlation Analysis (CCA), a statistical method de-
veloped to assess the relation between two sets of variables.
The method has recently been successfully applied to prostate
and brain data and is able to simultaneously exploit the spec-
tral as well as the spatial information characterizing the MRSI
data.

Here, the performance of CCA when making use of differ-
ent feature vector approaches is analyzed and compared.
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I. INTRODUCTION

Previous studies have already proved that the use of HR-
MAS data can bring added value to in vivo MRSI, as we can
more easily distinguish the metabolites characterizing the
different tissue types. In fact, as shown in Fig. 1, compared
to in vivo MRS/MRSI, HR-MAS spectra are characterized
by narrow line widths and large signal to noise ratios. In
particular, with HR-MAS an important number of metabo-
lites can be identified [1].
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Fig.1 Comparison of in-vivo (top) and ex-vivo (bottom) spectra measured
in a patient with GBM (scales are fitted; displayed region [ 0, 4.7] ppm).

We propose a classification method that makes use of
multimodal information coming from 3 different measure-
ment techniques: HR-MAS, MRI and MRSI. This method is
based on CCA, an accurate and efficient tissue segmenta-
tion and classification technique that has recently been suc-
cessfully applied to prostate and brain tumor recognition
[2,3]. The performance of CCA is here further investigated
by introducing the HR-MAS information as a prior knowl-
edge. The results obtained by the new approach are com-
pared with the results obtained by the approach described in
[3], further called classical approach.

II. MATERIALS AND METHODS

A. Materials

The tissue subspace models used in this study were ob-
tained by exploiting information coming from HR-MAS
measurements on 100 patients with 4 different tumor types



and stored at -80°C until use. The biopsies were gathered in
4 brain tumor classes: 27 glioblastomas (GBM), 18 grade I,
6 grade III, 49 meningiomas (MNG). 1D PRESAT (pulse-
and-acquire) data were acquired at 11.7 T (500 MHz for
1H) at 0-4 °C and 4,000 Hz spinnning rate using BRUKER
Analytik GmbH spectrometers. The acquired signals were
preprocessed. The water components were removed by
HLSVD-PRO [4]. The filtered 1D “presat” signals were
normalized (divided by the L2 norm of the frequency do-
main signal between 0.25 and 4.2 ppm), aligned with re-
spect to the Alanine doublet at 1.47 ppm, and corrected for
the baseline (by subtracting the product of the signal and an
apodization function) to obtain the preprocessed signals [5].

The method was evaluated on a number of 14 images
coming from patients with brain tumor diagnosed by con-
sensus on a histopathological study. The MR data was ac-
quired with a 1.5 T Siemens Vision whole body scanner.
For every patient first 4 MR images were acquired: T1
weighted (TE/TR=15/644ms), T2 weighted
(TE/TR=16/3100ms), proton density weighted
(TE/TR=98/3100ms) and a Gadolinium enhanced T1 image
(15 ml 0.5 M Gd-DTPA). MRSI data were acquired, using a
2D STEAM pulse sequence, with the following parameters:
16x16x1024 samples, TR/TE/TM=2000 or 2500/20/30 ms,
slice thickness = 12.5 or 15 mm, FOV = 200 mm, spectral
width = 1000 Hz and NS=2. Eddy current correction was
performed, followed by water removal, baseline correction
[6] followed by the subtraction of the residual from the
original time domain signal. Finally, all spectra were nor-
malized with respect to the water signal.

B. Canonical Correlation Analysis

CCA represents the multi-channel generalization of ordi-
nary correlation analysis, which quantifies the relation be-
tween two random variables x and y by means of the so-
called correlation coefficient:

p= Cov[x, y] 1
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CCA can be applied to multichannel signal processing as
follows: consider two zero-mean multivariate random vec-

tors X = ['xl (t)""’xm (t)]T and y = [yl (t)ﬁ"'ﬂyn (t)]T 2
with £ =1,..., N , where the superscript T denotes the

transpose. The following linear combinations of the compo-
nents inX and y are defined, which respectively represent

two new scalar random variables X and Y
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CCA computes the coefficients @, and @, that maxi-

mize the correlation between X and Y.

In the tissue segmentation approach proposed in [2], the
aim is to detect those voxels whose spectra correlate best
with model tissue spectra, defined as prior knowledge, by
simultaneously exploiting the spectral-spatial information
characterizing the MRSI data. CCA is applied for each
voxel and the class of the model tissue giving rise to the
largest canonical correlation coefficient is assigned to the
voxel under investigation. The results are then exploited in
order to construct nosologic images in which all the de-
tected tissues are visualized.

III. RESULTS AND DISCUSSION

The purpose of our study is to analyze the behavior of a
method that combines multimodal information. To this aim,
a harmonization of the input space is required and this step
is performed by a dimension reduction of the available data.
The input pattern for developing the tissue subspace model
was considered either as a set of quantified values from HR-
MAS spectra or as the combination of the quantified values
from HR-MAS and imaging intensities from MRI meas-
urements. Tests were performed for both cases and com-
pared with the results obtained by the classical approach.

For extracting common characteristic features and reduc-
ing the input space, peak integration, a frequency domain
quantification method based on the integration of the area
under the peaks of interest, was used. The following me-

tabolites were considered [7] L2 (lipids at 0.9ppm), LI

(lipids at 1.3 ppm), Lac (3CH3-group), Ala (1CH3-group),
NAA (2CH3-group), GIx (3CH2-group), Cr (N(CH3)-
group), Cho (N(CH3)3-group), Tau (1CH2-group), mi
(1CH-, 3CH-, 4CH- and 6CH-group) + Gly (2CH2-group).

The y variable in CCA, called subspace model, consists
of a multivariate vector. Specifically, the first component
(y1) was defined as the mean of the feature vectors ex-
tracted from the HR-MAS signals by peak integration. The
second component (y2) was defined as the first principal
component of the matrix containing all the mean-centered
HR-MAS feature vectors.

yl(n) :ﬁgsi(wn) (3)

y2(n)=1"PC

The performance of CCA was analyzed by considering
two different approaches: in the first one the feature vectors
contain 10 HR-MAS metabolite estimates, while in the
second approach, the feature vectors contain 14 entries (10



HR-MAS metabolite estimates and 4 MRI variables). The
results of the method were analyzed for both cases. Then,
we compared the results with the nosologic images obtained
by the classical approach (10 MRSI metabolites estimates
and 4 MRI variables [3]).

For each case under investigation, each voxel was as-
signed to a certain tissue type by applying CCA between the
tissue subspace models (v variable) defined a priori, and the
voxel under investigation (x variable). The considered voxel
was assigned to the tissue type described by the subspace
model with the highest canonical correlation coefficient.
The final result is a nosologic image where the detected
tissue types are visualized by different colors.

In order to exploit the spatial information the x variable
was defined as a multivariate vector that contains informa-
tion not only from the voxel under investigation but also
from the surrounding voxels. Different spatial models can
be used to define the x variable. In this study, CCA was
applied by adopting the symmetric 3x3 spatial model.

The patient from Fig. 2 was diagnosed with glioblastoma
tumor located in the upper-right corner of our grid image.
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Fig.2 MRSI image of a patient affected by a glioblastoma tumor (upper-
right corner of the image)

In Fig. 3-5, we report the results obtained by applying
the different approaches of CCA (10 HR-MAS feature vec-
tor approach, 14 HR-MAS feature vector approach, classi-
cal approach) for the same case.

In all the different approaches the area of the tumor is
correctly detected, but while the classical method detects a
big area of glioblastoma surrounded by tissue belonging to
meningioma (see Fig 3), in the new 10 feature vector ap-
proach the main part of the tumor area is classified as gliob-
lastoma surrounded by voxels of grade II tumor (see Fig. 4).
As a patient can not present in the same area of the brain
both meningioma and glioblastoma tumor types, we believe
that the new approach is closer to clinical reality.
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Fig. 3 Nosologic image and corresponding tissue correlation maps ob-
tained by CCA using the classical approach
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Fig. 4 Nosologic image and corresponding tissue correlation maps ob-
tained by CCA using the 10 HR-MAS feature vector approach
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Fig. 5 Nosologic image and corresponding tissue correlation maps ob-
tained by CCA wusing the 14 HR-MAS feature vector approach

We notice for this specific case that the added value of
MRI to our model vector did not bring any new information
in detecting the area of the tumor tissue, but influenced the
classification of the voxels in the tumor area, detecting a big
area of glioblastoma tumor surrounded by grade II and
grade III voxels (see Fig. 5).

IV. CONCLUSIONS

In this study CCA was applied to segment short echo-
time brain MRSI data by using as prior knowledge informa-
tion coming from HR-MAS or HR-MAS and MRI data. We
studied the possibility of combining multimodal informa-
tion; we investigated which parameters influence our classi-
fication results and the impact of HR-MAS information in



combination with in vivo information for brain tumor rec-
ognition.

For the cases we were investigating, exploiting multimo-
dal information improved the accuracy and the performance
of the classifiers. The model that performed best is the
model that uses multimodal information coming from HR-
MAS and MRI data.
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