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Gibbs sampling is a Markov chain Monte Carlo method for joint distribution estimation when the
full conditional distributions of all the concerned random variables are available. The Gibbs sampling
procedure iteratively draws samples from the full conditional distributions. The samples collected
in this way are guaranteed to converge to the true joint distribution as long as there is no zero-
probability in the target joint distribution.

Gibbs sampling strategy has been applied to Bayesian hierarchical models in bioinformatics. The
first introduction of the methodology is its application to the motif-finding problem in DNA sequence
analysis. We have recently applied this strategy to the analysis of gene expression data and have
obtained biologically interpretable results.

This paper serves as a brief review for the applications of Gibbs sampling in the field of bioinfor-
matics. We first discuss the working mechanism of Gibbs sampling. We then introduce some essential
concepts needed for understanding the biological problems under concern. Finally, the models and
the Gibbs sampling schemes for both the motif-finding problem and the biclustering problem of gene
expression data are reviewed.
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1 Introduction

Gibbs sampling is a technique to draw samples from a join distribution based
on the full conditional distributions of all the associated random variables.
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Though the idea roots back to the work of Hasting (1970) [7], whose focus
was on its Markov chain Monte Carlo (MCMC) nature, the Gibbs sampler
was first formally introduced by Geman and Geman (1984) [6] to the field
of image processing. The work caught the attention of the statistics society
(especially boosted by the paper of Gelfand and Smith (1992) [4]). Since then,
the applications of Gibbs sampling have covered both the Bayesian world and
the world of classical statistics. In the former case, Gibbs sampling is often
used to estimate posterior distributions, and in the latter, it is often applied
to likelihood estimation [2].

In particular, Gibbs sampling has become a popular alternative to the
expectation-maximization (EM) for solving the incomplete-data problem in
the Bayesian context, where the associated random variables of interest in-
clude both the hidden variables (i.e., the missing data) and the parameters of
the model that describe the complete data. To provide answers to this type of
questions, EM is a numerical maximization procedure that climbs in the likeli-
hood landscape aiming to find the model parameters and the hidden variables
that maximize the likelihood function. In contrast, Gibbs sampling provides
the means to estimate the target joint distribution of the hidden variables and
the model parameters as a whole, and leave the estimation of the random vari-
ables for later (i.e. after the samples are drawn), where maximum a posterior
(MAP) estimates are often used. Thus, Gibbs sampling sufferS less from the
problem of local maxima than EM.

This property makes Gibbs sampling a suitable candidate for solving the
model-based problems in bioinformatics, where the likelihood function usually
consists of a large amount of modes due to the high complexity of the data.
In this paper, we show the applications of Gibbs sampling to the hierarchi-
cal Bayesian models that address an important problem in systems biology.
The goal is to discover regulation mechanism of genes. A typical framework
by means of computational biology for this kind of study is composed of two
steps. In the first step groups of genes that share similar expression profiles
(which measured by the microarray technology) are found. (These genes are
called to be coexpressed). This is done by performing clustering algorithms to
the gene expression profiles (i.e., microarray data). The second step is based
on the general assumption that coexpression implies coregulation. For each
group of genes found in the first step, the DNA sequences that are related
to the regulation of these genes are extracted, and common patterns of these
sequences (called motifs) are seeked. The positions of these conserved motifs
are likely to be the binding sites of transcription factors, which are the ex-
ecutors of the gene regulation mechanism. We show in this paper that the
Gibbs sampling strategy can be applied to both the clustering of microarray
data (particularly, the biclustering of microarray data, the idea of which is
explained in more details in Section 5), and the motif finding problem of DNA
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sequences.
We will first review the working mechanism of Gibbs sampling. Then some

basic biological concepts for understanding the biological problems of interest
are introduced. Because Gibbs sampling has become the method-of-choice for
the motif-finding problem in DNA sequence analysis, and our idea of applying
Gibbs sampling to the biclustering of microarray data was inspired by this
success, we will discuss the application of Gibbs sampling in the motif-finding
problem first in Section 4 and then go into details about its applications in
the biclustering problem of gene expression profiles in Section 5.

2 Gibbs sampling

Gibbs sampling allow statisticians to avoid the tedious and sometimes non-
trivial mathematical calculations of integrals in obtaining the join distribution,
by sampling directly from the full conditional distributions. (Because the same
mechanism applies to both models for discrete data and models for continuous
data, we use the terms “distribution” and “density” interchangeably). Suppose
that we want to draw samples for the set of random variables x1, x2, . . . , xK ,
but that the marginal distributions (and thus the joint distribution) are too
complex to directly sample from. Suppose also that the full conditional dis-
tributions p(xi |xj ; j 6= i) (for i = 1, . . . , K) which can easily be sampled
from, are available. Starting from initial values x

(0)
1 , x

(0)
2 , . . . , x

(0)
K , the Gibbs

sampler draws samples of the randome variables in the following manner,

x
(t+1)
1 ∼ p(x1 |x2 = x

(t)
2 , . . . , xK = x

(t)
K )

x
(t+1)
2 ∼ p(x2 |x1 = x

(t+1)
1 , x3 = x

(t)
3 , . . . , xK = x

(t)
K )

...
...

x
(t+1)
i ∼ p(xi |x1 = x

(t+1)
1 , . . . , xi−1 = x

(t+1)
i−1 , xi+1 = x

(t)
i+1, . . . , xK = x

(t)
K )

...
...

x
(t+1)
k ∼ p(xK |x1 = x

(t+1)
1 , . . . , xK−1 = x

(t+1)
K−1 ),

where t denotes the iterations.
Geman and Geman (1984) [6] shows that as t → ∞, the distribution of

(x(t)
1 , . . . , x

(t)
k ) converges to p(x1, . . . , xK). Equivalently, as t → ∞, the dis-

tribution of x
(t)
i converges to p(xi) (for i = 1, . . . , K).
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2.1 The Markov chain property

The convergence of samples drawn by the Gibbs sampler relies on
the fact that these samples form Markov chains. In other words,(
(x(1)

1 , . . . , x
(1)
k ), . . . , (x(t)

1 , . . . , x
(t)
k )
)

as well as (x(1)
i , . . . , x

(t)
i ) are Markov

chains, where (x(t)
1 , . . . , x

(t)
k ) and x

(t)
i are called the states of (x1, . . . , xk) and

xi respectively. The basic property of a Markov chain, take that of xi for
example, is

P (x(t+1)
i |x(t)

i , . . . , x
(0)
i ) = P (x(t+1)

i |x(t)
i ), (1)

which means that the future state of a random variable depends only on its
current state but not on its past states. Writing

πb(t + 1) = p(x(t+1)
i = b)

πa(t) = p(x(t)
i = a)

and p(a → b) = p(x(t+1)
i = b |x(t)

i = a),

we have

πb(t + 1) = p(a → b)πa(t). (2)

p(a → b) is called the transition probability of going from state a to b (for
random variable xi). The probability transition matrix P is obtained by listing
all the possible states for xi along the rows and the columns, and fill the matrix
with all the transition probabilities. (Note that this implies that each row of
P sums to 1.) Thus to generalize Equation 2, we have

π(t + 1) = Pπ(t). (3)

It is known that if the all the entries of P are above 0, an evolving Markov chain
will reach a stationary distribution π∗ after a sufficient amount of time [2], i.e.,

π∗ = Pπ∗. (4)

Casella and George (1992) [2] gives a simple yet intuitive proof that the sta-
tionary distributions of the Markov chains generated by Gibbs sampling are
the joint distribution p(x1, . . . , xk) and the marginal distributions p(xi), and
that the probability transition matrices of these Markov chains can be derived
from the full conditional distributions.
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2.2 The Monte Carlo property

Only Those samples collected by the Gibbs sampler after the convergence is
reached can be used for joint (or marginal) distribution estimation. The Gibbs
sampling procedure performed before the convergence is reached is often re-
ferred to as the “burn-in procedure”, and the procedure during which samples
are collected will be called the “sampling procedure” hereafter. The samples
collected in the sampling procedure enable us to calculate the expectation of
a function f(xi) over the distribution p(xi). This is done by the Monte Carlo
integration

Ep(xi)[f(xi)] =
∫

f(xi) · p(xi)dx ≈ 1
T

T∑
t=1

f(x(t)
i ), (5)

where t indexes the iterations in the sampling procedure, and T is the total
number of samples collected. Thus, the expected value of xi can be calculated
as

Ep(xi)[xi] =
∫

xi · p(xi)dx ≈ 1
T

T∑
t=1

x
(t)
i . (6)

However, as illustrated by Gelfand and Smith (1990) [4] (using the Rao-
Blackwell theorem), a more accurate estimate of the expected value of xi is
provided by

Ep(xi)[xi] =
1
T

T∑
t=1

Ep(xi |x(t)
1 , ..., x

(t)
i−1, x

(t)
i+1, ..., x

(t)
k )[xi]. (7)

Similarly, the posterior distribution itself can be approximated by

E[p(xi)] =
1
T

T∑
t=1

p(xi |x(t)
1 , . . . , x

(t)
i−1, x

(t)
i+1, . . . , x

(t)
k ). (8)

With more generality, a better alternative for Equation 5 is

Ep(xi)[f(xi)] =
1
T

T∑
t=1

Ep(xi |x(t)
1 , ..., x

(t)
i−1, x

(t)
i+1, ..., x

(t)
k )[f(x(t)

i )]. (9)

The estimators obtained by Monte Carlo integration are unbiased estimators.
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2.3 Checking the convergence

A key issue in using Gibbs sampling is to determine when the procedure has
essentially converged. The number of iterations needed for the burn-in proce-
dure varies from cases to cases. For a well mixed Markov chain whose samples
cover most of the region of the random variable space, the convergence can be
reached with in a few iterations. However, a bad starting point plus a multi-
modal target distribution with some of its probabilities close to zero can result
in a poorly mixed chain so that only a small region of the random variable
space is sampled for a long period of time. In this case, the number of burn-
in iterations can easily reach a few thousand. In general, an optimal starting
point close to the center of the marginal distribution can help in the accelerat-
ing the convergence. In addition, using multiple chains starting at independent
positions of the random variable space can help to increase the coverage of the
samples [5] and thus alleviate the problem of poorly mixed chains. Yet, conver-
gence diagnostics are favorable in assisting the decision. Informal procedures
of convergence diagnostics include inspecting the trace plot of the concerned
variables or the evolution of likelihood. Various formal procedures has also
been proposed. A good review on this issue is provided by Cowles and Car-
lin (1996) [3]. In the rest of this section, we will focus on one of the important
issues for the convergence of a Markov chain—the autocorrelation.

One of the reasons that a Markov chain generated by the Gibbs sampler
has a slow convergency is that the samples at successive iterations are not
independent. This dependency implies that the variance (i.e., the accuracy) of
the model obtained by averaging the parameters may be much higher than if
the samples were independent. The autocorrelation time is the sum of the au-
tocorrelation values for all positive lags and its square root gives the factor by
which we must increase the number of iterates of the autocorrelated estimates
to obtain the same accuracy as with independent estimates. Denoting by ω(t)

the sets of parameters obtained at each iteration and by ω̄ = (1/T )
∑T

t=1 ω(t)

the average set of parameters, the autocorrelation function for a lag of H can
be estimated as

ρ̂m =
Cov(ω(t),ω(t+H))

Var(ω(t)
=
∑T−H

t=1 (ω(t) − ω̄)(ω(t+H) − ω̄)∑T−H
t=1 (ω(t) − ω̄)2

. (10)

In the frequent case where the autocorrelation function can be described as an
autoregressive process, the autocorrelation time τ =

∑∞
k=1 ρ̂k can be simplified

to τ = (1+ ρ̂1)/(1− ρ̂1). Such an estimate can be easily computed at the hand
of the iterates of a run of the algorithm.

Another way to reduce the autocorrelation is to use the thinning of the
Markov chain. Thinning with a factor J means that each Jth element in
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the chain will be used for the posterior summary statistics (see Equation 9).
Another computational advantage of using the thinning procedure is that it
saves the memory complexity of the Gibbs sampling procedure.

3 Some basic biology

DNA is known as the carrier of genetic information that is needed to conduct
the synthesis of proteins—the workhorses in a living cell. Genes are fragments
of the DNA sequence that carry such information. The first step of a protein
synthesis procedure is the transcription of its corresponding gene, to a message
RNA (mRNA). This step highly resembles the duplication of DNA molecules,
which is made possible by the strict rule of base paring of the nucleotides,
i.e., guanine (‘G’) can only be paired with cytosine (‘C’) and vice versa, while
adenine (‘A’) can only be paired with thymine (‘T’), and vice versa. In the case
of transcription, RNA (instead of DNA) nucleotides are brought to be paired
with the DNA templates also according to the rule of base pairing, the only
difference is that uracil (‘U’) is paired with adenine (and vice versa), because
there is no thymine in RNA. The second step is the translation of the mRNA
to the protein. This step takes place in a ribosome where the mRNA is scanned
three nucleotides (called a codon) at a time. Each possible combination of a
codon (in total 64 possibilities) corresponds to one of the 20 amino acids. In
this way, a peptide chain is assembled by the ribosome. The peptide chain is
later folded into the resulting protein.

The above is only one part of the story that concerns the guidance of genes in
the synthesis of proteins. The other part, however, is related to the regulative
roles of proteins in the transcriptions of genes. The regulation of a gene is
carried out by the transcription factors (TF, which are proteins themselves)
that bind to the promoter region of the gene (which usually locates upstream,
i.e. “in front”, of a gene). These TFs can either enable or prohibit the binding
of an RNA polymerase, which essentially opens the DNA double helix so that
the transcription starts. (A good tutorial book for the beginners of biology is
given by Lodish et al. (2003) [9]).

One of the major research interests in bioinformatics is to untangle the gene
regulation mechanism. The main-trend methodology for the task is based on
the assumption that genes that share similar transcriptional behavior are un-
der the same regulation program. (In other words, coexpression implies coreg-
ulation). Hence, the first step of the methodology is to identify genes that are
coexpressed, and the second step is to look for the common transcription fac-
tor binding sites (TFBS) present in the promoter regions of these genes. The
first step concerns the clustering of gene expression data—a matrix where the
transcription levels of hundreds of thousands of genes under different experi-
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Figure 1. Conceptual plot of the motif-finding problem. The white regions containing the motifs
are the promotor regions of the genes. The algorithm is only performed on the sequences of the

promotor regions. These sequences are assumed to have only one common motif, and each sequence
contains exactly one copy of the motif.

mental conditions are stored—measured by microarray technology. The second
step concerns the analysis of the DNA sequence of the promotor regions of the
coexpressed genes, where the particular patterns (i.e., motifs) of the sequence
of the TFBSs as well as well their positions are to be revealed.

Probabilistic models are found to be suitable and useful [11, 15] for the
analysis of both types of data. In the case of microarray data, the ability
of probabilistic models to handel the high level of noise of microarrays in a
principled way raises its popularity. In the case of motif-finding, probabilistic
models not only are able to capture the fundamental identities of the mo-
tifs, but also provide the flexibility to allow subtle variations in the conserved
motif sequences. Probabilistic models combined with Gibbs sampling for the
parameterizations of the models and the missing data estimation have be-
come the method-of-choice for motif-finding [15]. The efficiency of applying
Gibbs sampling to the probabilistic models on microarray data has also been
demonstrated recently [12,13].

4 Gibbs sampling for motif-finding

To begin with, we suppose that for a given set of genes for which we assume to
share the same regulation mechanism, the sequences of their promotor regions
are available. We also suppose that there is only one motif (thus one TFBS)
in common for these sequences, and that there is exactly one copy of the motif
in each sequence, (see Figure 1 for an illustration).

To describe the problem probabilistically, we assume that the sequences
S = {Sk | k = 1 . . . N} (where N is the number of sequences) are generated by a
general background model except for the subsequences where the motif occurs,
which is generated by a motif model. The background model is represented by
a multinomial distribution,

θ0 = [θA0, θC0, θG0, θT0]T, (11)
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whose four entries provide the probability that a base of the sequence is gen-
erated by ‘A’, ‘C’, ‘G’ and ‘T’ respectively. We assume that the length of the
motif is known to be W . The model of the motif is provided by a product
multinomial distribution,

Θ = [θ1, θ2, . . . , θW ], (12)

where

θj = [θA,j , θC,j , θG,j , θT,j ]T, j = 1 . . .W (13)

is the parameter vector of the multinomial distribution for the jth position in
the motif.

Further, we use random variables A = {ak | k = 1 . . . N} for the starting po-
sitions of the motif in the sequences. These starting positions are the “missing
data” of this problem. They are called the alignments of the motif. Note that
for each of the sequences Sk

Lk∑
i=1

P (ak = i) = 1, (14)

where Lk is the length of Sk.
Given the data, we are interested in finding the alignments of the motif as

well as the model of the motif and the model of the background. Therefore, our
target joint distribution is P (Θ, θ0,A | S). Using Gibbs sampling to estimate
this joint distribution means that we need to sample from the full conditional
distributions of Θ, θ0 and each ak. However, when conjugate priors are ap-
plied (which is often a sensible choice), the full conditional distribution of Θ
and θ0 are in the form of Dirichlet distributions. Sampling from a Dirichlet
distribution is not a trivial procedure and consumes a non-negligible amount
of computation. Liu, Neuwald and Lawrence (1995) [8] demonstrated that Θ
and θ0 can be integrated out of the target distribution, and that the motif
model and the background model can be obtained as a byproduct of the Gibbs
sampling procedure for estimating P (A | S).

As shown in Liu, Neuwald and Lawrence (1995) [8], the final obtained full
conditional distribution for ak is

P (ak = i |Ak̄, S) =
1
Z

w∏
j=1

(
θ̂j

θ̂0

)si+j−1

. (15)

In the above equation, Ak̄ denotes the alignments in all the sequences other
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than Sk; Z is a term that ensures the validity of Equation 14; sx corresponds
to the xth position in Sx, and it is an index vector of length four with 1 on
the entry corresponding to the nucleotide at position k and 0 for the rest of
the entries; and θ̂j and θ̂0 are respectively the vectors of posterior frequencies
for observing the four nucleotides at the corresponding position of the current
bicluster and at the current background. By “current”, we mean that θ̂j and
θ̂0 are calculated using all the sequences other than Sk. In addition, the power
as well as the division of two vectors are carried out entry-wise in Equation 15.
The equation shows that the full conditional probability for a certain position
in the promotor sequence to be the alignment position is the proportional
to the likelihood ratio between the case when its succeeding w positions are
generated by the motif model and the case when these positions are generated
by the background model.

The discussed method finds one motif at a time. In order to discover multi-
ple motifs in a set of promotor sequences, found motifs are masked (i.e., the
alignment positions of the found motif are not taken into consideration for
further analysis) and Gibbs sampling is performed on the rest of the data.

In addition, the simple model discussed above can be modified to allow none
or multiple copies of a motif in each sequence [14]. Furthermore, higher or-
der hidden Markov chain (HMM) models are found to be useful in modelling
the background sequences in order to produce more reliable results [14]. Com-
bining these two features, this extended model as been implemented as the
MotifSampler. Detailed examples and results concerning the performance and
the efficiency of the tool can be found in Thijs (2003) [15].

5 Gibbs sampling for biclustering gene expression data

Microarray technology provides biologists the tool to take a snapshot of the
transcriptional behavior of thousands of genes simultaneously. By using several
microarrays and performing the experiments in different conditions, biologists
are able to monitor the transcriptional behavior of the genes. Genes that be-
have similarly under different conditions (i.e. coexpressed genes) imply that
they might share the same regulation mechanism, and further imply that they
might share the same functions in cell.

The expression values measured by microarray experiments are usually put
in a matrix, whose rows represent the genes and whose columns represent
the conditions. To find genes that behave similarly across the experiments is
thus equivalent to perform a clustering analysis of the rows. However, when the
experiments compose a heterogeneous compendium, genes that share the same
function do not necessarily have to behave similarly over all the conditions.
Rather, their behavior would be close to each other under a subset of conditions
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Figure 2. Conceptual plot of the biclustering problem: colors in the matrix represent different
values. The data of the bicluster is highlighted. Binary labels are used to indicate if the row or the

column belongs to the bicluster.

(which are relevant to the cell function) while their expression profiles could
be totally noisy under the others. In this case, a biclusterng algorithm which
groups genes based on only a subset of experimental conditions and in the
meantime identifies the relevant conditions is more favorable. This biclustering
problem also exists for the other dimension of the microarray matrix, i.e. to
group experiments (e.g., patients) under each of which a sub set of genes
have almost the same expression values. To differ between the two types of
biclustering problems, we refer to the former as the biclustering of genes, and
the latter as the biclusteirng of experiments.

To generalize the two problems, we transpose the microarray matrix in the
case of biclustering experiments, so that the biclustering problem is to find set
of rows in a matrix, whose data entries under each selected column (for the
bicluster) are similar (see Figure 2 for an illustration).

The idea of introducing the Gibbs sampling strategy to the biclustering
problem [13] was inspired by the success of Gibbs sampling in the motif-finding
problem.

Putting the biclustering problem in the probabilistic framework, we use
binary random variables to describe the association of the rows and columns
to the bicluster—i.e., a “1” indicates that the row (or the column) belongs to
the bicluster and a “0” for otherwise. The binary labels are the missing data in
the problem. They are divided into two sets, {R | ri, i = 1 . . . N} for the rows
(where N is the number of rows), and {C | cj , j = 1 . . .M} for the columns
(where M is the number of columns).

The joint distribution of interest is

p(R,C,Mbcl,Mbgd, |D), (16)
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where Mbcl and Mbgd denote respectively the model of the bicluster and the
model of the background, and D denotes the data. Therefore, to carry out
the Gibbs sampling strategy, full conditional distributions of the labels and
the model parameters need to be derived. The derivation of these conditional
distributions requires not only the specification of the data models (where the
data refer to both the observed data, but also the missing data—the labels),
but also their prior distribution. Conjugate priors are used for each concerned
parameters.

The natural choice for the distribution of the labels are Bernoulli distri-
butions, whose conjugate priors are Beta distributions—Beta(ξr0, ξr1) for the
row labels, and Beta(ξr0, ξr1) for the column labels. The Bernoulli parameters
of the model can be integrated out of the target distribution to simplify the
calculation (which is actually already implied in Equation 16). The posterior
distribution of a row label is

p(ri = 1 |Rī, C, Mbcl, Mbgd,D)

=
p(D, ri = 1, Rī, C |Mbcl, Mbgd)

p(D, ri = 1, Rī, C |Mbcl, Mbgd) + p(D, ri = 0, Rī, C |Mbcl, Mbgd)

=
γr

i

1 + γr
i

where γr
i is the likelihood ratio between the case that the ith row is generated

by Mbcl and the case when it is generated by Mbgd,

γr
i =

p(D, ri = 1, Rī, C |Mbcl, Mbgd)
p(D, ri = 0, Rī, C |Mbcl, Mbgd)

i = 1 . . . N. (17)

In the above two equations, Rī denotes the set of row labels except for the
ith row. Similarly, the conditional distribution of a column label is also in the
form of likelihood ratio, where

γc
j =

p(D, R, cj = 1, Cj̄ |Mbcl, Mbgd)
p(D, R, cj = 0, Cj̄ |Mbcl, Mbgd)

j = 1 . . .M. (18)

The first attempt of applying Gibbs sampling to the biclustering problem is
to bicluster patients on discretized microarray data [13]. The data is discretized
using a maximum-entropy principle, (i.e., the equal-frequency principle). For
example, when discretizing microarray data into three bins (i.e., three dis-
cretized expression levels that may interpreted as being “high”, “medium” and
“low”), for each gene profile, we assign the experiments with the lowest 1

3 of
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the expression values to the first bin (corresponding to “low”), similarly, the 1
3

experiments with the highest expression values to the third bin (corresponding
to “high”), and finally, the rest of the experiments to the second bin (corre-
sponding to “medium”). Besides the convenience of borrowing the models from
the motif-finding problem, the reason for using of discretized data for the bi-
clustering problem of patients is two-fold. First, comparing with the huge gene
dimension (which is usually measured in thousands), microarray data usually
contains much fewer experiments (whose number is usually no larger than a
couple of hundreds). Using a normal distribution to a gene expression profile
would often be found sensitive to outliers [10]. The equal-frequency principle
discretization avoids the problem of outliers by significantly reducing the noise
level in the data while reserving the most essential information for biologists.
Second, the equal-frequency discretization takes care of the normalization of
the experiments automatically, and hence provides the base for comparison
between the experiments.

In this case, the model of the bicluster Mbcl is a product multinomial dis-
tribution,

Θ = [θ1, θ2, . . . , θW ], (19)

where W now is the number columns in the bicluster, and θj =
[θ1,j , θ2,j , . . . , θQ,j ]T (for j = 1 . . .W , and Q is the number of bins used for
discretization). The equal-frequency discretization justifies the use of a univer-
sal multinomial background model Mbgd for data under all the experimental
conditions

θ0 = [θ1,0, θ2,0, . . . , θQ,0]T. (20)

As explained in Section 4, the parameters in Θ and θ0 follow Dirichlet distri-
butions which are difficult to sample from. Therefore, Θ and θ0 are integrated
out of the target joint distribution.

It can be shown [13] that the likelihood ratio for calculating the full condi-
tional distribution of a row label is

γr
i =

∏
j∈C′, C′={ck=1|ck∈C}

(
θ̂j

θ̂0

)δi,j

· Vī + ξr1

N − 1− Vī + ξr0
i = 1 . . . N. (21)

The first term in the above equation resembles that of Equation 15, where the
notations have similar explanations. θ̂j and θ̂0 are now the posterior frequen-
cies of the current bicluster and the background (i.e. evaluated on the rest of
the data other than those in the ith row). δi,j is an index vector of length
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Q, whose entries are 0 except for the entry corresponding to the value of the
{i, j}th data point in the matrix. The second term of Equation 21 comes from
the integration of the Bernoulli distribution for p(ri), where Vī denotes the
number of rows in the current bicluster.

The likelihood ratio for calculating a column label is in a more complicated
form

γc
j =

f(D[r, j]) · f(D[r̄, j])
f(D[·, j])

·
Wj̄ + ξc1

M − 1−Wj̄ + ξc0
j = 1 . . .M, (22)

where r = {k | rk = 1 ∧ rk ∈ R} and r̄ = {k | rk = 0 ∧ rk ∈ R}, D[u,v] denotes
the data at rows u and columns v (u and v are vectors of indices), f(·) is
a function that involves the evaluation of gamma functions on the specified
data, and Wī denotes the number of columns in the current bicluster. See
Sheng, Moreau and De Moor (2003) [13] for more details on the full conditional
distributions, and also for some examples on applying the model to discrete
microarray data.

When applying the Gibbs sampling strategy to the biclustering of genes,
Gaussian likelihood with Gaussian-Wishart prior can be used to model both
the bicluster and the background [12]. This choice is based on not only the
analytical convenience of normal models, but also the consensus that the as-
sumption for fitting a normal distribution to the gene expression measurements
in a given situation is considered to be reasonable especially when a proper
preprocessing procedure has been applied to the microarray data [1]. In this
case, The full conditional distributions of the binary labels are related to the
Gaussian likelihood ratios, and the conditional distributions of the model pa-
rameters are in the form of Gaussian-Wishart distributions which can be easily
sampled from. Because of the limitation on the length of the paper, we refer
to Sheng et al. (2005) [12] for more detail in this regard.

Multiple biclusters can be found by masking the found biclusters as well. For
both of the biclusering problems, we choose to mask the experimental condi-
tions by skipping to sample the experiment labels of a found bicluster, which
are permanently set to 0. The reason for masking the experiments instead of
masking the genes is that a genes might have multiple functions.

6 Conclusion

The general methodology that we discussed in Section 2 can be applied di-
rectly to the full conditional distributions for solving the motif-finding problem
(Section 4) and the biclustering problem (Section 5). Of course, other models
(such as t-distributions for the biclustering of experiments) can be explored
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for tailoring the models to fit the nature of biological data. Yet, Gibbs sam-
pling as a general methodology is well suitable for solving the incomplete data
problems in bioinformatics.

EM is another alternative for solving this type of problem. However, we favor
the Gibbs sampling approach for the applications in bioinformatics because
Gibbs sampling is more suitable to deal with the vast amount of local modes
in the models due to the highly complex nature of biological data. Instead of
climbing in the likelihood landscape (which is the case for EM), Gibbs sampling
pictures the posterior distribution of the concerned random variables (i.e.,
both the hidden variables and the model parameters) as a whole, and MAP
estimation is made by means of Monte Carlo integration. In this way, Gibbs
sampling highly reduces the chance to find local maxima comparing with EM.
In addition, taking into account the fact that it is hard to estimate how many
multiple runs are needed for EM to find the global maximum solution, we
consider Gibbs sampling to be practically more efficient for applications in
bioinformatics.
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