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ABSTRACT
Motivation: Existing (bi)clustering methods for microarray data ana-
lysis usually reveal global patterns in the data, which often do not
answer the questions that are of specific interest to the biologist.
Bayesian probabilistic models show promise for pattern discovery
directed by a soft query, thanks to their ability to incorporate prior
knowledge.
Results: In this paper, we describe a method based on Bayesian
probabilistic models to address the biclustering problem when biolo-
gists query the data with a set of seed genes that they believe to have
a common function. The problem then is to recruit other genes that
might have the same function as the seed genes, and in the meantime
identify the experimental conditions where this function is active, by
finding genes that have similar expression profiles as the seed genes
under a subset of experimental conditions. Gibbs sampling is used
for the estimation of the model. We demonstrate the efficiency of our
method based on a combined data set on Saccharomyces cerevisiae.
Availability and supplementary information:
http://www.esat.kuleuven.be/∼qsheng/query driven.html.
Contact: qizheng.sheng@esat.kuleuven.be
Keywords: Microarray data analysis, Bayesian model, biclustering,
clustering, Gibbs sampling

1 INTRODUCTION
Probabilistic models have become a popular choice for modeling
microarray data because they handle the high level of noise of
microarrays in a principled way. However, the probability distri-
bution provided by these models usually contains many modes,
because of the complexity of the underlying biological process. In
clustering, these modes correspond to the different clusters that can
be identified in the data. The largest clusters (which are easiest to
identify) are often not the most interesting to the biologist because
they correspond to well-known generic biological functions—where
few novel findings are to be expected. This lack of sharpness of
clustering algorithms has kept them into a vague exploratory role;
because for biologists, one of the main questions is always “what
are the genes that are related to aparticular function (or in aspecific
pathway) of interest to me?”

Bayesian probabilistic models have shown promise in providing
answers to this type of question, by transforming the existing know-
ledge of biologists into the prior probabilities that are incorporated
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into the model (Segalet al., 2001, 2003). Because in Bayesian
models the likelihood of the data is multiplied by the prior to deliver
the posterior probabilistic model, a proper prior can substantially
raise the mode that is most relevant to the biological question in the
posterior model.

Coming back to the clustering problem for microarray data, and
supposing that the biologists have at hand a specific set of genes
(called the “seed genes” hereafter), which they know to be related
to some common biological function, the question for their query to
the microarray data is “which other genes in this data set share simi-
lar expression profiles as the seed genes and thus might be involved
in the same function?”

We generalize this question further by considering which data set
could be considered to answer such a question. Until recently, clu-
stering would be performed on the array data from a single study
addressing a limited biological situation. Yet, in the last few years,
large data sets (called microarray compendia) consisting of multiple
biological conditions or data from multiple studies have demonstra-
ted their effectiveness as the basis of guilt-by-association studies. So
in a complex compendium, where it may not be clear which microar-
ray conditions are truly most relevant to the biological question at
hand, the question becomes “which genes are functionally related to
the seed genes, and in the meantime, in which experimental condi-
tions is this biological function involved?” Otherwise stated, given
the seed genes, we want to recruit genes (presented in the microar-
ray data set) that share similar expression profiles under a subset
of conditions. In addition, the few seed genes whose profiles are not
compatible with the discovered pattern should be rejected if present.
This is what we call the “query-driven biclustering” problem. (See
Figure 1 for an illustration.)

Another similar problem also exists for the other orientation of
microarray data. For example, given a set of patients who share a
certain pathological similarity, the question is to recruit other pati-
ents of the same type, and in the meantime, to identify the genes
that provide a fingerprint that characterize those patients. Hereafter,
we will refer to the former problem as the query-driven biclustering
of genes, and to the latter one as the query-driven biclustering of
experiments.

Biclustering techniques for microarray data, pioneered by Cheng
and Church (2000), are receiving increasing attention in bioinfor-
matics. Unlike conventional clustering algorithms, the biclustering
algorithms (see Madeira and Oliveira (2004) for a survey) aim at
finding genes that show consistent behavior only under asubset
of experiments. The discovery of such relationship between the
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Fig. 1. Conceptual scheme of query-driven biclustering. The rows labelled
with “*” represent the expression profiles of the seed genes, and the rows
and columns labelled with “1” represent genes and experiments that belong
to the discovered bicluster.

genes and the conditions provides crucial information for unveiling
genetic pathways. However, most of the existing biclustering algo-
rithms focus on revealing the global pattern of the data instead of
being motivated by a specific biological query. Yet, one example
of addressing problems similar to the query-driven biclustering of
genes is the signature algorithm (Ihmelset al., 2002), which is based
on the correlation measure between a gene and the average profile
of the seed genes under experimental conditions where the average
expression value (of the seed genes) is above a threshold.

In our previous paper (Shenget al., 2003), we described a Baye-
sian hierarchical model for discretized data using a multinomial
likelihood and a Dirichlet prior for tackling the biclustering problem
of patients. The same model can be used for the query-driven biclu-
stering of patients by imposing a tailored Dirichlet prior. (Because
of the lack of space, see the supplementary material for an exam-
ple.) In this paper, we describe a Bayesian hierarchical model based
on Gaussian likelihood and Gaussian-Wishart prior to address the

query-driven biclustering of genes on continuous microarray data.
We use a combined data set from Gaschet al. (2000), Spellman
et al. (1998) and Choet al. (1998) to illustrate the efficiency of our
method.

2 MODELS AND APPROACHES
Let us assume that a microarray data set contains only one biclu-
ster, hence the rest of the data is considered as background noise. To
put the problem in a probabilistic manner, we use a binary random
variable (called a label) to describe whether a gene or an experiment
belongs to the bicluster (i.e., a “1” indicates that the gene or experi-
ment is in the bicluster and a “0” indicates otherwise). Considering
the labels as the hidden data of the problem (and the microarray data
as the observed data), the biclustering problem becomes two-fold:
(1) given a fixed assignment of the labels, we want to find the most
suitable probabilistic model for the data and (2) given the models
of the bicluster and the background, assess the value of the labels.
Both expectation-maximization (EM) (Barash and Friedman, 2002)
and Gibbs sampling are algorithms to solve such data augmentation
problems.

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method
for joint distribution estimation. The joint distribution concerns both
the hidden data and the parameters of the model, both of which are
considered as random variables for the Gibbs sampling procedure.
Given the full conditional distribution for each random variable,
the Gibbs sampling procedure iteratively draws samples from the
conditional distributions. The samples drawn by this procedure are
guaranteed to converge to the joint distribution (Casella and George,
1992). Once the converged samples are collected, themaximum a
posteriori (MAP) estimation of a random variable can be obtained
by performing Monte Carlo integration,

E[xi|D] =
1

T

TX
t=1

E[xi |x(t)
1 . . . x

(t)
i−1, x

(t)
i+1 . . . x(t)

m , D], (1)

where thexi’s, for all i ∈ {1, . . . , m}, (m is the total number of
random variables) are the random variables under concern,D deno-
tes the data,t indexes the iterations (performed after the procedure
converges), andT is the total number of samples in the sample pool.

Applying Gibbs sampling to the biclustering problem of microar-
ray data (Shenget al., 2003) directly to the previous model often
results in revealing a large global bicluster embedded in the data
– unless a strong prior is imposed on the model to zoom in on a
specific part of the data.

In this section, we discuss the Gibbs sampling strategy for tack-
ling the query-driven biclustering problem of genes in the following
five aspects:

• Hidden data: the structure and the prior distribution of the
labels.

• Data models: the hierarchical Bayesian models describing the
microarray data in both the bicluster and the background.

• Full conditional distributions: the distributions from which
samples of the labels and samples of the model parameters are
drawn during the Gibbs sampling procedure.

• Construction of the priors: the incorporation of information
from the seed genes into the Bayesian hierarchical models.
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• Gibbs sampling procedure: a final overview of the Gibbs
sampling scheme.

2.1 Hidden data
From now on, we distinguish between the phrases “experiment” and
“condition” by defining an experiment as a column of the microarray
data matrix, and a condition as a group of experiments. This distinc-
tion is useful, for example, when the microarray data is obtained
from time-series experiments. In this case, different columns in a
microarray data set may correspond to experiments that are perfor-
med under the same condition but at different time points. When
performing the biclustering algorithm, we might want to assign
experiments from the same condition to one bicluster by using one
label to describe the association of these experiments to the biclu-
ster, yet in the meantime, we would use different model parameter
settings to describe different experiments.

For this reason, we use one label per condition to describe whe-
ther the corresponding group of experiments belongs to the cluster.
However, for the genes, we use one label per gene to indicate its
relation with the bicluster.

As for the notations, we use capital letters to denote the labels;
i.e.,

G =
˘
Gi ∈ {0, 1} | i = 1, . . . , n

¯
(2)

C =
˘
Cj ∈ {0, 1} | j = 1, . . . , q

¯
(3)

respectively for the genes and the conditions, wheren is the number
of genes in the data set, andq is the number of conditions.

We use up-right bold lowercase letters to denote sets of indices.
More specifically, we use

g = {i |Gi = 1 ∧ Gi ∈ G} (4)

ḡ = {i |Gi = 0 ∧ Gi ∈ G} (5)

to denote respective the indices of genes in the bicluster and the
indices of genes in the background. For the column dimension of a
microarray data matrix, we only need the indices of the experiments
for the evaluation of our model. We useej to specify the indices
of the experiments under conditionj. To denote the whole set of
indices of the experiments whose corresponding conditions are in
the bicluster or in the background, we use respectively

e =
˘
k | k ∈ ej , ∀j = {1, . . . , q} ∧ Cj = 1

¯
, (6)

ē =
˘
k | k ∈ cj , ∀j = {1, . . . , q} ∧ Cj = 0

¯
. (7)

A dot, “·” is used to refer to the entire set of indices in one dimension
of the microarray data matrix.

In addition, when a subscription̄i is added toG or g (or whenj̄
is added toC) it indicates that the set include all but theith genes
(or all but thejth conditions).

To put the problem in the Bayesian framework means that the
hidden data as well as the observed data are modeled by Bayesian
models. For the labels, we use

λg ≡ P (Gi = 1), ∀i = 1 . . . n λg ∼ Beta(ξg
0, ξ

g
1) (8)

λc ≡ P (Cj = 1), ∀j = 1 . . . q λc ∼ Beta(ξc
0, ξ

c
1), (9)

whereλg andλc are parameters of the Bernoulli prior that a gene
(or a condition) belongs to the bicluster. Bothλg andλc are further
modeled by two corresponding Beta distributions.

Fig. 2. Data model for the query-driven biclustering of genes. The same
model structure is used to describe both the bicluster and the background.

2.2 Data model
Given a fixed division of the microarray data (into the bicluster
and the background), we use the same hierarchical Bayesian model
structure to describe both the data in the bicluster and the data in the
background, which is illustrated in Figure 2. In either of the models,
we use normal distributions to describe the expression data. This
choice is based on not only the analytical convenience of normal
models, but also the previous success in applying normal mixture
models to the clustering problems of microarray data (Yeunget al.,
2001; McLachlanet al., 2002). Furthermore, the assumption for fit-
ting a normal distribution to the gene expression measurements in
a given situation is considered to be reasonable especially when a
proper preprocessing procedure has been applied to the microarray
data (Baldi and Long, 2001).

The model structure implies the assumption that measurements
under different experiments are conditionally independent of each
other given the prior on the model. Gene expression measurements
under each experiment are modeled by a single normal distribution
with meanµk and varianceσ2

k (k ∈ e when applied to the bicluster
model, andk = 1 . . . m when applied to the background model).
To distinguish the bicluster model from the background model, we
useµbcl and(σ2)bcl to denote the parameters of the bicluster model,
andµbgd and(σ2)bgd for those of the background.

For either of the models, the conditional independency means that
the correlation between the measurements under different experi-
ments in the bicluster (or in the background) is explained by the
prior on(σ2)bcl (or (σ2)bgd). We use conjugate priors forσ2 (i.e.,
the same scaled inverse-χ2 distribution with degree of freedomν
and scales2 for all the σ2

k in σ2). Conjugate priors are also used
for µ. In this case, to provide flexibility to the model, eachµk has a
different prior distribution, which is also a normal distribution with
meanϕk and varianceτ2

k .
Given the association of the genes and the conditions to the biclu-

ster and the background, as well as the fixed parameters for both the
bicluster model and the background model, a gene expression pro-
file is assumed to be i.i.d. drawn from a combination of the bicluster
model and the background model when the gene belongs to the bic-
luster, or from a pure background model when the gene belongs to
the background.

The parameters of the priors onµ andσ2 are all considered as
hyperparameters, which means that they are only used as input of
the algorithm. The parameterization procedure are carried out for
the inference ofµ andσ2 only.
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2.3 Full conditional distributions
The target joint distribution of the query-driven biclustering pro-
blem therefore isP (G,E, λg, λc, M |D), whereD stands for the
microarray data (withn genes, andm experiments grouped into
q conditions), andM represents the whole set of model parame-
ters considered in the Bayesian hierarchical models for the both the
bicluster and the background; i.e.,{µbcl, (σ2)bcl, µbgd, (σ2)bgd}.
This means that in the Gibbs sampling procedure, we need to ite-
ratively sample from the full conditional distribution of each of
the involved random variables. However, as shown in Shenget al.
(2003), we can simplify the sampling procedure by integrating out
λg and λc. Therefore, the joint distribution of interest becomes
P (G,E, M |D).

Let us begin with the conditional distributions of the labels.
Because the labels are Bernoulli variables by definition, their full
conditional distributions are in the form of Bernoulli distributions.
Instead of evaluating the Bernoulli parameterλ, we use the oddsγ
betweenλ and1−λ to characterize the full conditional distribution
of a label,

γ =
λ

1− λ
. (10)

For a gene label,

γ
g
i =

P (Gi = 1 |Gī,C, D, M)

P (Gi = 0 |Gī,C, D, M)

=
P (D, Gi = 1,Gī,C |M)

P (D, Gi = 0,Gī,C |M)
, i ∈ {1, . . . , n},

(11)

Similarly, for a condition label, we have

γc
j =

P (Cj = 1 |Cj̄ ,G, D, M)

P (Cj = 0 |Cj̄ ,G, D, M)

=
P (D, Cj = 1,Cj̄ ,G |M)

P (D, Cj = 0,Cj̄ ,G |M)
, j ∈ {1, . . . , q},

(12)

Equations 11 and 12 imply that with a larger likelihood ratio of the
label, the gene (or the experiment) has a larger probability to be in
the bicluster, and that a smaller likelihood ratio suggests otherwise.

Note that for the evaluation of Equation 11 and 12

P (D,G,C |M)

=P (D |G,C, M) ·
Z

λg

Z
λc

P (G |λg) · P (C |λc) dλg dλc.

(13)

Because of the i.i.d. distribution of the gene expression profiles
and the conditional independence of the normal distributions, the
likelihood ratioγ

g
i can be evaluated only on the data of the concer-

ned gene and under the conditions that are currently assigned to the
bicluster,

γ
g
i =

P
`
D[i, e] |µbcl, (σ2)bcl´

P
`
D[i, e] |µbgd, (σ2)bgd́

· |gī|+ ξ
g
1

n − 1− |gī|+ ξ
g
0

,

i ∈ {1, . . . , n},

(14)

where we use a pairu andv in D[u,v] to indicate the part of the
data under concern, withu providing the indices of genes andv pro-
viding the indices of experiments. The second term in Equation 14

results from the integration ofλg. Similarly, for the conditions, we
have

γc
j =

P
`
D[g, ej ] |µbcl, (σ2)bcl

´
P

`
D[g, ej ] |µbgd, (σ2)bgd

´ ·
wj̄ + ξc

1

q − 1− wj̄ + ξc
0

,

j ∈ {1, . . . , q},
(15)

wherewj̄ denotes the number of conditions in the current biclu-
ster. Note that by using likelihood ratios, the missing values in the
microarray data can be neglected from the evaluation of the condi-
tional distributions, which is equivalent to assuming that these data
points have the same possibility be to generated by the bicluster
model as by the background model.

Using conjugate priors for the model parameters means that their
conditional distributions are in the same form as the prior. In eit-
her the bicluster model or the background model, the conditional
distribution forµk remains a normal distribution,

p(µk |σ2
k,G,C, D) = N(µ̂k, σ̂2

k)

µ̂k =

ϕk

τ2
k

+ µ̄k
σ2

k
ak

1
τ2

k

+ 1
σ2

k
aj

and σ̂2
k =

1
1

τ2
k

+ 1
σ2

k
ak

.
(16)

The posterior distributions forσ2
k is a scaled inverse-χ2 distribution,

p(σ2
k |µk,G,C, D) = Inverse-χ2(ν̂, ŝ2)

ν̂ = ν + ak and σ̂2 =
(ak − 1) · s̄2 + ν · s2

ν̂
.

(17)

In Equation 16 and 17,̄µk and s̄2
k denote respectively the sample

mean and sample variance of the relevant data; forµbcl and(σ2)bcl

k ∈ e and ak = |g|,

and forµbgd and(σ2)bgd

k = 1 . . . q,

ak =


|ḡ| k ∈ e
n k ∈ ē

.

Note that the missing values in the microarray data can also be
left out of the evaluation of posterior distributions for the model
parameters.

2.4 Construction of the priors
To impose our requirement that the mean of the genes under each
experiment in the bicluster should strictly follow that of the mean of
seed genes, we set

ϕbcl = ϕ′[e], (18)

whereϕ′ is calculated as the mean of the seed genes under all the
experiments in the data set, and we use a very small value forτ bcl,
for example,

τbcl
k = 10−4, k ∈ e. (19)

By setting

(s2)bcl =
1

νbcl (20)

for the prior on(σ2)bcl, the scaled inverse-χ2distribution becomes
an inverse-χ2 distribution, which means that no prior knowledge
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on the exact value of the posterior variance is imposed, and that
the posterior parameters for(σ2)bcl are of smaller values for those
experiments under which the selected genes have a smaller sam-
ple variance. Raisingνbcl implies stronger belief that the posterior
variance is close to the sample variance of the selected genes, the
effect of which is equivalent to increasing the number of genes in
the bicluster without changing the sample variance.

For the prior onµbgd, we setϕbgd
k to the mean of the expression

levels of all the genes under experimentk. If the data under each
experiment is rescaled to have unit variance before the query-driven
biclustering analysis, we set

τ
bgd
k = 1, k = 1 . . . m. (21)

Otherwise, a weak prior can be used by settingτ
bgd
k to a large value,

such as
τ

bgd
k = 104, k = 1 . . . m. (22)

For the priors on(σ2)bgd, typically, we set

νbgd = 0.01n (23)

(s2)bgd =
1

νbgd. (24)

In addition, weak priors are also used for the labels, because
we have little knowledge beforehand about how many genes and
conditions the bicluster would contain. We typically set

ξ
g
0 = ξ

g
1 = 0.5 (25)

ξc
0 = ξc

1 = 0.5. (26)

In this way,νbcl is the only hyperparameter that is open to the user
for controlling the stringency of the bicluster.

2.5 Gibbs sampling procedure
We initialize the labels of the seed genes to 1, and the rest of the
gene labels to 0. On the other hand, we initialize the condition labels
randomly either to 1 or to 0. The model parameters for both the
bicluster and the background are initialized in accordance with their
priors (i.e., initializingµ to ϕ, andσ2 to s2).

During the Gibbs sampling procedure, the labels and model
parameters are sampled one at a time from their full conditional
distributions (see Section 2.3) iteratively. After the sample stati-
stics converge to the joint distribution, some additional iterations
are performed (still by the Gibbs sampling procedure) for which the
samples of the labels are collected. The final Bernoulli parameters
of the labels are evaluated as described in Equation 1.

Although the model parameters are sampled during the Gibbs
sampling procedure, in order to reduce the memory complexity of
the algorithm, the samples of these parameters are not collected.
Instead, sample statistics will be used to inspect the model of both
the bicluster and the background, after the position of the bicluster
is determined.

3 DATA AND RESULTS
The query-driven biclustering algorithm is applied to the combined
data set onSaccharomyces cerevisiaefrom Gaschet al. (2000) (with
stress-response experiments), Spellmanet al. (1998) and Choet al.
(1998) (both with cell-cycle-related experiments). Each of the origi-
nal data set was centered and rescaled so that measurements under

every microarray experiment have mean of 0 and standard devia-
tion of 1. Then, the gene profiles in each data set were centered
and rescaled in the same way. The resulting data sets were then put
alongside of each other.

De Bieet al. (2005) describes a method to combine three indepen-
dent data sources, namely genome-wide location data (ChIP chip
data), motif information as obtained by phylogenetic shadowing,
and gene expression profiles, for the construction of a biologically
meaningful set of seed genes for a certain transcription module.
Seed genes are identified from the input information as those that
share the same combination of regulators and motifs, and whose
expression profiles have a large correlation. We use three sets of
seed genes found by their method to examine the effectiveness of
our method, especially to test the influence ofνbcl on the final bic-
luster. Two sets of seed genes (referred to as Seed 1 and Seed 2
hereafter) are composed of cell cycle related genes, for which we
expect that the algorithm would identify all the experimental con-
ditions under the data from Spellmanet al. (1998) and Choet al.
(1998), and recruit additional genes related to cell cycle regulation.
The other set of seed genes (i.e., Seed 3) is involved in ribosome bio-
genesis, a more general function for which we expect the algorithm
to find a bicluster consisting of most of the experimental conditions
in the data set.

For each set of seed genes, we report three different values of
νbcl in Table 1 and Table 2. Each time, we ran the biclustering
algorithm for 1000 iterations, and the number of burn-in iterati-
ons (i.e., iterations before convergence is reached and are not taken
into account for the final evaluation) was determined as described
in Shenget al. (2003). A gene or a condition was selected (to be
in the bicluster) if in 95% of the collected samples (i.e., iterations),
the gene or the condition had a probability of more than 0.9 to be
in the bicluster. Finally, we validated the bicluster by calculating the
functional enrichment of the bicluster using a hypergeometric distri-
bution (Tavazoieet al., 1999), where the functional categories of the
genes are obtained from MIPS (Meweset al., 2004). In Table 1 and 2
we only report the functional categories whosep-values are lower
than 0.001 (as well as thosep-values).

4 DISCUSSION
In general, the increment ofνbcl results in more stringent biclusters,
in the sense that both the number of genes and the number of con-
ditions drop with a largerνbcl, and that the selected genes cover
fewer functional categories. From the mathematical point of view, a
relatively largeνbcl demands that the conditions to be selected are
those under which the selected genes have both a small variation
and a similar profile to that of the seed genes. However, the requi-
rement on the variation becomes more stringent when fewer genes
are included in the bicluster. That is why sometimes a condition is
not included in the bicluster even if it seems to meet both of the
above requirements when using a relatively largeνbcl. On the con-
trary, when a smallerνbcl is used, an expression profile similar to
that of the seed genes together with a variance slightly smaller than
that of the background will be sufficient for a condition to be inclu-
ded in the bicluster. Figure 3A and 3B illustrate the influence of a
small and a largeνbcl using Seed 1. Whenνbcl gets extremely small,
the algorithm will find the global bicluster (in this case, more than
two thousand genes under all the experimental conditions). When
νbcl is extremely large, the Gibbs sampling procedure is not able to
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Fig. 3. Plots of the mean expression profiles (upper graphs) and the standard deviations (lower graphs) of the genes (in the bicluster, the seeds and the
background) over all the experimental conditions. The color dots in the graphs show the posterior probability for the corresponding condition to be in the
bicluster. Experiments are grouped into one condition if they belong to the same time-series experiment, and 8 colors are recycled to represent the 70 groups
of experiments (i.e. 70 conditions). (A) Results for Seed1,νbcl = 20. (B) Results for Seed 1,νbcl = 50. (C) Results for Seed 3,νbcl = 150.
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Table 1. Influence ofνbcl on the biclustering results.

Nr. Seed genes νbcl Selected genes∗ Excluded seed genes Selected conds.

YCR065W
11.02.03.04 187 genes covering 89 functional categories:

YDR097C
10.01.05 10Cell cycle and DNA processing (74: 8.47e-13)

47 conditions

YDL003W 10.01DNA processing (40: 1.13e-12)
covering:

10.03.01 10.01.03DNA synthesis and replication (25: 1.51e-12)
10.03.04.03 10.01.05DNA recombination and DNA repair (22: 5.56e-8)

a large range of

YGR109C 10.01.05.01DNA repair (13: 2.67e-6)
conditions in the

10.01.03 10.03cell cycle (46: 1.07e-10)
Gaschdata set

10.03.01
20

10.03.01mitotic cell cycle and cell cycle control (39: 8.47e-13)
none

10.03.02 10.03.01.03cell cycle checkpoints (7: 1.15e-5)
all the conditions

YGR221C 10.03.04nuclear and chromosomal cycle (7: 5.53e-4)
in theSpellman

40.01 42.04cytoskeleton (12: 5.54e-4)
data set

42.04 43Cell type differentiation (24: 1.49e-4)
43.01.03.05 43.01fungal/microorganismic cell type differentiation (24: 1.49e-4)

the condition of

YGL038C 43.01.03fungal and other eukaryotic cell type differentiation (24: 1.49e-4)
Chodata set

01.05.01 43.01.03.05budding, cell polarity and filament formation (19: 8.51e-5)
14.07

YER095W 83 genes in 60 functional categories:
10.01.05

33 conditions

10.01.05.01 10Cell cycle and DNA processing (40: 6.87e-12)
covering:

10.03.02 10.01DNA processing (22: 3.42e-10)
34.11.03.07 10.01.03DNA synthesis and replication (15: 7.31e-12)

half of the

YLR103C 10.01.05DNA recombination and DNA repair (11: 5.03e-5)
Gaschconditions

1 10.01.03 10.01.05.01DNA repair (6: 1.36e-3)
in the data set

10.03.01
40

10.03cell cycle (25: 3.76e-8)
YER095W

YJL074C 10.03.01mitotic cell cycle and cell cycle control (22: 1.04e-9)
all the conditions

10.03.01 10.03.04nuclear and chromosomal cycle (5: 4.57e-4)
in theSpellman

10.03.04 43Cell type differentiation (13: 8.81e-4)
data set

YJL187C 43.01fungal/microorganismic cell type differentiation (13: 8.81e-4)
10.03.01.03 43.01.03fungal and other eukaryotic cell type differentiation (13: 8.81e-4)

the condition of

40.01 43.01.03.05budding, cell polarity and filament formation (11: 3.19e-4)
Chodata set

YPL267W
42.04 9 conditions
43.01.03.05 covering:
99

YPR120C
20 genes covering 35 functional categories:

all the conditions
10.01.03 in theSpellman
10.03.01

10Cell cycle and DNA processing (12: 6.67e-6)
YER095W data set excpt

10.03.02
10.01DNA processing (10: 4.19e-8)

YGL038C “cln2”
YMR199W 50

10.01.03DNA synthesis and replication (8: 9.46e-10)
YGR221C

10.03.01
10.01.05DNA recombination and DNA repair (5: 3.74e-4)

YJL074C the condition of
YMR179W

10.01.05.01DNA repair (3: 3.34e-3)
YMR199W Chodata set

11.02.03.04
10.03cell cycle (7: 1.71e-3)

YML027W
10.03.01mitotic cell cycle and cell cycle control (7: 1.16e-4)

4 sporadic (none-/
11

10.03.01.03cell cycle checkpoints (2: 3.71e-3)
small time-series-

YKL113C experiment) condi-
10.01.03 tions inGaschdata
10.01.05.01

∗ The numbers in the brackets show the number of selected genes in the functional category and the correspondingp-value.

converge. The difference in the scale ofνbcl used for the different
seeds is caused by the difference in the noise level (i.e., variation)
of the seed genes. From the biological point of view, different choi-
ces ofνbcl provide biologists the flexibility in adjusting the trade-off
between high sensitivity and high specificity.

Seed 1 mainly consists of genes that are functionally annotated
as “cell cycle and DNA processing”. Regardless of the input para-
meters, the three found biclusters are mostly enriched for the same
function category.

7
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Seed 2 is experimentally detected (i.e., based on the ChIP chip
data) to be regulated by Ndd1, Fkh2 and Mcm1, which are cell
cycle regulators. Yet, according to MIPS database, two of the three
genes in Seed 2 are annotated as functionally unknown, and the
other gene is only associated to “stress response”. The results show
that the query-driven biclustering algorithm mainly recruited genes
that are functionally enriched in categories of “cell cycle and DNA
processing” and “cell type differentiation”. In addition, the majo-
rity of the conditions in any of the found biclusters for Seed 2
are mainly composed of all the cell-cycle-synchronized experiments
(from Spellmanet al. (1998) and Choet al. (1998)). Thus, the biclu-
sters discovered by our algorithm confirm that the three seed genes
might have cell cycle related functions.

Seed 3 is composed of 14 genes that are in the functional cate-
gory of “ribosome biogenesis”. The algorithm recruited genes that
are highly enriched in the same functional category, especially when
a properνbcl is used—whenνbcl = 150, 103 out of the 111 selec-
ted genes are found to have the function “ribosome biogenesis”; and
whenνbcl = 250, 85 out of 91 genes are in this functional category.
For those genes that are selected for the bicluster but are not asso-
ciated with “protein synthesis” according to MIPS, we consulted
the SaccharomycesGenome Database (Balakrishnanet al., 2005)
and found that all these genes are rather dubious ORFs that overlap
with various known ribosomal protein synthesis genes on the other
strand of the DNA (see the supplementary information).

Although Seed 3 is obtained by applying the method of De Bie
et al. (2005) to the data set from Spellmanet al. (1998), the cell
cycle related experimental conditions are seldom selected to be in
the bicluster, while almost all the stress response related conditions
from Gaschet al. (2000) are selected. This result shows that data
set from Gaschet al. (2000) might be a better data set to look at
for the study of “ribosome biogenesis” than those from Spellman
et al. (1998) and Choet al. (1998), justified by either some biologi-
cal explanation or the experimental noise presented in the data (see
Figure 3C).

Table 1 and 2 also show that the algorithm is able to exclude seed
genes that it considers not to belong to the bicluster.

In another experiment (see the supplementary information), we
added random genes to the seed genes. The results show that the
ability of the algorithm to discover the bicluster in the presence of
noisy genes in the seeds depends on the consistency between the
(original) seed genes, the deviation of profile of the noisy gene to the
mean profile of the (original) seeds, and the number of noisy genes
added to the seeds. If the added noisy genes do not contaminate the
constructed prior to a large extent, the target bicluster is found, and
the noisy genes are excluded. In these cases, the effect of the noisy
genes is comparable to that of using a smallerνbcl.

The likelihood of microarray data is usually highly complex
because of the complexity of in the underlying biological process
and the non-negligible experimental noise. By introducing a prior,
methods based on Bayesian models help to zoom into the local area
of interest of the likelihood landscape, and raise the corresponding
area in the posterior distribution. Adjustment of the parameterνbcl

has the effect of tuning the zoom. Whenνbcl is strong enough,
the maximum mode of the posterior distribution provides answer
to the query of biologists. The Gibbs sampling procedure produ-
ces samples that pictures the posterior distribution as a whole, and

consequently the global maximum is decided by Monte Carlo inte-
gration of the samples. An alternative way to solve the problem
based on the likelihood landscape is by using EM method. However,
EM is a method that “climbs” in the posterior distribution and can
get stuck in local maxima. To find the global, EM is usually per-
formed for several times and the solution with the greatest posterior
probability is chosen. In our experience, the Gibbs sampling proce-
dure turns out to be more efficient to find the global maximum for
the query-driven biclustering problem of microarray data, taken into
account the massive amount of modes and the fact that it is never
easy to decide how many runs of EM can guarantee the discovery of
the regional global maximum.
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Table 2. Influence ofνbcl on the biclustering results (continue).

Nr. Seed genes νbcl Selected genes Excluded seed genes Selected conds.

54 genes covering 65 functional categories: 8 conditions:
10Cell cycle and DNA processing (16: 3.91e-3)
10.03cell cycle (14: 2.52e-4) all the conditions
10.03.01mitotic cell cycle and cell cycle control (9: 3.87e-3) in bothSpellman

10 10.03.03cytokinesis (cell division) / septum formation (4: 2.18e-4) none andChodata set
43Cell type differentiation (10: 9.68e-4) except for “cln3”
43.01fungal/microorganismic cell type differentiation (10: 9.68e-4)
43.01.03fungal and other eukaryotic cell type differentiation (10: 9.68e-4) 3 sporadic conditions
43.01.03.05budding, cell polarity and filament formation (2: 2.05e-4) inGaschdata set

24 genes covering 34 functional categories: 11 conditions:
YJL051W

10Cell cycle and DNA processing (10: 1.62e-3)99
10.03cell cycle (10: 2.93e-5)

all the conditions

2
YGL021W

10.03.01mitotic cell cycle and cell cycle control (6: 2.47e-4)
in bothSpellman

32.01
20 10.03.03cytokinesis (cell division) / septum formation (4: 9.11e-6) none

andChodata set
YLR190W

43Cell type differentiation (6: 2.367e-3) 4 sporadic conditions99
43.01fungal/microorganismic cell type differentiation (6: 2.367e-3) and “nitrogen
43.01.03fungal and other eukaryotic cell type differentiation (6: 2.367e-3) depletion” in
43.01.03.05budding, cell polarity and filament formation (6: 2.82e-4) Gaschdata set

16 genes covering 32 functional categories:
10Cell cycle and DNA processing (6: 2.74e-2) 5 conditions
10.03cell cycle (6: 2.65e-3)
10.03.03cytokinesis (cell division) / septum formation (3: 9.99e-5) all the conditions

30
43Cell type differentiation (4: 1.39e-2)

none
in bothSpellman

43.01fungal/microorganismic cell type differentiation(4: 1.39e-2) andChodata set
43.01.03fungal and other eukaryotic cell type differentiation(4: 1.39e-2) except for “cln3”
43.01.03.05budding, cell polarity and filament formation (4: 3.35e-3)

YGR148C
12.01 878 genes in 147 functional categories:

YGL189C
12.01 01.03nucleotide metabolism (44: 5.15e-7)

YER056C-A 01.03.01purine nucleotide metabolism (18: 2.00e-5)
12.01 01.03.04pyrimidine nucleotide metabolism (14: 2.11e-5)

61 conditions:

YER131W 12Protein synthesis (204: 8.76e-12)
12.01 12.01ribosome biogenesis (138: 1.28e-11)

60 conditions from the

YGL031C
100

12.04translation (42: 8.95e-12)
none Gaschdata set

12.01 12.10aminoacyl-tRNA-synthetases (19: 1.03e-17)
YGL103W 11.02.01rRNA synthesis (23: 2.05e-4)

“size-based synchro-

12.01 11.02.02tRNA synthesis (15: 6.10e-6)
nization” (Spellman)

YER102W 11.04RNA processing (73: 3.36e-6)
12.01 11.04.01rRNA processing (55: 9.22e-12)

YLR167W 16.03.03RNA binding (5: 3.14e-4)
3 12.01

14.13.01
YLR029C 60 conditions:

12.01 111 genes covering 18 functional categories:
YLR333C

59 conditions from the

12.01
150

12Protein synthesis (104: 7.85e-12)
YLR333C Gaschdata set

YOL127W 12.01ribosome biogenesis (103: 1.02e-11) “size-based synchro-
12.01 nization” (Spellman)

YOL040C
12.01

YLR344W 91 genes covering 15 functional categories: 45 conditions:
12.01

YLR333C

YLR441C
250

12Protein synthesis (85: 3.33e-12)
YOL040C

all from the
12.01 12.01ribosome biogenesis (85: 1.20e-11)

YOL127W
Gaschdata set

34.11.03.07
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