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Abstract

In this study we classify short echo-time brain magnetic resonance spectroscopic imaging (MRSI)
data by applying a model-based canonical correlation analyses (CCA) algorithm and by using, as
prior knowledge, multimodal sources of information coming from high resolution magic angle
spinning (HR-MAS), MRSI and magnetic resonance imaging (MRI). The potential and limitations
of fusing in vivo and ex vivo nuclear magnetic resonance (NMR) sources to detect brain tumors is
investigated. We present various modalities to combine multimodal information, study the effect
and the impact of using multimodal information for classifying MRSI brain glial tumors data and
analyze which parameters influence our classification results by means of extensive simulation and
in vivo studies. Special attention is drawn to the possibility of considering HR-MAS data as a
complementary data set when dealing with a lack of MRSI data needed to build a classifier. Results

show that HR-MAS information can have added value in the process of classifying MRSI data.
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1. Introduction

Brain tumors represent an important challenge in oncology because of their relative high mortality.
The World Health Organization (WHO) classification discriminates several different brain tumor
types, subtypes and different grades of malignancy [1]. Additionally, brain tumors are known for
their extensive heterogeneity both at the level of tumor type and grade, as well as at a microscale
level, since within viable tumor tissue necrotic regions may occur and tumor cells may grow
infiltrative in apparently normal brain tissue. These characteristics pose serious difficulties in the
diagnosis, prognosis and treatment of brain tumors. Consequently, many researchers are now

focusing on understanding this disease.

NMR techniques are widely used in the diagnosis and prognosis of brain tumors. Conventional MRI
techniques focus on anatomical abnormalities and usually include proton density, T1 and T2
weighted MRI. These images essentially assess anatomy, but they are often not able to characterize
the heterogeneous growth of cancer tissue and to identify tumor type or grade. To address these
issues, more functional MR methods are currently being explored such as MR of vessel perfusion,
of water diffusion and of metabolite distribution. In contrast to the first two, which rely on the
measurement of the signal intensity of water, the latter assesses the abnormal signal levels of certain
metabolites in brain tumors. This technique is called MR spectroscopy (MRS) and, if performed in
a multi-voxel approach, MRSI. The latter allows the spatial mapping of metabolites and is more and
more used in the clinical MR community. Ex vivo high resolution NMR techniques are also often
considered if one is interested in an accurate biochemical profile of brain tissue, since they are very
helpful for the assignment of well-resolved spectra of cellular metabolites [2]. In this context, ex
vivo HR-MAS 1is seen as a promising complementary NMR technique and a good correlation
between ex vivo HR-MAS and in vivo MRS has been reported [3]. Thus, HR-MAS can improve the
interpretation of the metabolic biomarkers that are visible with in vivo NMR. Additionally, with ex
vivo HR-MAS the tissue integrity is not extremely damaged [4] and this is an advantage since it
allows one to perform, on the same tissue sample, multimodal studies including subsequent
genomic, proteomic or histopathological analyses and, therefore, to obtain a direct comparison

between all these techniques.

Nowadays multiple acquisitions of the brain with different techniques is getting very common.
Combinatorial approaches, where different techniques are correlated or compared for assessing the

tumor type and grade have been previously proposed [5-14]. These studies, where multiple data



sources are considered, can provide further insights into the biology of the brain tumors and
improve the diagnosis. Still, in all these studies the multimodal sources of information are explored
individually and then overlaid to demonstrate the relationship between them. It has been shown in
[15-21] that fusing MRI and MRSI information improves brain tumor classification compared to the
use of information of each source alone. We further explore this idea by developing a classification
system for glial brain tumors where multimodal sources of information coming from HR-MAS,
MRSI and MRI are integrated in the classification problem. The main purpose of this analysis is to
use the common features, as well as the complementary pieces of information from our data, and

therefore to simultaneously exploit metabolic and anatomical information.

In order to fuse multimodal sources of NMR information, reliable and robust classification
strategies must be considered. The classification methodology proposed in this study is based on the
canonical correlation analysis (CCA) algorithm [22]. CCA is an accurate and efficient statistical
technique. It has been shown to be a good framework for fusing multimodal biomedical data and it
has already successfully been applied to brain data [16, 21, 23-25]. CCA allows us to perform a
multivariate analysis where different sources of information are integrated in the classification
algorithm. Previous approaches to solve multivariate dataset problems using CCA can be classified
as being either data driven such as in [23-25] or model based [16, 18, 20-21]. For this study we
considered a model-based CCA approach by investigating the goodness-of-fit of the data to some

prior knowledge.

Since in supervised classification one may have to deal with complications such as the limited
number of samples available for analysis, we first tackle the problem of lack of data available a
priori for building a model for our analyses based on the CCA algorithm. Then, we explore the
possibility of using HR-MAS data as a complementary data set for building the models. Two
different approaches of improving the classification results by fusing multimodal information are
proposed: integrating multiple data sets or multi-channel modeling. Additionally, for both
approaches the model accounts for inter-patient variability. To assess the quality of our method and
to investigate which parameters influence the classification results, an extensive simulation study is

carried out and several in vivo MRSI examples of brain tumor are analyzed.



2. Materials

2.1 Tumor data description

Brain tumor biopsies coming from 52 patients were provided by the acquisition centers Hospital La
Ribera-Alzira (Valencia), Hospital Clinico Universitario (Valencia) and Instituto FLENI (Buenos
Aires), all participating as partners in the e TUMOUR project (Web Accessible MR Decision
Support System For Brain Tumour Diagnosis And Prognosis, Incorporating In Vivo and Ex Vivo
Genomic and Metabolomic Data. URL: http://www.etumour.net/). Based on a histopathological
study, the biopsies were assigned to three brain tumor classes: 27 cases of glioblastomas (GBM), 7
cases of grade III glioma (GIII), 18 cases of grade II glioma (GII). The tissue specimens were snap-
frozen in liquid nitrogen and stored at -80°C until the time of spectroscopic analysis, when 1D
PRESAT HR-MAS (pulse-and-acquire) data were acquired. 29 out of the 52 HR-MAS experiments
were conducted on a Bruker Avance DRX 600 spectrometer operating at a 'H frequency of 600.13
MHz. The instrument was equipped with a 4 mm triple resonance 'H/"*C/"°N HR-MAS probe with
magnetic field gradients aligned with the magic angle axis. The other 23 out of the 52 samples
underwent HR-MAS experiments using a Bruker Avance DRX 500 spectrometer operating at a
frequency of 500.13MHz. The instrument was equipped with a 4mm triple resonance 'H/*'P/"*C
HR-MAS probe. A single-pulse 90° pre-saturation experiment was acquired in all the samples. To
keep the rotation sidebands out of the acquisition window, samples were spun at 5000 Hz in the
DRX 600 spectrometer and at 4000 Hz in the DRX 500 spectrometer. The HR-MAS signals were
truncated from 8120 points to the first 2048 points to reduce the computational load in the pre-
processing steps. The water components were removed by HLSVD-PRO [26]. The filtered signals
were normalized (divided by the Euclidean norm of the frequency domain signal within the region
of interest between 0.25 and 4.2 ppm) and aligned with respect to the Alanine doublet at 1.47 ppm.
A baseline correction was applied using an apodization function in the following way. The signal
was point-wise multiplied in the time-domain with an exponentially decaying function. Then, the
resulting spectrum mainly contained the broad baseline components, which were subsequently

subtracted from the original spectrum, yielding the preprocessed signal.

Histopathological analysis on the same tissue part used in the HR-MAS experiment revealed a high
variability in the content of highly cellular tumor tissue, infiltrations with normal tissue and/or
necrotic tissue. Since a strong correlation between the histopathological tissue properties and the
metabolic profiles coming from ex vivo HR-MAS was observed [27], in order to avoid large

variations within the samples belonging to the same brain tumor class we excluded those tumor



samples with high infiltration from normal tissue. Thus, for the statistical analyses we considered 13

GII, 5 GIII and 22 GBM HR-MAS measurements.

MRSI data of 24 patients with brain tumor were considered. Both water suppressed and
unsuppressed proton MRSI data were acquired in the Radboud University of Nijmegen Medical
Centre (RUNMC) on a 1.5T clinical MR system (Siemens Vision), using a 2D STEAM pulse
sequence with the STEAM box positioned in a transversal plane through the brain showing the
largest tumor diameter in the Gd contrast enhanced image. The MRSI parameters are: 16x16x1024
samples, TR/TE/TM=2000 or 2500/20/30 ms, slice thickness = 12.5 or 15 mm, FOV (field of view)
=200 mm, spectral width = 1000 Hz and NS=2. The study was approved by the ethical committee
of the UMCN and for tumor typing followed the rules of the World Health Organization (WHO).
Thus, each patient's tumor was diagnosed based on a histopathological study and 176 spectra for
GlII, 57 spectra for GIII and 70 GBM spectra could be extracted from the 24 cases. The water
suppressed MRSI signals were preprocessed as follows: filtering of k-space data by a Hanning filter
of 50% using the LUISE software package (Siemens, Erlangen, Germany), zero filling to 32 x 32
and spatial 2D Fourier transformation to obtain time domain signals for each voxel, eddy current
correction, water removal with HLSVD-PRO [26] and baseline correction performed as described
in [28]. Zero-order phase was already corrected during eddy current correction. Manually, all first
order phases were adjusted. Finally, all spectra were normalized with respect to the unsuppressed

water signal.

For each of the 24 patients 4 MR images were acquired: T1 weighted (TE/TR=15/644ms), T2
weighted (TE/TR=16/3100ms), proton density weighted (TE/TR=98/3100ms) and Gadolinium
enhanced T1 (15 ml 0.5 M Gd-DTPA).

3. Methods

3.1 Harmonization of the input spaces

The fusion of multimodal data sets is a challenging problem since the data are dissimilar in nature.
To overcome this problem we propose a feature-based approach. For harmonizing the spectral
MRSI and HR-MAS information, a dimension reduction of the available data is performed, by
quantifying the most important metabolite concentrations using peak integration applied to the
preprocessed signals. The following 10 metabolites were considered: Lip! (lipids at 0.9ppm), Lip2
(lipids at 1.3 ppm), Lac (lactate), Ala (alanine), NAA (N-acetyl-aspartate), Gix group (glutamine -



Gln and glutamate - Glu), Cr (creatine), Cho (choline), Tau (taurine), m/ (myo-inositol) + Gly
(glycine). The chosen metabolites are important biomarkers for separating different tissue types

within the brain and present a high correlation in ex vivo and in vivo measurements [3].

The linewidth and SNR differences between in vivo and ex vivo spectra, see figure 1, makes us
reasonably think that different strategies are required to extract relevant features. Thus, different

integration intervals are considered for HR-MAS and MRSI spectra, respectively (see table 1).
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Figure 1. Comparison between an ex vivo spectrum (left) and an in vivo spectrum (right) for GBM.
The vertical axes are scaled in order to facilitate a visual comparison and the displayed frequency

region is the area of interest [0.25, 4.2] ppm.

Due to peak overlap and relatively low spectral resolution that characterize the MRSI measurements
at the clinical field strength considered in this study, Lac, Ala and Lip2 were extracted as one
feature, G/u and Gln were also grouped, the same for m/ and Gly, as well as Glu, Giln and Ala,

which overlap around 3.74 ppm.

For HR-MAS, the considered metabolites were quantified separately. Peaks which were grouped
together in short-echo time 'H MRSI spectra were grouped in the same manner in HR-MAS spectra,

by summing up their corresponding integrated area into one feature.



Table 1. Integration intervals: MRSI vs HR-MAS spectra.

Metabolite

MRSI

HR-MAS

Lipl

[0.835-0.965] ppm

[0.860-0.920] ppm

Lac + Ala +Lip2

[1.265-1.395] ppm

[1.320-1.340] ppm (Lac)
[1.450-1.490] ppm (Ala)
[1.300-1.320] ppm (Lip)

NAA [1.955-2.085] ppm [1.955-2.085] ppm
Glu+Gin [2.135-2.265] ppm [2.090-2.170] ppm (Gln)
[ 2.390-2.50] ppm (Glu)
Cr [2.955-3.095] ppm [3.010-3.030] ppm
Cho [3.135-3.265] ppm [3.135-3.245] ppm
Tau [3.375-3.505] ppm [3.390-3.420] ppm
mI+Gly [3.495-3.625] ppm [3.500-3.620] ppm
Glu+Gln+Ala [3.685-3.815] ppm [3.720-3.800] ppm
Cr [3.885-4.015] ppm [3.910-3.940] ppm

The obtained metabolite concentrations for each spectrum are then stacked into a vector, which we

call a feature vector. In this way we obtain a database containing MRSI feature vectors, S, ., , and

one with HR-MAS feature vectors, S for each tissue type.

HR—-MAS °

Spectral information is also combined with imaging information coming from MRI measurements
and the harmonization of these sources is performed, as described in [17], by lowering the
resolution of the MR images to the MRSI voxel size. Specifically, the images with 4 contrasts are
aligned with respect to the spectroscopic image and the MR pixel intensities are averaged out over a

spectroscopic voxel obtaining 4 additional variables. This information is gathered in a database of

feature vectors for MRI data, S, ,, , for each tissue type.

Finally the resulting MRSI, HR-MAS and MRI feature vectors are scaled to be in the same
numerical range. More precisely, the arithmetic mean of each feature vector is subtracted from its
elements, so that the new elements are centered around zero, and the new vector is scaled by

division to its Euclidean norm.



3.2 Canonical Correlation Analysis

To illustrate the idea of fusing ex vivo HR-MAS, in vivo MRSI and MRI features we considered a
model-based approach of the statistical method CCA, which has recently been successfully applied
to classify prostate and brain MRSI data [16, 20, 21].

CCA is a multi-channel generalization of ordinary correlation analysis, which quantifies the relation

between two random variables by means of the so-called correlation coefficient:

Cov[x, y]

= RDl W

where Cov stands for covariance and V for variance, and x and y denote here two scalar random
variables. CCA seeks two sets of transformed variates such that the transformed variates assume
maximum correlation across two data sets. Being a multivariate method, it can provide increased

statistical power over univariate methods. It can be applied to multichannel signal processing as

. . . T
follows:  consider two zero-mean multivariate random vectors x=[x,...,X, ]

andy =[y,....,», 1", where the superscript T denotes the transpose. We define the following linear

combinations of the components of x and y, which represent two new scalar random variables X
and Y:
_ T
X—a)xlx1 +toto, x, =0, X

Y:a)yly1+-~+a)ynyn:a)yTy @)

CCA computes the coefficients @, =[@,,...,®, 1" and o =lo,,..o, 1", known as

regression weights, that maximize the correlation between the so called canonical variates X and

Y . Nonnegativity constraints on @, and @, are imposed, as in [29].

3.2.1 Model-based CCA. During an MRSI acquisition, spectra are measured in a grid of voxels.
Inspired by [16], we want to assign each voxel to a certain tissue type by computing the maximum
canonical correlation coefficient between the information available for the voxel of interest (x) and
the tissue models obtained based on the information available a priori (). Since we believe that

there is a high probability that the voxel under investigation belongs to the same tissue type as the



neighboring voxels, when defining the m components of x we include spatial information coming
from the voxels surrounding the voxel of interest. To this aim a symmetric 3x3 spatial model was
considered (the adjacent voxels plus voxels on the diagonal are considered as neighbors, giving a
total of 8 voxels). This means that, for example, for classifying the voxel on position 5 shown in

figure 2, where for each position i we denote the corresponding feature vector with x;, we compute

the x variable as:

x =[xy, (x, +x0)/2,(x, +x) /2, (x5 +x,)/2,(x, +x,)/2]"
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Figure 2. Schematic representation of CCA when applied to a 3x3 region of MRSI voxels

Since for each voxel we have access to two data sets of measurements, i.e. MRSI and MRI
information, x,, where i=1,...,.9, is defined as a feature vector containing 14 entries by

concatenating 10 metabolite estimates extracted from the spectrum of the i — th voxel and 4 image

intensities extracted as described in Section 3.1, alongside each other.

The y variable represents the so-called subspace model and is defined by two vectors:

yl = [EaEMRI]
v, =[1" PC

5 Suwi] ]

y= 3)

where S represents the mean of all the considered spectral feature vectors, extracted from the a
priori available database of validated Syzs; and/or Sgras data, and S wry the mean of all the

available Sy, data. Thus, », consists of 14 entries: 10 spectral feature vectors and 4 image

intensities concatenated alongside each other. In order to model the natural inter-patient variability,



a second component (y,) is defined as the first principal component, 1* PC, obtained by

~

performing principal component analysis (PCA) separately on the matrices S and S ey Obtained

by mean centering the previously considered matrices S and Sy, For each tissue type we defined a
distinct subspace model by considering only the a priori available information belonging to the

same tissue type.

Once x and y have been defined, CCA is applied to each voxel so that a correlation map is

obtained for each tissue type. These correlation maps are then compared, assigning to each voxel
the tissue type corresponding to the largest canonical correlation coefficient. In this way nosologic
images are constructed such that all voxels of the same tissue type are visualized with the same
color [30]. These images can be easily interpreted by radiologists and physicians and, along with

clinical and radiological information, can improve the accuracy of the diagnosis.

3.3 Simulation study

Firstly, for the simulated MRSI experiment, the available MRSI dataset is randomly split into two
sets: one test set used for building simulated MRSI grids and one set to build the tissue subspace
models. Thus, representative information coming from multi-voxel MRS measurements for the
different glial tumor types and normal tissue is used to simulate 10x10 MRSI grids. All grids
present two tissue regions: a region of 5x5 tumor voxels in the upper left corner and normal tissue
in the remaining ones. The artificial MRSI data (see figure 3) are created by making use of a set of
vectors consisting of 14 features (10 metabolite concentrations and 4 image intensities). CCA is
then evaluated on 30 grids, namely on 10 different images for each tumor type (GII, GIII and
GBM).

10
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Figure 3. Feature vectors of a simulated MRSI grid. Left upper corner square (red contour): GBM

tissue; rest of the grid: normal tissue.

Each voxel within the simulated MRSI grids is classified using CCA and the performance of the
classification is evaluated by computing the area accuracy rate (AAR) and the weighted accuracy
rate (WAR) [31, 32], as defined in (4) and (5). The former value provides information on the degree
of reliability of the method in detecting the tumor region; the latter provides information on the
method’s ability in differentiating the tissue types characterizing the lesion, i.e. in assigning each

voxel to the right tissue class.

AARz(a”’“”j (4)

A+B+C+D

WARzl(a+b+c+dj (%)
N\A B C D

where a, b, ¢ and d represent the number of correctly predicted outcomes for normal, GII, GIII and
GMB tissue respectively. A, B, C and D represent the number of cases belonging to normal, GII,

GIII and GBM, respectively. N is the total number of classes (in our case N = 4).

3.3.1 CCA performance for different size of the database used in building the tissue subspace
model. We analyze the behavior of CCA for different database dimensions used in building the

tissue subspace model. When defining y, MRSI and MRI information is considered [16], see (3),

withS =[5, ], (MR imaging features, Sy, are included as well). We tested the performance of

11



CCA when considering large database of cases to build the tissue subspace models by using all the
available MRSI and MRI data (i.e. 176 cases for GII, 57 cases for GIII, and 70 cases for GBM) and,
then, gradually reducing the size of the database to a very small number of cases (10 cases of GII,

10 cases of GIII and 10 cases of GBM tumor).

3.3.2 Adding complementary information coming from HR-MAS. In this part of the study we tackle
the problem of lack of data needed to build the subspace models by analyzing to which extent HR-
MAS can help in improving the classification results, when this problem is encountered. One

approach is to merge MRSI and HR-MAS information in one single database by stacking the
feature vectors extracted from the two types of spectra into one matrix, S =[Szg 38y pus 1",

and afterwards to compute the subspace mode y as defined in (3), including the MR imaging

features, Syz; as well. This approach is further called data integration.

Another approach is to consider different channels of multimodal sources of information coming
from both the MRSI and HR-MAS datasets when computing y. Thus, a subspace model from each
data source is computed separately and then both are merged into a final subspace model. We then

obtain a subspace model where the y variable now contains 4 components, 2 coming from the

MRSI data and 2 coming from the HR-MAS database:

2 = [Sursr» S ]

e Vs :liP C[iws,,_iuml (6)
s =[S umcsuas > Suumr ]
y,=1"P C[§,,R,‘MAS,§¢,R,J

This modality of computing the subspace model is further referred to as multichannel approach.

The performance of CCA for the two approaches considered in building the subspace model is
analyzed and compared for various scenarios where HR-MAS information is added gradually. Thus,
various combinations of (I;,1,), where 1; represents the number of MRSI cases and 1, the number of
HR-MAS cases, are considered in the subspace model: (0,0), (5,0), (10,0), (all,0), (0,10), (5,10),
(10,10), (all,10), (0,30), (5,30), (10,30), (all,30), (0,all)), (5, all), (10,all), (all, all).

12



3.4 In vivo study

In order to verify to which extent the conclusions drawn in the simulation studies are consistent
with real conditions, we further test the above described approaches on real-life case studies. As
already described in Section 3.2, CCA assigns each voxel to a histopathological class based on the
highest canonical correlation coefficient value. We draw nosologic images, where each voxel is
colored according to the tissue class it belongs to as follows: dark blue is used for normal tissue,
and yellow, red and orange are used to color the tumor voxels, each color representing a different
tumor type (GII, GIII and GBM, respectively).

The results obtained by all considered approaches used in building the subspace model are reported

and compared against the clinical outcome.

4. Results

4.1 Simulation study

4.1.1. Influence of the size of the database used to build the tissue subspace model. A decrease in
performance is observed when building the subspace models from a small number of cases, see
figure 4. In particular, the WAR value presents a decrease from 91.4 % (when using a database with
more than 50 cases) to 76.2% (when using a database containing 10 cases) when analyzing the GII
simulated MRSI grids. Generally, the accuracy of the classifier shows to be positively correlated to
the number of available cases used to build the subspace model: the more cases we include, the

better performance we achieve.

Sensitivity to database dimension Sensitivity to database dimension

100

100

I csv e
 E— T  — T
I G —
95+ 951
90+ 901
S €
S B
85+ 851
80+ 801
75 75
>50 cases 30 cases 10 cases >50 cases 30 cases 10 cases
Database dimension Database dimension

Figure 4. WAR (left) and AAR (right) mean values obtained over 10 simulated MRSI grids are

presented for different database sizes used to build the tissue subspace models.
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4.1.2. Adding HR-MAS information when building the subspace model. Results show that both
approaches considered for adding complementary HR-MAS information when building the
subspace model, data integration and multichannel approach, respectively, improve CCA
classification results when not enough MRSI data are available. Especially for the GII case we get
an improvement in accuracy up to 8% when adding extra information coming from HR-MAS,
compared to the case when considering a database of 10 or less MRSI data, see figure 5. For the
GIII case, the increase in accuracy is not significant. This can be explained by the fact that we have
a set of only 5 HR-MAS signals for this type of tumor. Therefore, even by complementing the 10
cases of the MRSI data set with 5 new HR-MAS cases, we are still dealing with a small database.

GBM

00
MRSI cases HR-MAS cases MRS cases 00 HR-MAS cases MRS cases 00 HR-VIAS cases

MRStcases O O HRAAS cases MRSI cases HRAIAS cases RS cases HRIAS cases 0
Figure 5. AAR (top) and WAR (bottom) mean values obtained over 10 simulated MRSI grids for
different number of MRSI and HR-MAS cases considered in building the subspace model. Data
integration approach was considered in building the subspace model. (For GIII we have a total of 5
HR-MAS cases and, therefore, the values are not changing through the plot for HR-MAS when

considering 10 and all cases.)

The general trend is that when not enough information of one source (e.g. MRSI) is available in the
database for one or more tissue classes, then, using complementary information coming from HR-
MAS data when building the subspace model keeps the performance of CCA to a reliable level. On
the other hand, when sufficiently large data sets of one source (e.g. MRSI ) is available in the
database for one or more tissue classes, then adding extra HR-MAS information to the MRSI data
sets does not bring any statistical significant improvement to the classification results when

considering the data integration approach. On the contrary, with the multichannel approach for GII

14



tumor classification we obtain an increase in the WAR value to almost 96%, see figure 6. This
could be due the fact that by considering a multichannel approach when building the subspace

model a four-dimensional subspace, as in eq. (6) is built, instead of a two-dimensional subspace (3).

Consequently, 4 coefficients @, instead of only 2 are optimized such that the correlation between X

and Y is maximized. This offers more flexibility in exploring all correlations between the data and

each of the two types of information used for building the model.

100

- multichanel approach
I integration approach

95+

WAR

90

85

GBM Glil Gll

Figure 6. WAR values for different tumor types: comparison between the multichannel approach

and data integration approach when considering large MRSI and HR-MAS data sets.

When using only HR-MAS data to compute the tissue subspace models (in figure 5, note the values
corresponding to 0 MRSI cases), the accuracy of the classifier is relatively high, especially for
classifying GIII and GBM tumor types. The performance for this specific case does not reach the
level of performance obtained with a subspace model computed from large representative MRSI
data sets (compare in figure 5 the values corresponding to the scenario (0, all) against (all, 0). Still,
taking into consideration the fact that we use totally different data sets coming from different
centres and acquired with different techniques (HR-MAS data for building the model and MRSI
data for testing the performance), we believe that these results show the potential of using
heterogeneous sources of information for tissue typing (e.g. in brain tumor recognition) which is
particularly interesting when no information of one source (e.g. MRSI) is available for one or more
tissue classes. We prove that using only HR-MAS data we can build a reliable classifier that is able
to provide satisfactory results for classifying MRSI data. We show once more that these two NMR
techniques (HR-MAS and MRSI) can complement each other. For the GII tumor, the performance

of CCA is lower than for the other two tumor types. We believe that there are many factors that can

15



explain these results. First of all, when analyzing tissue samples, i.e. HR-MAS data, the sampling
procedure is crucial for homogeneity. In most NMR experiments, pH and temperature must be
tightly regulated to ensure homogeneity across peak positions and amplitude, as there is a strong
dependence between a spin resonance frequency and its local environment [33]. Some experimental
variables, like the effects of changing the sample volume in the MAS rotor, snap-freezing the
samples, the temperature could have an influence on the estimated concentration of some
metabolites. On the other hand, the variability among the glial tumor spectra may be large due to
the fact that the same type of tumor may include molecular subgroups which may greatly affect the

concentrations of some metabolites.

4.2 In vivo studies

figure 7.a shows the T2 MRI image of a brain affected by tumor. The patient is diagnosed with low
grade astrocytoma, GII. The tumor lesion is localized in the left upper corner of the MRSI grid. The
results obtained with CCA are translated into nosologic images and are presented in figure 7.b-e.
The area of the tumor is correctly detected by all the considered approaches (CCA where only
MRSI cases are used in building the model, only HR-MAS cases are used in building the model, all
MRSI and HR-MAS cases are used in building the model with data integration approach and all
MRSI and HR-MAS cases are used in building the model with multichannel approach for 7.b, 7.c,
7.d ,and 7.e respectively) and no isolated tumor voxels appear in the healthy tissue area. Regarding
the accuracy level for detecting the tumor type, differences can be noticed between the considered
approaches. Both 7.b and 7.c assign some voxels to GIII. This can be explained by the fact that the
spectra within these voxels present higher levels of Cho and lower levels of NAA compared to the
rest of the tumor area, which is typical for aggressive grade tumor and/or high cellularity tumor
tissue. In 7.d the entire area of the tumor is assigned to GII. Still, some voxels of normal tissue are
detected inside the area of the tumor. The result closest to the clinical validation is the nosologic

image obtained for 7.e.
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Figure 7. a. T2 MRI image of a brain affected by tumor, nosologic images obtained CCA for b. all
MRSI cases used in building the subspace model, c. only HR-MAS cases are used in building the
model, d. all MRSI+HR-MAS cases are used in building the model with data integration approach
e. all MRSI and HR-MAS cases are used in building the model with multichannel approach

The CCA performance for the real-life case studies is similar to the performance obtained in the

simulated studies and results are in consensus with the clinical outcome.

5. Discussion

For this study, as we had access to three different sources of information, the input space (i.e.
prior available database) could be either spectral information coming from MRSI data, information
coming from HR-MAS spectra, a set of image intensities coming from MRI data, or the
combination of all described sources. It is very common to consider a classification using these
sources separately. Since each of the input data source can add extra information to the
classification problem, a multimodal approach fusing all the information seemed as a reasonable
solution in this study. Previous studies have shown that, when classifying MRSI data, a significant
improvement in the performance of the classifier is obtained by taking into account MRI
information as well [16-21]. We further explored this idea by analyzing the behavior of a

classification method that combines three sources of multimodal information.

A challenging problem in this study was the harmonization of all the input spaces due to the fact
that we have to manage the use of very different sources of information/data, obtained with
different measurement techniques, as well as the use of data coming from different clinical centers.

The problem was overcome by considering a feature-based CCA approach, where common
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characteristic features from all the different data types are extracted and a normalization of the data

was performed.

Since the performance of the model-bases CCA algorithm proposed for this study is directly
dependent on the prior available observations used in building the model, special attention is paid to
the possibility of using HR-MAS data as a complementary data set when dealing with a lack of
MRSI data needed to build a classifier. It is worthwhile to stress that the model choice dictates the
detection performance. In general, when working with supervised classification methods, the
classifier has to learn the significant features, by means of a training procedure, to separate the
different classes. Thus, in order to obtain reliable classifiers we need large and representative
datasets for each class. Nevertheless, some clinically important tumors are sufficiently rare that
even a large multicentre study would be unlikely to gather sufficient cases to define their metabolite
profiles using in vivo MRS. Therefore, for rare brain tumors little is known biologically and a
diagnosis on the basis of morphologic and metabolic appearance alone is controversial. Nowadays,
large collaborative programmes exist for collecting frozen tissue from such tumours at surgery and
placing them in a tumor bank. Biological studies using frozen tissues from tumor banks have been
highly successful and HR-MAS could form part of such a study. We evaluate the CCA performance
when solving the aforementioned problem either by adding HR-MAS data to the in vivo database,
or considering only HR-MAS data sets for building the subspace model, see Section 3.2. This
approach promises to be an interesting solution when only a limited number of MRSI cases are
available to build the subspace-models. Results of this study show that determining metabolite
concentrations from the tissue samples with HR-MAS and using this information to define the MRS
metabolite profiles found in vivo can help to the construction of in vivo MRS classifiers. We have
explored two approaches for building the model that combines both sources of information. Data
integration approach is a straightforward approach where no distinction is made between the
sources of information, because the extracted features are treated in common. That is, feature
vectors from MRSI and from HR-MAS are grouped into a single dataset, from which the mean and
the first principal component are extracted as model y. This approach might lose specificity in the
case when there is some incongruence between the two sources of information. Therefore we
introduced a second approach, the multichannel approach, where the two sources of data are not
averaged together, but are considered as different directions to which the data to be classified might

align to. We have seen that this approach led to a better classification of the simulated GII cases.
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The idea presented in this study can be extended to any type of tumor, especially to the rare ones for
which a biopsy is normally performed, and to any pattern recognition method/system that makes
use of a learning procedure or uses reference tissue models. This could be very interesting for
distinguishing between rare tumours and between rare and common tumours of clinical importance.
Such a system can afterwards be applied to classify other MRSI data non-invasively, thereby

avoiding the need of new biopsies.

6. Conclusions

Fusing multimodal sources of information coming from MRSI, HR-MAS and MRI measurements
represents a promising approach to provide improved detection and classification of brain tumors
since each source has its own advantages and limitations and, therefore, they can complement each
other. This approach can add value to the process of tumor diagnosis, both for the situation when
we are confronted with a lack of information available for building a classifier as well as for the
situation when we have access to different sources of information and we use all these sources in
building a robust classifier. Additionally, results show that HR-MAS information can act as an
added value in the process of classifying MRSI data. An improvement in the accuracy of CCA is
observed for all tissue types when a limited number of MRSI data, needed to build the subspace
model, are available in the database and HR-MAS data are used as a complementary data set.
Moreover, our simulation and in vivo studies show that when we have access to various type of
information describing the same population, combining multimodal heterogeneous sources of
information can also improve the performance of CCA in detecting correctly the tumor type and the

tumor region.
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