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Abstract: The purpose of this study is to combine

multimodal information coming from magnetic
resonance imaging (MRI), magnetic resonance
spectroscopic imaging (MRSI) and high resolution
magic angle spinning (HR-MAS) in order to develop
advanced pattern recognition methods able to help
clinicians in diagnosing brain tumors.
Recently, the use of multimodal information in
diagnosis and tissue characterization of brain tumors
has been shown to improve the performance of the
classifiers. In particular, HR-MAS is seen as a
promising complementary method, as it is very
helpful for the assignment of well-resolved spectra of
cellular metabolites and, therefore, can strongly
support in vivo MRSI by increasing its clinical value.
The pattern recognition technique used in this study
is based on a statistical method known as canonical
correlation analysis (CCA). Here, the performance
of CCA is further investigated by introducing HR-
MAS information as prior knowledge. Specifically,
we study the impact of using HR-MAS information
in combination with in vivo MRI and MRSI
information to detect and classify brain tumors.

I. Introduction

MRI is an imaging technique mainly used to
produce high quality images of the inside of the human
body and is widely applied by clinicians for brain tumor
diagnosis. It brings important information regarding the
location and the anatomy of the tumor. However,
questions regarding the type and the grade of the tumor
are still difficult to address by using MRI.

On the other hand, MRSI provides significant
biochemical information on the molecules of the
organism under investigation. It can therefore
complement conventional anatomical imaging. For the
moment retrieving accurate estimates of the most
relevant metabolite concentrations remains a difficult
task because of magnetic field inhomogeneities,
relatively low signal-to-noise ratio (SNR), physiological
motion, peak overlap and low resolution of the spectra.

The use of HR-MAS data can support in vivo MRSI,
as previous studies have already shown that the
resolution of HR-MAS spectra is higher and, therefore,
metabolites characterizing the different tissue types can
be more easily distinguished. HR-MAS spectra are
characterized by narrow line widths and large SNRs,
thereby allowing the identification of an important
number of metabolites [1].

In our study, we propose a classification method that
uses multimodal information coming from 3 different
measurement techniques: HR-MAS, MRI and MRSI.
This method is based on CCA, an accurate and efficient
tissue segmentation and classification technique that has
recently been successfully applied to prostate and brain
tumor recognition [2,3]. The performance of CCA is
here further investigated by introducing HR-MAS
information as prior knowledge.

II. Materials and Methods

Materials

The tissue subspace models used in this study were
obtained by exploiting information coming from HR-
MAS measurements on 100 biopsies stored after
surgery at -80C until the HR-MAS study. The biopsies
were gathered in 4 brain tumor classes: 27
glioblastomas (GBM), 18 glioma grade II, 6 glioma
grade 111, 49 meningiomas (MNG). 1D PRESAT (pulse-
and-acquire) data were acquired at 0-4 °C in 11.7 T
(500 MHz for 1H) and 14.1 T (600 MHz for 1H)
BRUKER Analytik GmbH spectrometers at spinning
rates of 4000 and 5000 Hz, respectively. The spectra
were preprocessed: the water components were removed
by HLSVD-PRO [4], signals were normalized (divided
by the L2 norm of the frequency domain signal between
0.25 and 4.2 ppm), aligned with respect to the Alanine
doublet at 1.47 ppm, and corrected for the baseline (by
subtracting the product of the signal and an apodization
function) [5].

The method was evaluated on a number of 14
presurgical MRI and MRSI studies coming from
patients with brain tumor posteriorly diagnosed by



consensus on a histopathological study (2 glioma grade
I, 5 glioma grade 111, 4 GBM and 3 MNG).

The in vivo MR data were acquired with a 1.5 T
Siemens Vision whole body scanner. For every patient
first 4 MR images were acquired: T1 weighted
(TE/TR=15/644ms), T2 weighted (TE/TR=16/3100ms),
proton density weighted (TE/TR=98/3100ms) and a
Gadolinium enhanced T1 image (15 ml 0.5 M Gd-
DTPA). MRSI data were acquired, using a 2D STEAM
pulse sequence, with the following parameters:
16x16x1024 samples, TR/TE/TM=2000 or 2500/20/30
ms, slice thickness = 12.5 or 15 mm, FOV = 200 mm,
spectral width = 1000 Hz and NS=2. Eddy current
correction was performed followed by water removal,
baseline correction and subtraction of the residual from
the original time domain signal as in the paper by
Simonetti et al. [6]. All spectra were normalized with
respect to the water signal.

Canonical Correlation Analysis

CCA represents the multi-channel generalization of
ordinary correlation analysis, which quantifies the
relation between two random variables x and y by
means of the so-called correlation coefficient:
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CCA can be applied to multichannel signal
processing as follows: consider two zero-mean
multivariate random vectors

x=[x,(t),...,x, (¢)]" and
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superscript 7 denotes the transpose. The following
linear combinations of the components inx and ) are

defined, which respectively represent two new scalar
random variables X and Y :
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maximize the correlation between X and Y [2].

In the tissue segmentation approach proposed in
[2,3], the aim is to detect those voxels whose spectra X
best correlate with model tissue spectra Y, defined as
prior knowledge. CCA is applied to each voxel and the
tissue type giving rise to the largest canonical
correlation coefficient is assigned to the voxel under
investigation. The results are then exploited in order to
construct nosologic images in which all the detected
tissues are visualized.

Defining the subspace model

The purpose of our study is to analyze the behavior
of a method that combines multimodal information. To
this aim, a harmonization of the input space is required
and this step is performed by a dimension reduction of
the available data.

Metabolite selection: The input pattern for
developing the tissue subspace model was considered
either as a set of quantified values from HR-MAS
spectra or as the combination of the quantified values

from HR-MAS and imaging intensities from MRI
measurements. Tests were performed for both cases. For
extracting the relevant features and reducing the input
space peak integration, a frequency domain
quantification method based on the integration of the
area under the peaks of interest, was used. Special
attention was paid to the selection of the area to
integrate. The following metabolites were considered
[7] L2 (lipids at = 0.9ppm), L/ (lipids at 1.3 ppm), Lac
(3CH3-group), Ala (1CH3-group), NAA (2CH3-group),
GIx  (3CH2-group), Cr (N(CH3)-group), Cho
(N(CH3)3-group), Tau (1CH2-group), mI (1CH-, 3CH-,
4CH- and 6CH-group) + Gly (2CH2-group).

Metabolite  correlation:  Selecting the same
integration intervals for both HR-MAS and MRSI, when
extracting the characteristic features, led to
misclassification due to the difference in resolution and
SNRs between the two types of spectra. Therefore, a
direct comparison of in vivo short-echo time spectra
with the ex vivo HR-MAS was performed for each
metabolite (see Figure 1 and 2).

Short-echo time spectra show overlapping peaks and
a relatively low resolution. A particular region might
cover resonances of more than one metabolite. For
example Lactate (Lac), Alanine (Ala) and lipids (Lip)
overlap around 1.33 ppm (see Fig. 2).
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Figure 1 HR-MAS spectrum: Lipl (1.31ppm) , Lac (1.33ppm), Ala
doublet peak (1.47ppm)
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Figure 2 In vivo MRS spectrum: Lip1, Ala, Lac resonances overlap

The amplitude estimates of the short-echo time
signals were obtained by applying peak integration
within a spectral range of 0.13 ppm symmetrically
chosen around the metabolite peak. For the overlapping
peaks a combined integration was performed, around



resonances from metabolites and lipids selected as being
characteristic of different tumor types [7].

For the HR-MAS spectra, as a clear distinction
between the 10 metabolites can be made [8], an
automatic method was used to select the area under the
peak by computing the regions under the peak tales. The
regions of interest were selected to match those
typically found in vivo. For example, the typical Cho
peak detected in vivo at 3.20 ppm includes many
choline-containing compounds, which can be detected
in HR-MAS spectra. In this work, all these compounds
have been combined in a unique feature or spectral
region. The regions of interest were: L1 [0.89-0.92ppm],
L2 [1.30-1.32ppm] + Lac [1.32-1.34ppm] + Ala [1.45-
1.49ppm], NAA[1.955-2.085ppm], Glx (Glu[2.09-
2.17ppm] + GIn[2.39-2.50ppm]), Cr[3.01-3.03ppm],
Cho+Choline-containing compounds[3.135-3.245ppm],
Tau[3.39-3.42ppm], mI + Gly[3.72-3.8ppm], GIx + Ala
[3.72-3.8ppm] and Cr [3.91-3.94ppm].

For the metabolites that were integrated as one
feature for the in vivo MRS data, due to the overlapping
of the resonances, but are clearly distinguishable in the
HR-MAS data, each metabolite was integrated
separately and the results were summed up in one
feature.

Model variable components: The y variable in CCA,
called subspace model, consists of a multivariate vector.

The first component (y/) was defined as the mean of
the feature vectors extracted from the HR-MAS signals.
The second component (y2) was defined as the first
principal component of the matrix containing all the
mean-centered HR-MAS feature vectors.
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We propose two approaches for defining the
subspace models: using only HR-MAS feature vectors;
using HR-MAS feature vectors as well as of four image
variables obtained from MRI. The performance of the
method was analyzed for both cases.

Applying CCA

During an MRSI acquisition, MR spectra are
measured in a grid of voxels. In the proposed tissue
segmentation approach, each voxel is assigned to a
certain tissue type by computing the correlation between
the tissue type models (y variable) defined a priori, and
the voxel under investigation (x variable).

In order to exploit the spatial information the Xx
variable is defined as a multivariate vector that contains
information not only from the voxel under investigation
but also from the surrounding voxels. Different spatial
models can be used to define the X variable. Canonical
correlation coefficients are computed with the chosen
spatial model and the subspace models of different
tissue types. The considered voxel is assigned to the
tissue type described by the subspace model with the
highest correlation coefficient. The final result is a
nosologic image where the detected tissue types are
visualized by different colors.

II1. Results and discussion

The performance of CCA was analyzed by
considering two different approaches: the feature
vectors contain 10 HR-MAS metabolite estimates and
the feature vectors contain 14 entries (10 HR-MAS
metabolite estimates and 4 MRI variables)

A reliable and representative model has to be
obtained for each tissue type in order to have reliable
results. Therefore, we focused not only on the selection
of the features but also on the data quality used in
creating our models. Indeed, for most NMR
experiments, pH and temperature might influence the
homogeneity across peak positions and amplitude, as
there is a strong dependency between a spins’s
resonance frequency and its local environment [9].
Hence, different tests were carried out, where the model
vector was constructed, starting from data, by
neglecting very different signals, eliminating quite
different signals, keeping very similar signals. An
increase in performance of the method was observed
when the spectra used in creating the model were
similar to each other and with low variation with respect
to the standard model reported in [10].

After agreeing on the spectra to use to construct the
model vectors, the attention was directed to the
performance of CCA when using different spatial
models: the symmetric 3x3 model, the symmetric 3x3
model without corner voxels and the 3x3 model.

A very clear conclusion could not be drawn
regarding which spatial model performs best. With this
respect, simulation studies need to be performed for
detecting the best performing spatial model.

Figures 3 and 4 show the results obtained for a
patient affected by GBM. We compare the two
approaches: CCA method based on a 10 features model
and on the 14 features model. In both cases the tumor
area is correctly detected in the upper-right corner of
our grid image.

The 10 features model approach detects in the tumor
area GBM surrounded by voxels of grade II. The added
value of MRI to our model vector does not bring
significant new information in detecting the area of the
tumor tissue, but influences the classification of the
voxels in the tumor area, detecting a bigger area of
GBM tumor surrounded by grade II and grade III voxels
(see Figure 3 and 4). The spatial model used is the
symmetric 3 x 3 model.
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Figure 3 Nosologic image and corresponding tissue correlation maps
obtained with CCA using the 10 feature vector approach
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Figure 4 Nosologic image and corresponding tissue correlation maps
obtained with CCA using the 14 feature vector approach

IV. Conclusions

In this study CCA was applied to segment and
classify short echo-time brain MRSI data by using as
prior knowledge information coming from HR-MAS or
HR-MAS and MRI data. We studied the possibility of
combining multimodal information; we investigated
which parameters influence our classification results
and the impact of HR-MAS information in combination
with in vivo information for brain tumor recognition.
The model that performs best is the model that uses
multimodal information coming from HR-MAS and
MRI data.

One of the most challenging problems for the
method was the harmonization of all the input spaces
due to the fact that we have to manage the use of very
different information/data, obtained with different
measurement techniques, as well as the use of data
coming from different clinical centers. The problem was
overcome by extracting common characteristic features
from all the different data types.
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