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ABSTRACT

Motivation: Existing (bi)clustering methods for microarray data ana-
lysis usually reveal global patterns in the data, which often do not
answer the questions that are of specific interest to the biologist.
Bayesian probabilistic models show promise for pattern discovery
directed by a soft query, thanks to their ability to incorporate prior
knowledge.

Results: In this paper, we describe a method based on Bayesian
probabilistic models to address the biclustering problem when biolo-
gists query the data with a set of seed genes that they believe to have
a common function. The problem then is to recruit other genes that
might have the same function as the seed genes, and in the meantime
identify the experimental conditions where this function is active, by
finding genes that have similar expression profiles as the seed genes
under a subset of experimental conditions. Gibbs sampling is used
for the estimation of the model. We demonstrate the efficiency of our
method based on a combined data set on Saccharomyces cerevisiae
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1 INTRODUCTION

into the model (Segaét al., 2001, 2003). Because in Bayesian
models the likelihood of the data is multiplied by the prior to deliver
the posterior probabilistic model, a proper prior can substantially
raise the mode that is most relevant to the biological question in the
posterior model.

Coming back to the clustering problem for microarray data, and
supposing that the biologists have at hand a specific set of genes
(called the “seed genes” hereafter), which they know to be related
to some common biological function, the question for their query to
the microarray data is “which other genes in this data set share simi-
lar expression profiles as the seed genes and thus might be involved
in the same function?”

We generalize this question further by considering which data set
could be considered to answer such a question. Until recently, clu-
stering would be performed on the array data from a single study
addressing a limited biological situation. Yet, in the last few years,
large data sets (called microarray compendia) consisting of multiple
biological conditions or data from multiple studies have demonstra-
ted their effectiveness as the basis of guilt-by-association studies. So
in a complex compendium, where it may not be clear which microar-
ray conditions are truly most relevant to the biological question at
hand, the question becomes “which genes are functionally related to
the seed genes, and in the meantime, in which experimental condi-
tions is this biological function involved?” Otherwise stated, given
the seed genes, we want to recruit genes (presented in the microar-

Probabilistic models have become a popular choice for modeling,y yata set) that share similar expression profiles under a subset
microarray data because they handle the high level of noise ofi -qngitions. In addition, the few seed genes whose profiles are not
microarrays in a principled way. However, the probability distri- .o mnatible with the discovered pattern should be rejected if present.
bution provided by these models usually contains many modesypis'is what we call the “query-driven biclustering” problem. (See
because of the complexity of the underlying biological process. 'nFigure 1 for an illustration.)

clustering, these modes correspond to the different clusters that can pnqher similar problem also exists for the other orientation of
be identified in the data. The largest clusters (which are easiest {yicroarray data. For example, given a set of patients who share a
identify) are often not the most interesting to the biologist becaus@etain pathological similarity, the question is to recruit other pati-
they correspond to well-known generic blologlcal functions—whereg e of the same type, and in the meantime, to identify the genes
few novel findings are to be expected. This lack of sharpness of,at provide a fingerprint that characterize those patients. Hereafter,
clustering algorithms has kept them into a vague exploratory roley;e | refer to the former problem as the query-driven biclustering
because for biologists, one of the main questions is always "whag genes, and to the latter one as the query-driven biclustering of
are the genes that are related fmeaticular function (or in aspecific experiments.

pathway) of interest to me?” Biclustering techniques for microarray data, pioneered by Cheng

Bayesian probabilistic models have shown promise in providingynq chyrch (2000), are receiving increasing attention in bioinfor-
answers to this type of question, by transforming the existing know-

X I ; - ’ matics. Unlike conventional clustering algorithms, the biclustering
ledge of biologists into the prior probabilities that are 'ncorporatEdalgorithms (see Madeira and Oliveira (2004) for a survey) aim at

finding genes that show consistent behavior only undsulzset
of experiments. The discovery of such relationship between the

*To whom correspondence should be addressed.
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data query-driven biclustering of genes on continuous microarray data.
We use a combined data set from Gasthal. (2000), Spellman

et al (1998) and Chet al. (1998) to illustrate the efficiency of our
method.

expression profiles
of the seed genes

genes

experiments

2 MODELS AND APPROACHES

Let us assume that a microarray data set contains only one biclu-
ster, hence the rest of the data is considered as background noise. To
put the problem in a probabilistic manner, we use a binary random
variable (called a label) to describe whether a gene or an experiment
belongs to the bicluster (i.e., a “1” indicates that the gene or experi-
ment is in the bicluster and a “0” indicates otherwise). Considering
the labels as the hidden data of the problem (and the microarray data
as the observed data), the biclustering problem becomes two-fold:
(1) given a fixed assignment of the labels, we want to find the most
suitable probabilistic model for the data and (2) given the models
of the bicluster and the background, assess the value of the labels.
Both expectation-maximization (EM) (Barash and Friedman, 2002)
and Gibbs sampling are algorithms to solve such data augmentation
problems.

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method
for joint distribution estimation. The joint distribution concerns both
the hidden data and the parameters of the model, both of which are
considered as random variables for the Gibbs sampling procedure.
Given the full conditional distribution for each random variable,
the Gibbs sampling procedure iteratively draws samples from the
conditional distributions. The samples drawn by this procedure are
guaranteed to converge to the joint distribution (Casella and George,
1992). Once the converged samples are collectedmérdmum a
posteriori (MAP) estimation of a random variable can be obtained
by performing Monte Carlo integration,
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Fig. 1. Conceptual scheme of query-driven biclustering. The rows labelled .
with “*" represent the expression profiles of the seed genes, and the row¥here thez;’s, forall i € {1, ..., m}, (m is the total number of
and columns labelled with “1” represent genes and experiments that belongandom variables) are the random variables under congedgno-
to the discovered bicluster. tes the dataf indexes the iterations (performed after the procedure
converges), and’ is the total number of samples in the sample pool.
Applying Gibbs sampling to the biclustering problem of microar-
. . - . .. _ray data (Shengt al,, 2003) directly to the previous model often
genes and the conditions provides crucial information for unvelllngresults in revealing a large global bicluster embedded in the data

genetic pathways. However, most of the existing biclustering algo-_ unless a strong prior is imposed on the model to zoom in on a

rithms focus on revealing the global pattern of the data instead ogpecific part of the data

being motiyated by a Spe_Cif_iC biological query. Yet, one exz_imple In this section, we discuss the Gibbs sampling strategy for tack-
of addressmg problems S'“_’"ar to the query-driven _blcl_ustenng 0fling the query-driven biclustering problem of genes in the following
genes is the signature algorithm (Ihmetsl., 2002), which is based ffive aspects:

ile '

on the correlation measure between a gene and the average pro
of the seed genes under experimental conditions where the averages Hidden data the structure and the prior distribution of the
expression value (of the seed genes) is above a threshold. labels.

In our previous paper (Shergg al., 2003), we described a Baye-
sian hierarchical model for discretized data using a multinomial
likelihood and a Dirichlet prior for tackling the biclustering problem . o . ]
of patients. The same model can be used for the query-driven biclu- ® Full conditional distributions the distributions from which
stering of patients by imposing a tailored Dirichlet prior. (Because ~ Samples of the labels and samples of the model parameters are
of the lack of space, see the supplementary material for an exam- drawn during the Gibbs sampling procedure.
ple.) In this paper, we describe a Bayesian hierarchical model based e Construction of the priorsthe incorporation of information
on Gaussian likelihood and Gaussian-Wishart prior to address the  from the seed genes into the Bayesian hierarchical models.

e Data modelsthe hierarchical Bayesian models describing the
microarray data in both the bicluster and the background.
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e Gibbs sampling procedurea final overview of the Gibbs  nyperparameter
sampling scheme. S SR O S D
2.1 Hidden data hyperparmeters

From now on, we distinguish between the phrases “experiment” an
“condition” by defining an experiment as a column of the microarray s
data matrix, and a condition as a group of experiments. This distinc
tion is useful, for example, when the microarray data is obtainec
from time-series experiments. In this case, different columns in i
microarray data set may correspond to experiments that are perfoi-
med under the same condition but at different time points. When
performing the biclustering algorithm, we might want to assign Fig- 2. Data model for the query-driven biclustering of genes. The same
experiments from the same condition to one bicluster by using ondhodel structure is used to describe both the bicluster and the background.
label to describe the association of these experiments to the biclu-
ster, yet in the meantime, we would use different model parameter
settings to describe different experiments.

For this reason, we use one label per condition to describe whe2-2 Data model
ther the corresponding group of experiments belongs to the clusteGiven a fixed division of the microarray data (into the bicluster
However, for the genes, we use one label per gene to indicate itgnd the background), we use the same hierarchical Bayesian model

data

relation with the bicluster. structure to describe both the data in the bicluster and the data in the
As for the notations, we use capital letters to denote the labelsyackground, which is illustrated in Figure 2. In either of the models,
ie., we use normal distributions to describe the expression data. This

) choice is based on not only the analytical convenience of normal
{Gie{o1}li=1, ... n} @ models, but also the previous success in applying normal mixture
Cc = {Cj e{0,1}|j=1, ..., q} 3) models to the clustering problems of microarray data (Yeetre.,

) - ) 2001; McLachlaret al., 2002). Furthermore, the assumption for fit-
respectively for the genes and the conditions, wheisethe number g 5 normal distribution to the gene expression measurements in
of genes in the data set, apds the number of conditions. 5 given situation is considered to be reasonable especially when a

We use up-right bold lowercase letters to denote sets of |nd|ce§)roper preprocessing procedure has been applied to the microarray

G

More specifically, we use data (Baldi and Long, 2001).
g = {i|Gi=1AGicG) (4) The model structur_e implies the as_s'umptio_n that measurements
- ) under different experiments are conditionally independent of each
g = {i|[Gi=0AGieG} (5)  other given the prior on the model. Gene expression measurements

. - . . under each experiment are modeled by a single normal distribution
to denote respective the indices of genes in the bicluster and the. . 5 : :
ith meanyu, and variancer;, (k € e when applied to the bicluster

indices of genes in the background. For the column dimension of y }
microarray data matrix, we only need the indices of the experimentgrmd.el’. and_k =1 M when applied to the background model).

. . - o distinguish the bicluster model from the background model, we
for the evaluation of our model. We usg to specify the indices bel 2nd( o2 to denote th ¢ f the biclust del
of the experiments under conditign To denote the whole set of usey’ and(o”)"" to denote the parameters of the bicluster model,

bgd 2\bgd
indices of the experiments whose corresponding conditions are iﬁmd“ . and(o*)™" for those of the_k_)ackg_round.
: . . For either of the models, the conditional independency means that
the bicluster or in the background, we use respectively

the correlation between the measurements under different experi-
e = {k |k ce;j,Vi={1,...,¢}AC; = 1}7 (6) ments in the bicluster (or in the background) is explained by the
_ ‘ prior on (o) (or (-2)P9%. We use conjugate priors far? (i.e.,
e = {klkee;, Vi={l,....,a}"C; =0} (V) the same scaled inversg- distribution with degree of freedom
Adot, “is used to refer to the entire set of indices in one dimensionand scales® for all the o} in o). Conjugate priors are also used
of the microarray data matrix. for p. In this case, to provide flexibility to the model, egehhas a
In addition, when a subscriptianis added toG or g (or when; different prior distribution, which is also a normal distribution with
is added toC) it indicates that the set include all but tHB genes ~Meany and variancer;.
(or all but thej™ conditions). Given the association of the genes and the conditions to the biclu-
To put the problem in the Bayesian framework means that théter and the background, as well as the fixed parameters for both the

hidden data as well as the observed data are modeled by BayesiBi¢luster model and the background model, a gene expression pro-
models. For the labels, we use file is assumed to be i.i.d. drawn from a combination of the bicluster

model and the background model when the gene belongs to the bic-

M=PGi=1), Vi=1l...n  X~Beta&,&)) (8) luster, or from a pure background model when the gene belongs to

= C_ - ~ C (C the background.

Ae=P(C=1), Vi=1..q A~ Betdlo &), () The parameters of the priors gnando? are all considered as
where)\g and \c are parameters of the Bernoulli prior that a gene hyperparameters, which means that they are only used as input of
(or a condition) belongs to the bicluster. Bothand ¢ are further  the algorithm. The parameterization procedure are carried out for
modeled by two corresponding Beta distributions. the inference ofx ando? only.
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2.3 Full conditional distributions
The target joint distribution of the query-driven biclustering pro- have

results from the integration ofg. Similarly, for the conditions, we

bl_em therefore |SP(G, E, A\g, A\c, M | D), whgre@ stands for t_he . P(D g, e;] | 1", (0_2)bc1) w5 + €8

microarray data (withn genes, andn experiments grouped into V= P(Dlg, e;] | ubed, (o2)0ed P p——

q conditions), andW represents the whole set of model parame- & Sl 4 7050 (15)
ters considered in the Bayesian hierarchical models for the boththe j € {1, ..., ¢},

bicluster and the background; i.¢u", (c2)P!, uP&d, (o2)P84}, o _

This means that in the Gibbs sampling procedure, we need to ité¥nerew; denotes the number of conditions in the current biclu-
ratively sample from the full conditional distribution of each of Ster- Note that by using likelihood ratios, the missing values in the
the involved random variables. However, as shown in Stetraj microarray data can be neglected from the evaluation of the condi-
(2003), we can simplify the sampling procedure by integrating outional distributions, which is equivalent to assuming that these data
Ag and Ac. Therefore, the joint distribution of interest becomes POINts have the same possibility be to generated by the bicluster
P(G,E,M|D). model as by the background model.

Let us begin with the conditional distributions of the labels. USing conjugate priors for the model parameters means that their
Because the labels are Bernoulli variables by definition, their fullconditional distributions are in the same form as the prior. In eit-
conditional distributions are in the form of Bernoulli distributions. N€r the bicluster model or the background model, the conditional
Instead of evaluating the Bernoulli parametemwe use the odds ~ distribution fory,;, remains a normal distribution,

betweenm\ and1 — )\ to characterize the full conditional distribution PO
p(uk | 0%, G, C, D) = N(jix, 5%)

of a label,
A Pk iy
TN (10) i ! (16)
~ ap A2
fr = — - and &, = 5 —
For a gene label, F+ S+
k “k k k.
5 ak

s P(G;=1|G;,C,D,M)
P(G:=0|G;,C,D,M)

V= ( The posterior distributions far is a scaled inversg? distribution,
(11)
_ P(D,Gi = 17G27C|M)7 ie{l, ... n, p(o7 | pr, G, C, D) = Inversex > (0, §°)
P(D,Gi =0,G;,C|M) ) o (a—1)-24v-sz D)
Similarly, for a condition label, we have p=vta and 67 = B '
c PC;=1]|C;G,D,M) In Equation 16 and 17j, and3: denote respectively the sample

%= BE, =0 C;.G,D,M) W mean and sample variance of the relevant datauf6rand(o-2)°°!

_ P(D,C; =1,C;,G | M) _ ) kce and ay=|g|,

T P(D,C;=0,C;,G) T

and foru%% and(o-2)P9d

Equations 11 and 12 imply that with a larger likelihood ratio of the

label, the gene (or the experiment) has a larger probability to be in

the bicluster, and that a smaller likelihood ratio suggests otherwise.
Note that for the evaluation of Equation 11 and 12

k=1...q,

ak:{ I
n

Note that the missing values in the microarray data can also be
left out of the evaluation of posterior distributions for the model
parameters.

kee
kee’

P(D,G,C|M)

:P(D|G,C,M)~/ P(G | )g) - P(C | Xc) dAgdAc.
Ag ¢ Ac
! 2.4 Construction of the priors

To impose our requirement that the mean of the genes under each

Because of the i.i.d. distribution of the gene expression profileg, seriment in the bicluster should strictly follow that of the mean of
and the conditional independence of the normal distributions, thggaq genes, we set

(13)

likelihood ratio~? can be evaluated only on the data of the concer- bel _ 1
i ” \ e =¢'[e], (18)
ned gene and under the conditions that are currently assigned to the )
bicluster, wherey' is calculated as the mean of the seed genes under all the

experiments in the data set, and we use a very small valuebfbr

o P(D[i,e]| ™, (%)) |g| + €9 for example, .
T = . —4
i P(D[i,e] | ub9d, (02)b0d) " n —1—[g5| +€3°  (14) e =10""kce. (19)
ie{l,...,n}, By setting o
()" = 5 (20)

where we use a pait andv in D[u, v] to indicate the part of the
data under concern, wiilaproviding the indices of genes ardpro-

for the prior on(a2)", the scaled inversg?distribution becomes

viding the indices of experiments. The second term in Equation 14an inversex? distribution, which means that no prior knowledge
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on the exact value of the posterior variance is imposed, and thavery microarray experiment have mean of 0 and standard devia-
the posterior parameters f()drz)bc' are of smaller values for those tion of 1. Then, the gene profiles in each data set were centered
experiments under which the selected genes have a smaller samnAd rescaled in the same way. The resulting data sets were then put
ple variance. Raising®™ implies stronger belief that the posterior alongside of each other.
variance is close to the sample variance of the selected genes, theDe Bieet al. (2005) describes a method to combine three indepen-
effect of which is equivalent to increasing the number of genes indent data sources, namely genome-wide location data (ChIP chip
the bicluster without changing the sample variance. data), motif information as obtained by phylogenetic shadowing,
For the prior ombgd, we senngd to the mean of the expression and gene expression profiles, for the construction of a biologically
levels of all the genes under experiméntlf the data under each meaningful set of seed genes for a certain transcription module.
experiment is rescaled to have unit variance before the query-driveBeed genes are identified from the input information as those that

biclustering analysis, we set share the same combination of regulators and motifs, and whose
bgd expression profiles have a large correlation. We use three sets of
T =1, k=1...m. (21)  seed genes found by their method to examine the effectiveness of

) ] ] our method, especially to test the influence/8 on the final bic-
Otherwise, a weak prior can be used by settiff§ to alarge value,  |,qter. Two sets of seed genes (referred to as Seed 1 and Seed 2

such as bod . hereafter) are composed of cell cycle related genes, for which we
o =100, k=1...m. (22) expect that the algorithm would identify all the experimental con-
For the priors or{c2)%% typically, we set ditions under the data from Spellma al. (1998) and Chet al
(1998), and recruit additional genes related to cell cycle regulation.
P = 0.01n (23) The other set of seed genes (i.e., Seed 3) is involved in ribosome bio-
2 bgd 1 genesis, a more general function for which we expect the algorithm
(s%) = bgd’ (24) to find a bicluster consisting of most of the experimental conditions

in the data set.

In addition, weak pl’iors are also used for the |abe|S, because For each set Of Seed geneS, we report three different Values Of
we have little knowledge beforehand about how many genes angb jn Taple 1 and Table 2. Each time, we ran the biclustering
conditions the bicluster would contain. We typically set algorithm for 1000 iterations, and the number of burn-in iterati-
Q¢ — 05 25) ons (i.e., iterations be_fore convergence is reache(_JI and are not Faken

0 1 ) into account for the final evaluation) was determined as described
§=¢ = 0.5 (26) in Shenget al (2003). A gene or a condition was selected (to be
in the bicluster) if in 95% of the collected samples (i.e., iterations),

In this way,* is the only hyperparameter that is open to the usefthe gene or the condition had a probability of more than 0.9 to be
for controlling the stringency of the bicluster. in the bicluster. Finally, we validated the bicluster by calculating the
functional enrichment of the bicluster using a hypergeometric distri-
o bution (Tavazoiet al., 1999), where the functional categories of the
We initialize the labels of the seed genes to 1, and the rest of thﬁenes are obtained from MIPS (Mevetsl., 2004). In Table 1 and 2

gene labels to 0. On the other hand, we initialize the condition Iabel§\,e only report the functional categories whosgalues are lower
randomly either to 1 or to 0. The model parameters for both the[han 0.001 (as well as thogevalues).

bicluster and the background are initialized in accordance with their
priors (i.e., initializingy to ¢, ando? to s2).
During the Gibbs sampling procedure, the labels and moded DISCUSSION

p_ara_met_ers are sampI(_ed one a_t a time from their full condition§|n general, the increment o results in more stringent biclusters,
distributions (see Section 2.3) iteratively. After the sample stati-\ the sense that both the number of genes and the number of con-
stics converge to the joint distribution, some additional iterationsditionS drop with a larger®®, and that the selected genes cover
are performed (still by the Gibbs sampling procedure) for which thefewer functional categories. From the mathematical point of view, a
samples of the labels are collected. The final Bernoulli parametergelatively larger® demands that the conditions to be selected are
of the labels are evaluated as described in Equation 1 . those under which the selected genes have both a small variation
Although the model parameters are sampled during the Glbbﬁnd a similar profile to that of the seed genes. However, the requi-

sampling procedure, in order to reduce the memory complexity ofyent on the variation becomes more stringent when fewer genes
the algorithm, the samples of these parameters are not COHeCtegre included in the bicluster. That is why sometimes a condition is

Instead, sample statistics will be used to inspect the model of both; incjyded in the bicluster even if it seems to meet both of the
_the biclugter and the background, after the position of the biclusteébove requirements when using a relatively larj&. On the con-
is determined. trary, when a smaller® is used, an expression profile similar to
that of the seed genes together with a variance slightly smaller than
3 DATA AND RESULTS that of the background will be sufficient for a condition to be inclu-
The query-driven biclustering algorithm is applied to the combinedded in the bicluster. Figure 3A and 3B illustrate the influence of a
data set ofsaccharomyces cerevisifiem Gasctet al. (2000) (with  small and a large®® using Seed 1. Wher® gets extremely small,
stress-response experiments), Spellregal. (1998) and Chet al. the algorithm will find the global bicluster (in this case, more than
(1998) (both with cell-cycle-related experiments). Each of the origi-two thousand genes under all the experimental conditions). When
nal data set was centered and rescaled so that measurements und&t is extremely large, the Gibbs sampling procedure is not able to

2.5 Gibbs sampling procedure
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Fig. 3. Plots of the mean expression profiles (upper graphs) and the standard deviations (lower graphs) of the genes (in the bicluster, the seeds and thi
background) over all the experimental conditions. The color dots in the graphs show the posterior probability for the corresponding condition to be in the
bicluster. Experiments are grouped into one condition if they belong to the same time-series experiment, and 8 colors are recycled to represent the 70 group
of experiments (i.e. 70 conditions). (A) Results for Seed, = 20. (B) Results for Seed 1,°° = 50. (C) Results for Seed 3¢ = 150.
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Table 1. Influence of*® on the biclustering results.

Nr. Seedgenes 1P Selected genés Excluded seed genes Selected conds.

YCRO65W
11.02.03.04 187 genes covering 89 functional categories:

YDRO97C 47 conditions
10.01.05 1QCell cycle and DNA processing (74: 8.47e-13) covering:

YDLOO3W 10.01DNA processing (40: 1.13e-12) 9
10.03.01 10.01.0BNA synthesis and replication (25: 1.51e-12)

R ) ) a large range of
10.03.04.03 10.01.0BNA recombination and DNA repair (22: 5.56e-8) conditions in the

YGR109C 10.01.05.0DNA repair (13: 2.67e-6) Gaschdata set
10.01.03 20 10.08ell cycle (46: 1.07e-10) none
10.03.01 10.03.0Imitotic cell cycle and cell cycle control (39: 8.47e-13) all the conditions
10.03.02 10.03.01.0&ell cycle checkpoints (7: 1.15e-5) in the Speliman

YGR221C 10.03.04nuclear and chromosomal cycle (7: 5.53e-4) data se[t)

40.01 42 .0&ytoskeleton (12: 5.54e-4)
42.04 43Cell type dlﬁerentlathn (_24: 1.49e-4)_ o the condition of
43.01.03.05 43.0fungal/microorganismic cell type differentiation (24: 1.49e-4) Chodata set

YGL038C 43.01.03ungal and other eukaryotic cell type differentiation (24: 1.49e-4)

01.05.01 43.01.03.0B6udding, cell polarity and filament formation (19: 8.51e-5)
14.07

YI51|300915\CIJ\; 83 genes in 60 functional categories: 33 conditions
10.01.05.01 1@ell cycle and DNA processing (40: 6.87e-12) covering.
10.03.02 10.0DNA processing (22: 3.42e-10) half of the
34.11.03.07 10.01.0BNA synthesis and replication (15: 7.31e-12) Gaschconditions

YLR103C 10.01.05DNA recombination and DNA repair (11: 5.03e-5) in the data set

1 10.01.03 10.01.05.0@NA repair (6: 1.36e-3)
40 YERO095W
10.03.01 10.03cell cycle (25: 3.76e-8) all the conditions

YJLO74C 10.03.0Imitotic cell cycle and cell cycle control (22: 1.04e-9) in the Speliman
10.03.01 10.03.0duclear and chromosomal cycle (5: 4.57e-4) data Se‘:
10.03.04 43ell type differentiation (13: 8.81e-4)

YJL187C 43.01fungal/microorganismic cell type differentiation (13: 8.81e-4) the condition of
10.03.01.03 43.01.0ingal and other eukaryotic cell type differentiation (13: 8.81e-4) Chodata set
40.01 43.01.03.06udding, cell polarity and filament formation (11: 3.19e-4)

YPL267W
42.04 9 conditions
43.01.03.05 covering:

99 . . .

YPR120C 20 genes covering 35 functional categories: all the conditions
10.01.03 10 Cell cycle and DNA processing (12: 6.67e-6) in the Speliman
10.03.01 . X YEROQO95W data set excpt

10.01DNA processing (10: 4.19e-8) . .
10.03.02 . S . YGL038C cIn2
10.01.03DNA synthesis and replication (8: 9.46e-10)

YMR199W 50 P . YGR221C

10.01.05DNA recombination and DNA repair (5: 3.74e-4) -
10.03.01 10.01.05.0DNA repair (3: 3.34e-3) YJLO74C the condition of

YMR179W PO . P o YMR199W Chodata set
11.02.03.04 10.03cell cycle (7: 1.71e-3)

YML(.)27.W ’ 10.03.01mitotic cell cycle and cell cycle control (7: 1.16e-4) 4 di /

10.03.01.03ell cycle checkpoints (2: 3.71e-3) sporadic (no_ne-
11 small time-series-

YKL113C experiment) condi-
10.01.03 tions inGaschdata
10.01.05.01

* The numbers in the brackets show the number of selected genes in the functional category and the correspaluging

converge. The difference in the scale:8f' used for the different

Seed 1 mainly consists of genes that are functionally annotated

seeds is caused by the difference in the noise level (i.e., variatiorgs “cell cycle and DNA processing”. Regardless of the input para-
of the seed genes. From the biological point of view, different choi-meters, the three found biclusters are mostly enriched for the same
ces of* provide biologists the flexibility in adjusting the trade-off function category.

between high sensitivity and high specificity.
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Seed 2 is experimentally detected (i.e., based on the ChIP chiponsequently the global maximum is decided by Monte Carlo inte-
data) to be regulated by Ndd1, Fkh2 and Mcm1, which are celigration of the samples. An alternative way to solve the problem
cycle regulators. Yet, according to MIPS database, two of the threbased on the likelihood landscape is by using EM method. However,
genes in Seed 2 are annotated as functionally unknown, and theM is a method that “climbs” in the posterior distribution and can
other gene is only associated to “stress response”. The results shayeét stuck in local maxima. To find the global, EM is usually per-
that the query-driven biclustering algorithm mainly recruited genesormed for several times and the solution with the greatest posterior
that are functionally enriched in categories of “cell cycle and DNA probability is chosen. In our experience, the Gibbs sampling proce-
processing” and “cell type differentiation”. In addition, the majo- dure turns out to be more efficient to find the global maximum for
rity of the conditions in any of the found biclusters for Seed 2 the query-driven biclustering problem of microarray data, taken into
are mainly composed of all the cell-cycle-synchronized experimentaccount the massive amount of modes and the fact that it is never
(from Spellmaret al. (1998) and Chet al. (1998)). Thus, the biclu-  easy to decide how many runs of EM can guarantee the discovery of
sters discovered by our algorithm confirm that the three seed genese regional global maximum.
might have cell cycle related functions.
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Table 2. Influence of°® on the biclustering results (continue).

Nr. Seedgenes 1 Selected genes Excluded seed genes Selected conds.
54 genes covering 65 functional categories: 8 conditions:
10 Cell cycle and DNA processing (16: 3.91e-3)
10.03cell cycle (14: 2.52e-4) all the conditions
10.03.01mitotic cell cycle and cell cycle control (9: 3.87e-3) in b&hellman
10 10.03.0%cytokinesis (cell division) / septum formation (4: 2.18e-4) none andChodata set
43 Cell type differentiation (10: 9.68e-4) except for “cln3”
43.01fungal/microorganismic cell type differentiation (10: 9.68e-4)
43.01.03ungal and other eukaryotic cell type differentiation (10: 9.68e-4) 3 sporadic conditions
43.01.03.0%udding, cell polarity and filament formation (2: 2.05e-4) Gaschdata set
YILO51W 24 genes covering 34 functional categories: 11 conditions:
99 10Cell cycle and DNA processing (10: 1.62e-3) all the conditions
YGLO21W 10.03cell cycle (10: 2.93e-5) _ in both Spellman
3201 10.03.01m|tot|_c ce_II cycle a_n_d _ceII cycle control (6._2.47e-4) andChodata set
YLR190W 20 10.03.03cyt0k_|ne5|s (cgll division) / septum formation (4: 9.11e-6) none _ N
29 43 Cell type differentiation (6: 2.367e-3) 4 sporadic conditions
43.01fungal/microorganismic cell type differentiation (6: 2.367e-3) and “nitrogen
43.01.03ungal and other eukaryotic cell type differentiation (6: 2.367e-3) depletion” in
43.01.03.0%udding, cell polarity and filament formation (6: 2.82e-4) Gaschdata set
16 genes covering 32 functional categories:
10Cell cycle and DNA processing (6: 2.74e-2) 5 conditions
10.03cell cycle (6: 2.65e-3)
30 10.03.03cytokinesis (cell division) / septum formation (3: 9.99e-5) none all the conditions
43 Cell type differentiation (4: 1.39e-2) in both Spellman
43.01fungal/microorganismic cell type differentiation(4: 1.39e-2) &b data set
43.01.03ungal and other eukaryotic cell type differentiation(4: 1.39e-2) except for “cln3”
43.01.03.0%udding, cell polarity and filament formation (4: 3.35e-3)
YGR148C
12.01 878 genes in 147 functional categories:
YGL189C
12.01 01.0%wucleotide metabolism (44: 5.15e-7)
YERO56C-A 01.03.01purine nucleotide metabolism (18: 2.00e-5) 61 conditions:
12.01 01.03.04yrimidine nucleotide metabolism (14: 2.11e-5) '
YER131W 12 Protein synthesis (204: 8.76e-12) 60 conditions from the
12.01 100 12.0Tibosome biogenesis (138: 1.28e-11) none Gasclilata set
YGLO031C 12.04translation (42: 8.95e-12)
12.01 12.1Gaminoacyl-tRNA-synthetases (19: 1.03e-17) “size-based synchro-
YGL103W 11.02.01rRNA synthesis (23: 2.05e-4) nization” (Spellmaj)
12.01 11.02.02RNA synthesis (15: 6.10e-6)
YER102W 11.04RNA processing (73: 3.36e-6)
12.01 11.04.0IRNA processing (55: 9.22e-12)
YLR167W 16.03.03RNA binding (5: 3.14e-4)
3 12.01
14.13.01
YLR029C 60 conditions:
12.01 111 genes covering 18 functional categories: 59 conditions from the
YLRS33C g YLR333C Gaschdata set
12.01 12 Protein synthesis (104: 7.85e-12)
YOL127W 12.01ribosome biogenesis (103: 1.02e-11) “size-based synchro-
12.01 nization” (Spellmafp
YOLO40C
12.01
YLlesgfw 91 genes covering 15 functional categories: YLR333C 45 conditions:
YLR441C 250 12 Protein synthesis (85: 3.33e-12) igtgg%v all from the
12.01 12.0Zibosome biogenesis (85: 1.20e-11) Gaschdata set
34.11.03.07




