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Abstract

Clustering genes into biological meaningful groups according to

their pattern of expression is a main technique of microarray data

analysis, based on the assumption that similarity in gene expression

implies some form of regulatory or functional similarity. We give an

overview of various clustering techniques, including conventional clus-

tering methods (such as hierarchical clustering, k-means clustering,

and self-organizing maps), as well as several clustering methods specif-

ically developed for gene expression analysis.
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1 Introduction

The first question in microarray data analysis is to identify genes whose

expression levels are significantly changed under different experimental con-

ditions. Basic statistical techniques can solve this problem efficiently (Baldi

& Brunak 2001). However, such an analysis treats the genes separately

rather than exploring their relation with each other. For a gene, the de-

tailed relations between the levels of expression in the different conditions

are neglected in this first-level analysis. Based on the assumption that ex-

pressional similarity (i.e., coexpression) implies some kind of regulatory or

functional similarity of the genes (and vice versa), the challenge of finding

genes that might be involved in the same biological process is thus trans-

formed into the problem of clustering genes into groups based on their sim-

ilarity in expression profiles.

The first generation of clustering algorithms applied to gene expression

profiles (e.g., hierarchical clustering (Eisen et al. 1998), k-means (Hartigan

1975), and self-organizing maps (SOM, Kohonen 1995)) were mostly devel-

oped outside biological research. Although encouraging results have been

produced (Spellman et al. 1998, Tavazoie et al. 1999, Tamayo et al. 1999),

some of their characteristics (such as determination of the number of clus-

ters, clustering of outliers, and computational complexity) often complicate

their use for clustering expression data (Sherlock 2000).
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For this reason, a second generation of clustering algorithms have started

to tackle some of the limitations of the earlier methods. These algorithms in-

clude, among others, model-based algorithms (Yeung et al. 2001a, McLach-

lan et al. 2002), the self-organizing tree algorithm (Herrero et al. 2001),

quality-based algorithms (Heyer et al. 1999, De Smet et al. 2002), and bi-

clustering algorithms (Cheng & Church 2000, Sheng et al. 2003). Also, some

procedures have been developed to help biologists estimate some of the pa-

rameters needed for the first generation of algorithms, such as the number

of clusters present in the data (Lukashin & Fuchs 2000, Yeung et al. 2001a).

While it is impossible to give an exclusive survey of all the clustering

algorithms that have been developed for gene expression data, we try here

to illustrate some key issues. The selection of algorithms is based on their

popularity, their ability to handle the specific characteristics of microarray

data, and inevitably some personal biases. This paper is organized as follows.

In Section 2, we address a few common issues for the discussion of clus-

tering algorithms. In particular, we first discuss the preprocessing of mi-

croarray data, which is needed to overcome some difficult artifacts before

clustering. Then, we address the basic but necessary ideas of the orientation

of clustering (clustering genes vs. clustering experiments) and the distance

metrics commonly used to compare gene expression profiles.

We discuss the application of classical clustering algorithms to microar-
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ray data in Section 3, 4, and 5, where hierarchical clustering, k-means clus-

tering, and self-organization maps are respectively addressed. Then, in Sec-

tion 6, we identify common drawbacks of the first-generation clustering algo-

rithms and give a wish list of some desirable features that an ideal clustering

algorithm should carry.

Next, we look at some second-generation clustering algorithms, such as

the self-organizing tree algorithm (SOTA, Herrero et al. 2001) in Section 7,

the quality-based clustering algorithms (Heyer et al. 1999, De Smet et al.

2002) in Section 8, mixture models for microarray data (Yeung et al. 2001a,

McLachlan et al. 2002) in Section 9, and biclustering algorithms (Sheng

et al. 2003) in Section 10.

Changes in details such as the preprocessing procedures, the algorithm,

or even the distance metrics might lead to different clustering result. Thus,

in Section 11, we discuss methods used to validate clustering results.

2 Some preliminaries

Before going into clustering algorithms per se, there are a few issues worth

reminding.
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2.1 Preprocessing microarray data

A correct preprocessing strategy, which not only removes as much as possi-

ble the systematic noise present in microarray data but also provides a basis

for the comparison between genes, is truly essential to an effective cluster

analysis (in accordance with the “garbage in, garbage out” principle). Com-

mon procedures for preprocessing include the following five steps (Moreau

et al. 2002):

1. Normalization: First, it is necessary to normalize hybridization inten-

sities within a single experiment or across experiments by computing

and removing the biases to correct the data, before one can compare

the results from different microarray experiments (Quackenbush 2001).

2. Nonlinear transformation: Expression ratios (e.g., coming from two-

channel cDNA microarray experiments using a test and reference sam-

ple) are not symmetrical in the sense that upregulated genes have ex-

pression ratios between one and infinity, while downregulated genes

have expression ratios squashed between one and zero (Quackenbush

2001). Taking the logarithms of these expression ratios results in sym-

metry between expression values of up- and downregulated genes. Fur-

thermore, the noise on a microarray measurement is multiplicative as

a function of the intensity of the signal. Taking the logarithm of the

expression values makes noise approximately additive, except for low-
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intensity signals. The generalized log-transformation combines nor-

malization and transformation to provide this property over the whole

signal range (Durbin & Rocke 2004).

3. Missing value replacement: Microarray experiments often contain miss-

ing values that need to be replaced for many cluster algorithms. Tech-

niques of missing value replacement (e.g., using the k-nearest neigh-

bor method or the singular value decomposition (SVD)) have been

described (Troyanskaya et al. 2001) taking advantage of the rich infor-

mation provided by the expression patterns of other genes in the data

set.

4. Filtering: For any microarray study, many genes do not contribute

to the underlying biological progress and show little variation over

the different experiments. These genes will have seemingly random

and meaningless profiles after standardization (see further). Another

problem comes from the highly unreliable expression profiles contain-

ing many missing values. The quality of the cluster would significantly

degrade if these data were passed to the clustering algorithms as such.

Filtering removes such expression profiles typically by putting a mini-

mum threshold for the standard deviation of the expression values in a

profile and a maximum threshold on the percentage of missing values

(Eisen et al. 1998).
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5. Standardization or rescaling: Biologists are mainly interested in group-

ing gene expression profiles that have the same relative behavior; i.e.,

genes that are up- and downregulated together. Genes showing the

same relative behavior but with diverging absolute behavior (e.g., gene

expression profiles with a different baseline or a different amplitude

but going up and down at the same time) will have a relatively high

Euclidean distance (see Section 2.3). Cluster algorithms based on this

distance measure will therefore wrongfully assign the genes to different

clusters. This effect can largely be prevented by applying standard-

ization or rescaling to the gene expression profiles so that they have

zero mean and unit standard deviation.

2.2 Clustering genes vs. clustering experiments

Instead of clustering genes, we can also cluster experimental conditions,

where the task is to find groups of experimental conditions (which can be,

for example, tumor samples) across which all the genes behave similarly.

This types of clustering can be helpful for problems, such as the discovery

of histopathological tumors. While most of the discussion will be oriented

towards clustering genes, most of it can be applied mutatis mutandis to

clustering conditions.
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2.3 Distance metrics

Depending on the way to define a cluster, clustering methods can be di-

vided into two types—model-based clustering methods and distance-based

clustering methods. Model-based clustering algorithms assume that the data

points in the high-dimensional space are generated by a mixture of prob-

abilistic models with different parameters. Each of these models is thus

defined as a cluster. We will talk about this type of clustering methods in

detail in Section 9.

Distance-based clustering methods (to which most of the classical clus-

tering methods belong, such as hierarchical clustering, k-means, and SOM),

in contrast, cluster data points according to some function of their pairwise

distances. Some common distance metrics for clustering microarray data

are the following:

1. Pearson correlation: The Pearson correlation r is the dot product of

two normalized vectors, or in another word, the cosine between two

vectors. It measures the similarity in the shapes of two profiles, while

not taking the magnitude of the profiles into account and therefore

suits well the biological intuition of coexpression (Eisen et al. 1998).

2. Squared Pearson correlation: This is the square of the Pearson corre-

lation, which considers two vectors pointing to the exact opposite di-
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rections to be perfectly similar (i.e., in this case, r = −1 while r2 = 1),

which might also be interesting for biologists (because repression is a

form of coexpression).

3. Euclidean distance: Euclidean distance measures the length of the

straight line connecting the two points. It measures the similarity be-

tween the absolute behaviors of genes, while the biologists are more in-

terested in their relative behaviors. Thus, a standardization procedure

is needed before clustering using Euclidean distance. Importantly, af-

ter standardization, the Euclidean distance between two points x and

y is related to the Pearson correlation by |x − y|2 = 2(1 − |r|) (Alon

et al. 1999).

4. Jackknife correlation: The jackknife correlation (Heyer et al. 1999) is

an improvement for the Pearson correlation (which is not robust to out-

liers). Jackknife correlation increases the robustness to single outliers

by computing a collection of all the possible leave-one-(experiment)-

out Pearson correlation between two genes and then select the mini-

mum of the collection as the final measure for the correlation.

3 Hierarchical clustering

The first introduction of hierarchical clustering to the world of biology was

its application to the construction of phylogenetic trees. Early applications
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of the method to gene expression data analysis (Eisen et al. 1998, Spellman

et al. 1998) have proved its usefulness.

Hierarchical clustering has almost become the de facto standard for gene

expression data analysis, probably because of its intuitive presentation of

the clustering results. The whole clustering process is presented as a tree

called a dendrogram, the original data are often reorganized in a heat map

demonstrating the relationships between genes or conditions.

In hierarchical (agglomerative) clustering (Eisen et al. 1998), each ex-

pression profile is initially assigned as one cluster; at each step, the distance

between every pair of clusters is calculated and the pair of clusters with the

minimum distance is merged; the procedure is carried on iteratively until a

single cluster is assembled.

After the full tree is obtained, the determination of the final clusters is

achieved by cutting the tree at a certain level or height, which is equivalent

to putting a threshold on the pairwise distance between clusters. Note that

the decision of the final cluster is thus rather arbitrary.

3.1 Distance measure between two clusters

As we mentioned, in every step of agglomerative clustering, the two clusters

that are closest to each other will be merged. Here comes the problem of

how we define the distance between two clusters. There are four common
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options:

1. Single linkage: The distance between two clusters is the distance be-

tween the two closest data points in these clusters (each point taken

from a different cluster).

2. Complete linkage: The distance between two clusters is the distance

between the two furthest data points in these clusters.

3. Average linkage: Both single linkage and complete linkage are sensitive

to outliers (Duda et al. 2001). Average linkage provides an improve-

ment by defining the distance between two clusters as the average of

the distances between all pairs of points in the two clusters.

4. Ward’s method: At each step of agglomerative clustering, instead of

merging the two clusters that minimize the pairwise distance between

clusters, Ward’s method (Ward 1963) merges the two clusters that

minimizes the “information loss” for the step. The “information loss”

is measured by the change in the sum-of-squared-error of the clus-

ters before and after the merge. In this way, Ward’s method assesses

the quality of the merged cluster at each step of the agglomerative

procedure.

These methods yield similar results if the data consist of compact and

well-separated clusters. However, if some of the clusters are close to each
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other or if the data have a dispersed nature, the results can be quite dif-

ferent (Duda et al. 2001). Ward’s method, although less well-known, often

produces the most satisfactory results.

3.2 Visualization of the results

A heat map presenting the gene expression data, with a dendrogram to its

side indicating the relationship between genes (or experimental conditions)

is the standard way to visualize the result of hierarchical cluster analysis on

microrray data. The length of a branch in the dendrogram is proportional

to the pairwise distance between the clusters. Importantly, the leaves of the

dendrogram, and accordingly the rows of the heat map, can be swapped

(without actually changing the information contained in the tree) so that

the similarity between adjacent genes are maximized, and hence the patterns

embedded in the data become obvious in the heat map. However, the time

complexity of such an optimal organization of the dendrogram is O(2N−1)

(because for each of the N − 1 merging steps there are two possible orders

to arrange the concerned clusters). Yet, the structure of the dendrogram

remains an important problem, because although the dendrogram itself does

not determine the clusters for the users, a good ordering of the leaves can

help the users to identify and interpret the clusters. A heuristic approach

aiming to find a good solution was developed (Eisen et al. 1998) by weighting

genes using combined source of information, and then placing the genes with
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lower average weight earlier in the final ordering. Further, Bar-Joseph et al.

(2001) reported a dynamic programming method that helps to reduce the

time and memory complexities for solving the optimal leaf-ordering problem.

4 K-means clustering

K-means clustering (Hartigan 1975) is a simple and widely used partitioning

method for data analysis. Tavazoie et al. (1999) provided an example for

applying k-means clustering to microarray data.

The number of clusters k in the data is needed as an input for the al-

gorithm. The algorithm then initializes the mean vector for each of the k

clusters either by hard assignment (e.g., from the input, or by random gen-

eration). These initial mean vectors are called the seeds. Next, the k-means

algorithm proceeds iteratively with the following two steps (1) using the

given mean vectors, the algorithm assigns each gene (or experiment) to the

cluster represented by the closest mean vector, (2) the algorithm recalcu-

lates the mean vectors (which are the sample means) for all the clusters.

The iterative procedure converges when all the mean vectors of the clusters

remain stationary.

A significant problem associated with k-means algorithm is the arbi-

trariness of predefining the number of clusters, since it is difficult to predict

the number of clusters in advance. In practice, this implies the use of a
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trial-and-error approach where a comparison and biological validations of

several runs of the algorithm with different parameter settings are necessary

(Moreau et al. 2002). Another parameter that will influence the result of

k-means clustering is the choice of the seeds. The algorithm suffers from

the problem of converging to local minima. This means that with different

seeds, the algorithm can yield very different result.

5 Self-organizing maps

SOM (Kohonen 1995) is a technique to visualize the high-dimensional input

data (in our case, the gene expression data) on an output map of neurons,

which are sometimes also called nodes. The map is often presented in a two-

dimensional grid (usually of hexagonal or rectangular geometry) of neurons.

In the high-dimensional input space, the structure of the data is represented

by prototype vectors (serving similar functions as the mean vectors in the

k-means algorithm), each of which is related to a neuron in the output space.

As an input for the algorithm, the dimension of the output map (e.g., a

map of 6× 5 neurons) needs to be specified. After initializing the prototype

vectors, the algorithm iteratively performs the following steps. (1) Every in-

put vector (e.g., representing a gene expression profile) is associated with the

closest prototype vector, and thus is also associated with the corresponding

neuron on the output space. (2) The coordinates of a prototype vector are
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updated based on a weighted sum of all the input vectors that are assigned

to it. The weight is given by the neighborhood function applied in the out-

put space. As a result, a prototype vector is pulled more towards input

vectors that are closer to the prototype vector itself and is less influenced

by the input vectors located further away. In the meantime, this adaption

procedure of the prototype vectors is reflected on the output nodes—nodes

associated with similar prototype vectors are pulled closer together on the

output map. (3) The initial variance of the neighborhood function is cho-

sen so that the neighborhood covers all the neurons, but then the variance

decreases during every iteration so as to achieve a smoother mapping. The

algorithm terminates when convergence of the prototype vectors is achieved

or after completing a pre-defined number of training iterations.

Because of the advantage in visualization, choosing the geometry of the

output map is not as crucial a problem as the choice of the number of

clusters for a k-means method. Like the k-means method, the initial choice

of prototype vectors remains a problem that influences the final clustering

result of SOM clustering. A good way to seed the prototype vectors is use

to the result from a principal component analysis (PCA) analysis (Kohonen

1995).

The usefulness of SOM on clustering microarray data is illustrated by

Tamayo et al. (1999).
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6 A wish list for clustering algorithms

The limitations of the first-generation algorithms together with the spe-

cific characteristics of gene expression data call out for clustering methods

tailored for microarray data analysis. Collecting the lessons from the first-

generation algorithms and the demands defined by the specific characteris-

tics of microarray data, we compose here a subjective wish list of the features

of an ideal clustering method for gene expression data.

A problem shared by the first-generation algorithms is the decision of the

number of clusters in the data. In k-means clustering and SOM clustering,

this decision has to be made before the algorithms are executed, while in

hierarchical clustering it is postponed till the full dendrogram is formed,

where the problem then is to determine where to cut the tree.

Another problem of the first-generation algorithms is that they all as-

sign every gene in the data set (even outliers) to a particular cluster. A

proper filtering step in the preprocessing (see Section 2.1) helps to reduce

the number of outliers, but is insufficient. Therefore, a clustering algorithm

should be able to identify genes that are not relevant for any clusters and

leave them as they are.

A third problem is robustness. For all the three clustering techniques

addressed above, difference in the choice of distance metrics (either for the

vectors or for the clusters) will result in different final clusters. In k-means

16



clustering and SOM clustering, the choices of seeds for the mean vectors or

the prototype vectors also greatly influences the result. Taking into account

the noisy nature of microarray data, improving the robustness should be one

of the goals when designing novel clustering algorithms for gene expression

data.

A fourth problem is the high dimensionality of microarray data, which

requires the clustering algorithm to be fast and not memory hungry (a major

problem of hierarchical clustering where the full distance matrix should be

computed).

Finally, the biological process under study in a microarray experiment

is a complicated process where genes interact with each other in different

pathways. Consequently, a gene under study might be directly or indirectly

involved in several pathways. With this idea in mind, clustering algorithms

that allow a gene to belong to multiple clusters would be favorable.

The desirable properties here are not exhaustive, but they give a number

of clear directions for the development of clustering algorithms tailored to

microarray data.
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7 The self-organizing tree algorithm

SOTA (Herrero et al. 2001) combines both SOM and (divisive) hierarchical

clustering. Like in SOM, SOTA maps the original input gene profiles to an

output space of nodes. However, the nodes in SOTA are in the topology (or

geometry) of a binary tree instead of a two-dimensional grid. In addition,

the number of nodes in SOTA is not fixed from the beginning (contrary to

SOM), the tree structure of the nodes grows during the clustering procedure.

Starting from a binary tree with two leaves, the algorithm iterates between

the following two steps (see Figure 1).

With the given tree structure fixed, the gene expression profiles are se-

quentially and iteratively presented to the nodes located at the leaves of the

tree (these nodes are called cells). Subsequently, each gene expression profile

is associated with the cell that maps closest to it. The prototype vector of

this cell and its neighboring nodes, including its parent node and its sister

cell, are then updated based on some neighborhood weighting parameters

(which perform the same role as the neighborhood function in SOM). Thus,

a cell is moved into the direction of the expression profiles that are associ-

ated with it. This presentation of the gene expression profiles to the cells

continues until convergence.

After convergence of the above procedure is reached, the cell containing

the most variable population of expression profiles (the variation is defined
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here by the maximal distance between two profiles that are associated with

the same cell) is replicated into two daughter cells (causing the binary tree

to grow), whereafter the entire process is restarted.

The algorithm stops (the tree stops growing) when a threshold of vari-

ability is reached for each cell. In this way, the number of clusters does not

need to be specified in advance. The threshold variability can be determined

by means of permutation test of the data set.

— INSERT FIGURE 1 ABOUT HERE —

8 Quality-based clustering algorithms

Quality-based algorithms produces clusters with a quality guarantee that

ensures that all members of a cluster are coexpressed.

8.1 QT Clust

Heyer et al. (1999) introduced the concept of quality-based clustering. Their

implementation is called QT Clust, which is a greedy procedure that finds

one cluster at a time. It considers each expression profile in the data in

turn. For each expression profile, it determines which other profiles are

within the specified distance in its neighborhood. This specified distance

therefore serves as the quality guarantee. In this way, a candidate cluster is
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formed for every expression profile. The candidate cluster with the largest

number of expression profiles is selected as an output of the algorithm.

Then, the expression profiles of the selected cluster are removed, and the

whole procedure starts again to find the next cluster. The algorithm stops

when the number of profiles in the largest remaining cluster falls below a

prespecified threshold.

By using a stringent quality guarantee, it is possible to find clusters

with tightly related expression profiles (i.e., clusters containing highly coex-

pressed genes). Moreover, genes that are not really coexpressed with other

members of the data set are not included in any of the clusters.

8.2 Adaptive quality-based cluster

Adaptive quality-based clustering (De Smet et al. 2002) uses a heuristic two-

step approach to find one cluster at a time. In the first step, a quality-based

approach is performed to locate a cluster center. Using a preliminary esti-

mate of the radius (i.e., the quality) of the cluster, a cluster center is located

in an area where the density (i.e., the number) of gene expression profiles is

locally maximal. In the second step, the algorithm re-estimates the quality

(i.e., the radius) of the cluster so that the genes belonging to the cluster are,

in a statistical sense, significantly coexpressed. To this end, a bimodal and

one-dimensional probability distribution (the distribution consists of two
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terms: one for the cluster and one for the rest of the data) describing the

Euclidean distance between the data points and the cluster center is fitted

to the data using an expectation-maximization (EM) algorithm. The cluster

is subsequently removed from the data and the whole procedure is restarted.

Only clusters whose size exceeds a predefined number are presented to the

user.

In adaptive quality-based clustering, the users have to specify a signifi-

cance level as the threshold for quality control. This parameter has a strict

statistical meaning and is therefore much less arbitrary (contrary to the case

in QT Clust). It can be chosen independently of a specific data set or cluster

and it allows for a meaningful default value (95%) that in general gives good

results. This makes the approach user-friendly without the need for exten-

sive parameter fine-tuning. Second, with the ability to allow the clusters to

have different radiuses, adaptive quality-based clustering produces clusters

adapted to the local data structure.

9 Mixture models

Model-based clustering (Hartigan 1975) has already been used in the past for

other applications outside bioinformatics, but its application to microarray

data is comparatively recent (Yeung et al. 2001a, McLachlan et al. 2002).

Model-based clustering assumes that the data are generated by a finite
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mixture of underlying probability distributions, where each distribution rep-

resents one cluster. The problem, then, is to associate every gene (or ex-

periment) with the best underlying distribution in the mixture, and at the

same time, to find out the parameters for each of these distributions.

9.1 Mixture model of normal distributions

When multivariate normal distributions are used, each cluster is represented

by a hypersphere or a hyperellipse in the data space. The mean of the normal

distribution gives the center of the hyperellipse, and the covariance of the

distribution specifies its orientation, shape, and volume. The covariance

matrix for each cluster can be represented by its eigenvalue decomposition,

with the eigenvectors determining the orientation of the cluster, and the

eigenvalues specifying the shape and the volume of the cluster. By using

different levels of restrictions on the form of the covariance matrix (i.e., its

eigenvectors and eigenvalues), one can control the trade-off between model

complexity (the number of parameters to be estimated) and flexibility (the

extent to which the model fits the data).

The choice of the normal distribution is partly based on its desirable

analytic convenience. Moreover, the assumption for fitting normal distri-

bution to gene expression profiles is considered to be reasonable especially

when the standard preprocessing procedures (see Section 2.1) have been
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applied (Yeung et al. 2001a, Baldi & Brunak 2001). Of course, other un-

derlying distributions, such as gamma distributions or mixtures of Gaussian

and gamma distributions, can also be used to describe expression profiles.

So far, no precise conclusions have been made on what is the most suitable

distribution for gene expression data (Baldi & Brunak 2001).

Regardless of the choice of underlying distributions, a mixture model

is usually learned by an EM algorithm. Given the microarray data and

the current set of model parameters, the probability to associate a gene (or

experiment) to every cluster is evaluated in the E step. Then, the M step

finds the parameter setting that maximizes the likelihood of the complete

data. The complete data refer to both the microarray data (observed data)

and the assignment of the genes (or experiments) to the clusters (unobserved

data). The likelihood of the model increases as the two steps iterates, and

convergence is guaranteed.

The EM procedure is repeated for different numbers of clusters and dif-

ferent covariance structures. The result of the first step is thus a collection

of different models fitted to the data and all having a specific number of

clusters and specific covariance structure. Then, the best model with the

most appropriate number of clusters and covariance structure in this group

of models is selected. This model selection step involves the calculation of

the Bayesian information criterion (BIC) for each model.
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Yeung et al. (2001a) reported good results of such analysis as described

above using their MCLUST software on several synthetic and real expression

data sets.

9.2 Mixture of factor analysis

For the clustering experiments (e.g., tissue samples), however, problem rises

for fitting a normal mixture to the data because the number of genes is much

larger than the number of experiements. To solve this problem, McLachlan

et al. (2002) applied mixture of factor analysis to the clustering of exper-

iments (see Figure 2). The idea can be interpreted as follows. A single

factor analysis performs a dimensional reduction in the gene space of a clus-

ter. That is to say, in factor analysis, vectors of experiments located in

the original n-dimensional hyperellipse (where n represents the number of

genes) are projected onto their corresponding vectors of factors located in

an m-dimensional unit sphere (usually m << n). By using a mixture of

factor analysis, clustering of the experiments is done on a reduced feature

space (i.e., the m-dimensional factor space) instead of on the original huge

dimensional gene space. The EM algorithm is also used to learn the mixture

of factor analysis model.

However, the choice for the number of factors in such a model remains

a dilemma. If the number is too small, the full correlation structure of the
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genes cannot be captured; while if it is too large, the EM algorithm for

the parameterization of the model can encounter computational difficulties.

To alleviate the problem, McLachlan et al. (2002) added another stage to

reduce the dimension of the gene space before applying the mixture of fac-

tor analysis to the clustering of the experiements. In this stage, both a

two-component mixture model of univariate t distributions (where the asso-

ciation of the experiments to the two components is unknown) and a single

t distribution are fit to the data for each gene. A threshold on the likelihood

ratio between the two models is then applied to determine whether the gene

is responsible for the clustering of experiments.

A t mixture model is more suitable for describing a gene expression

profile than a normal mixture model because the former is more robust to

outliers. A t distribution has an additional parameter called the degree of

freedom compared to a normal distribution. The degree of freedom can be

seen as a parameter for adjusting the thickness of the tail of the distribution.

A t distribution with a relative small degree of freedom will have a thicker

tail than a normal distribution with the same mean and variance. How-

ever, as the degree of freedom goes to infinity, the t distribution approaches

the normal distribution. Because of the thicker tail of a t distribution, the

model learned for the t mixture is more robust to the outliers in gene pro-

files. Therefore, the degree of freedom can be viewed as a robustness tuning

parameter.
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— INSERT FIGURE 2 ABOUT HERE —

10 Biclustering algorithms

Biclustering means to cluster both the genes and the experiments at the

same time. Among early papers on biclustering methods, clustering algo-

rithms were applied (iteratively) to both dimensions of a microarray data

set (Alon et al. 1999, Getz et al. 2000). As a result, genes and experiments

are reorganized so as to improve the manifestation of the patterns inher-

ited in both the genes and the experiments. In other words, biclustering

algorithms of this type divide the data into checkerboard units of patterns.

Later on, other algorithms specifically designed for finding this kind of pat-

tern have also been developed. An example is provided by Lazzeroni &

Owen (2000) who used plaid model—a specific form of mixture of normal

distributions—to describe microarray data. EM was used for the parameter-

ization of the model. For another example, the spectral biclustering method

(Kluger et al. 2003) applies SVD for solving the problem. However, this

type of biclustering algorithm has limitations (Hastie et al. 2000) when the

expression profiles of some genes under study divide the samples by one bi-

ological explanation (say, tumor type) while some others divide the samples

according to another biological process (e.g., drug response).

The second type of biclustering algorithm aims to find genes that are
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responsible for the classification of the samples. Examples are the gene

shaving method (Hastie et al. 2000), which searches for clusters of genes

that vary as much as possible across the samples with the help of PCA; and

a minimum description length method (Jörsten & Yu 2003).

The third type of biclustering algorithm questions conventional clus-

tering algorithms by the idea that genes that share functional similarities

do not have to be coexpressed over all the experimental conditions under

study. Instead of clustering genes based on their overall expressional behav-

ior, these algorithms look for patterns where genes share similar expressional

behavior over only a subset of experimental conditions. The same idea can

be used for clustering the experimental conditions. Suppose a microarray

study is carried out on tumor samples of different histopathological diag-

nosis. The problem then is to find tumor samples that have similar gene

expression levels for a subset of genes (so as to obtain an expressional fin-

gerprint for the tumor). To distinguish the two orientations for this type of

biclustering problem, we will refer to the former case as biclustering genes,

and the latter case as biclustering experiments. This type of biclustering

algorithm was pioneered by Cheng & Church (2000), where a heuristic ap-

proach is proposed to find patterns as large as possible that have minimum

mean squared residues, while allowing variance to be present across the ex-

periments when biclustering genes (or across the genes when biclustering

experiments). Model-based approaches have also been applied for this type
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of problem. Barash & Friedman (2002) used an EM algorithm for model pa-

rameterization, while Sheng et al. (2003) proposed a Gibbs sampling strategy

for model learning.

The idea of applying Gibbs sampling to clustering was inspired by the

success of Gibbs sampling algorithm in solving the motif-finding problem

(Thijs et al. 2002). The model consists in associating a binary random

variable (label) to each of the rows and each of the columns in the data

set so that a value of 1 indicates that the row or the column belongs to

the bicluster and a 0 indicates otherwise. Then the task of the algorithm

is to estimate the value for each of these labels. The algorithm opts for

Gibbs sampling, a Bayesian approach for the estimation and examines the

posterior distribution of the labels given the data (see Figure 3). Finally,

a threshold is put on the posterior distribution and selects the rows and

columns that have probabilities larger than the threshold as the positions of

the bicluster. To find multiple biclusters in the data, the labels associated

to the experiments for a found bicluster are set permanently to zero when

looking for further clusters. The masking of the experiments is chosen for

both biclustering the genes and biclustering the experiments based on the

idea that a gene should be allowed to belong to different clusters.

— INSERT FIGURE 3 ABOUT HERE —
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11 Assessing cluster quality

As mentioned before, different runs of clustering will produce different re-

sults, depending on the specific choice of preprocessing, algorithm, distance

measure, and so on. Many methods often produce clusters even for ran-

dom data. Therefore, validation of the relevance of the cluster results is of

utmost importance. Validation can be either statistical or biological. Sta-

tistical cluster validation can be done by assessing cluster coherence, by

examining the predictive power of the clusters, or by testing the robustness

of a cluster result against the addition of noise.

Alternatively, the relevance of a cluster result can be assessed by a bi-

ological validation. Of course it is hard, not to say impossible, to select

the best cluster output, since “the biologically best” solution will be known

only if the biological system studied is completely characterized. Although

some biological systems have been described extensively, no such completely

characterized benchmark system is now available. A common method to bi-

ologically validate cluster outputs is to search for enrichment of functional

categories within a cluster. Detection of regulatory motifs is also an ap-

propriate biological validation of the cluster results (Tavazoie et al. 1999).

Some of the recent methodologies described in literature to validate cluster-

ing results are discussed as follows:

1. Testing cluster coherence: Based on biological intuition, a cluster re-
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sult can be considered reliable if the within-cluster distance is small

(i.e., all genes retained are tightly coexpressed) and the cluster has an

average profile well delineated from the remainder of the data set (i.e.,

a maximal inter-cluster distance). Such criteria can be formalized in

several ways, such as the sum-of-squared-error criterion of k-means,

silhouette coefficients (Kaufman & Rousseeuw 1990), or Dunn’s valid-

ity index (Azuaje 2002).

2. Figure of Merit: FOM (Yeung et al. 2001b) is a simple quantitative

data-driven methodology that allows comparisons between outputs of

different clustering algorithms in terms of their predictive power. The

methodology is related to the jackknife approach and the leave-one-out

cross-validation. The clustering algorithm (for the genes) is applied to

all experimental conditions (the data variables) except for one left-

out condition. If the algorithm performs well, we expect that if we

look at the genes from a given cluster, their values for the left-out

condition will be highly coherent. Therefore, for each cluster, the sum

of squared deviations is computed for the expression levels under the

left-out condition and over all the genes in the cluster. With the left-

out condition fixed, the FOM is subsequently calculated as the root

mean of these sums obtained for all the clusters. The aggregate FOM

is further computed as the sum of the FOMs over all the experimental

conditions so as to compare different clustering algorithms.
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3. Sensitivity analysis: Gene expression levels are the superposition of

real biological signals and experimental errors. A way to assign con-

fidence to a cluster membership of a gene consists in creating new in

silico replicas of the microarray data by adding to the original data a

small amount of artificial noise and clustering the data of those repli-

cas. If the biological signal is stronger than the experimental noise in

the measurements of a particular gene, adding small artificial varia-

tions (in the range of the experimental noise) to the expression profile

of this gene will not drastically influence its overall profile and there-

fore will not affect its cluster membership. Through some robustness

statistics (Bittner et al. 2000), sensitivity analysis lets us detect which

clusters are robust within the range of experimental noise and there-

fore trustworthy for further analysis.

The main issue in this method is to choose the noise level for sensi-

tivity analysis. Bittner et al. (2000) perturbed the data by adding

random Gaussian noise with zero mean and a standard deviation that

is estimated as the median standard deviation for the log-ratios for all

genes across the experiments.

The bootstrap analysis methods described by Kerr & Churchill (2001)

uses the residual values of a linear analysis of variance (ANOVA) model

as an estimate of the measurement error. By using an ANOVA model,

nonconsistent measurement errors can be separated from variations
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caused by alterations in relative expression or by consistent variations

in the data set. The residuals are subsequently used to generate new

replicates of the data set by bootstrapping (adding residual noise to

estimated values).

4. Use of different algorithms: Just as clustering results are sensitive to

adding noise, they are sensitive to the choice of clustering algorithm

and to the specific parameter settings of a particular algorithm. Many

clustering algorithms are available, each of them with different under-

lying statistics and inherent assumptions about the data. The best

way to infer biological knowledge from a clustering experiment is to

use different algorithms with different parameter settings. Clusters

detected by most algorithms will reflect the pronounced signals in the

data set. Again statistics similar to that of Bittner et al. (2000) are

used to perform these comparisons. (See Chapter 11 for a further

discussion on the use of different algorithms.)

5. Enrichment of functional categories: One way to biologically validate

results from clustering algorithms is to compare the gene clusters with

existing functional classification schemes. In such schemes, genes are

allocated to one or more functional categories (Tavazoie et al. 1999,

Segal et al. 2001) representing their biochemical properties, biological

roles, and so on. Finding clusters that have been significantly enriched
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for genes with similar function is a proof that a specific clustering

technique produces biologically relevant results.

Using the cumulative hypergeometric probability distribution, we can

measure the degree of enrichment by calculating the probability or P -

value of finding by chance at least k genes in this specific cluster of n

genes from this specific functional category that contains f genes out

of the whole g annotated genes

P = 1−
k−1∑
i=0

(
f
i

)(
g−f
n−i

)(
g
n

) =
min(n,f)∑

i=k

(
f
i

)(
g−f
n−i

)(
g
n

) .

These P -values can be calculated for each functional category in each

cluster. Note that these P -values must be corrected for multiple test-

ing according to the number of functional categories.

12 Open horizons

When research on clustering of microarray data started, a common opinion

was that clustering was a “closed” area of statistical research where little

innovation was possible. Dozens of papers about clustering microarray data

have now been published, demonstrating time and again significant improve-

ments over classical methods. Yet, classical methods (in particular hierar-

chical clustering) remain dominant in biological applications, despite real

shortcomings. The conclusion most probably is that new methods have not

demonstrated sufficient added value to overcome the status quo established
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by a few pioneering works. As an example, Table 1 provides a summary on

how well the second-generation clustering algorithms described in this paper

meet our wish list presented in Section 6.

Lack of benchmarking significantly impairs the demonstration of major

improvements. This situation is itself created by the subjectivity of inter-

preting clustering results in many situations and weak benchmarks (such

as the yeast cell cycle data set by Cho et al. 1998) have only added to the

confusion. The most likely way out is the production of a large, carefully de-

signed set of microarray experiments, specifically dedicated to the evaluation

of clustering algorithms.

Another major open problem is the limited connection between clus-

tering and biological knowledge. Clustering does not stand by itself but

is tightly linked to the biological interpretation of its results and the sub-

sequent use of these results. Cluster methods that incorporate functional,

regulatory, and pathway information directly in the algorithm are highly

desirable. Also, clustering is only the starting point for further analysis,

so strategies that integrate clustering tightly with its downstream analy-

sis (e.g., regulatory sequence analysis, guilt-by-association) will improve on

the final biological predictions (Moreau et al. 2002). Probabilistic relational

models and its variants, such as biclustering algorithms, hold a great po-

tential in this regard, as already demonstrated in some applications (Segal

34



et al. 2001, Segal et al. 2003).
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Figure 1: The iterative procedure of SOTA consists of two steps: (A) Each

gene profile is associated with the cell whose prototype vector is located

closest to it. Then the prototype vectors of the cells are updated based

on the neighborhood weighting parameters. (The black arrows between the

nodes where the updates take place, which the gray ones indicates where

the updates are not performed anymore.) This procedure iterates until

convergence is reached. (B) The cell whose associated profiles exhibits the

largest variability is duplicated into two daughter cells. (The darker the cell,

the more heterogeneous it is.)
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Figure 2: McLachlan et al. (2002) uses a two-component mixture model

of t distributions to examine every gene expression profile against a single

t distribution. Expression profiles to which the mixture models fit better (in

terms of, for example, likelihood) are selected for further analysis. A mixture

of factor analysis is applied on the selected data to cluster the experimental

conditions.
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Figure 3: With all the other labels fixed, the Gibbs biclustering algo-

rithm calculates the posterior conditional distribution of a label (indicating

whether a gene or a condition belongs to the bicluster) at each iteration.

Subsequently, a label is drawn from the obtained conditional distribution

and is assigned to the gene or the experimental condition.
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Decision of

#clusters

Assign every

gene to a

particular

cluster?

Robustness Time

complexity

Allow a gene

in multiple

clusters?

SOTA By putting a

threshold on

the variability

of the cells

Yes Comparable to

that of SOM

Linear in #

expression

profiles

No

QT clust By putting a

threshold on

the quality of

a cluster

No Global solution Quadratic in

# expression

profiles

No

Adap. qual. based By specifying

a significance

level

No Global solution Linear in #

expression

profiles

No

Model based By model

comparison in

terms of BIC

No The use of EM

leads to local

minima solutions

Depends on

the implemen-

tation

Yes

Gibbs biclustering Automatic

decision

No The chance for

finding local

minima is

reduced

(comparing with

EM)

Linear

performance

can be

achieved

depending on

the implemen-

tation

Yes

Table 1: How well do the second-generation clustering algorithms meet our

wish list?
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