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Abstract

Clustering techniques like k-means and hierarchical clustering have shown to be useful when
applied to microarray data for the identification of clinical classes, for example, in oncol-
ogy. This chapter discusses the application of nonlinear techniques like kernel k-means and
spectral clustering, which are based on kernel functions like linear and radial basis function
(RBF) kernels. External validation techniques (e.g., the Rand index and the adjusted Rand
index) can immediately be applied to these methods for the assessment of clustering results.
Internal validation methods like the global silhouette index, the distortion score, and the
Calinski-Harabasz index (F-statistic), which have been commonly used in the input space,
are reformulated in this chapter for usage in a kernel-induced feature space.
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Introduction

Microarrays are a recent technology that allows for determining the expression levels of
thousands of genes simultaneously. One important application area of this technology is
clinical oncology. Parallel measurements of these expression levels result in data vectors
that contain thousands of values, which are called expression patterns. A microarray consists
of a reproducible pattern of several DNA probes attached to a small solid support, Labeled
cDNA, prepared from extracted mRNA, is hybridized with the complementary DNA probes
attached to the microarray. The hybridizations are measured by means of a laser scanner
and transformed quantitatively. Two important types of microarrays are cDNA microar-
rays and oligonucleotide arrays. cDNA microarrays consist of about 10,000 known cDNA
(obtained after PCR amplification) that are spotted in an ordered matrix on a glass slide.
Ofigonucleotide arrays (or DNA chips) are constructed by the synthesis of oligonucleotides
on silicium chips. Figure 1 gives a schematic overview of an experiment with the cDNA
technology. Both technologies have specific characteristics that will not be discussed here.
When studying, for example, tumor tissues with microarrays, the challenge mainly lics in
the analysis of the experiments in order to obtain relevant clinical information. Most of
the techniques that have been widety used for analyzing microarrays require some prepro-
cessing stage such as gene selection, filtering, or dimensionality reduction, among others.
These methods cannot directly deal with high-dimensional data vectors. Moreover, these
are methods that are specifically designed to deal with the particular challenges posed by
gene expression data and thus they do not provide a more general framework that can be
easily extended to other kinds of data. For this purpose, methods and algorithms capable of
handling high-dimensional data vectors and that are capable of working under a minimal set
of assumptions are requited. The chapter by Jean-Philippe Vert in this book focuses on the
. classification of high-dimensional data, while this chapter elaborates on the cluster analysis
of these high-dimensional data.

Clustering techniques are generally applied to microarray data for the identification of
clinical classes, which could allow for refining clinical management, Cluster analysis of
entire microarray experiments (expression patterns from patients or tissues) allows for the
discovery of possibly unknown diagnostic categories without knowing the properties of
these classes in advance. These clusters could form the basis of new diagnostic schemes in
which the different categories contain patients with less clinical variability.

Clustering microarray experiments have already shown to be useful in a large number of
cancer studies. Alon et al. (1999), for example, separated cancerous colon tissues from
noncancerous colon tissues by applying two-way clustering. The distinction between acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) has been rediscovered
by using self-organizing maps (SOM) by Golub et al. (1999). By using hierarchical cluster-
ing, van 't Veer et al. (2002) were able to distinguish between the presence (poor prognosis)
and the absence (good prognosis) of distant subclinical metastases in breast cancer patients
where the histopathological examination did not show tumor cells in local lymph nodes at
diagnosis (lymph node negative).

For this purpose, methods such as the classical &-means clustering and hierarchical cluster-
ing are commonly used (Bolshakova, Azuaje, & Cunningham, 2005; Handl, Knowles, &
Kell, 2005). These methods are based on simple distance or similarity measures (e.g., the
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Figure 1. Schematic overview of an experiment with a cDNA microarray: (1) Spotting of
the presynthesized DNA probes (derived from the genes to be studied) on the glass slide.

These probes are the purified products from PCR amplification of the associated DNA

clones. (2) Labeling (via reverse transcriptase) of the total mRNA of the test sample (tumor
in red) and reference sample (green). (3) Pooling of the two samples and hybridization. (4)

Readout of the red and green infensities separately (measure for the hybridization by the
test and reference sample) in each probe. (5) Calculation of the relative expression levels

(intensity in the red channel and intensity in the green channel). (6) Storage of results in a

database. (7) Data mining.
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Euclidean distance). However, only linear relationships in the data can be discovered using
these techniques. Recently, methods have emerged for clustering data in which the clusters
are not linearly separable. Two important methods are kernel k-means clustering (Dhillon,
Guan, & Kulis, 2004a, 2004b; Zhang & Rudnicky, 2002) and the related spectral clustering
(Cristianini, Shawe-Taylor, & Kandola, 2002; Ng et al., 2001). Introducing these techniques
in microarray data analysis allows for dealing with both high-dimensional data and nonlinear
relationships in the data.

Validation techniques are used to assess and compare the performance of different clustering
methods. These methods can also be employed for tuning the cluster settings, for example,
optimizing the number of clusters or tuning the kernel parameters. A recent review of
Handl et al. (2005) presents the state of the art in cluster validation on high-dimensional
data, among others, on microarray data, referring to some previous important manuscripts
in the field (Bolshakova & Azuaje, 2003; Halkidi, Batistakis, & Vazirgiannis, 2001). Two
main kinds of validation techniques are internal and external validation. Internal validation
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assesses the quality of a clustering resuit based on statistical properties, for example, assess-
ing the compactness of a cluster or maximizing the intercluster distances while minimizing
the intracluster distances. External validation reflects the level of agreement of a clustering
result with an external partition, for example, existing diagnostic classes generally used by
experts in clinical practice. The global silhouette index, the distortion score, and the Calin-
ski-Harabasz index (F-statistic) are commonly used for internal validation, and the Rand
index and adjusted Rand index for external validation,

This chapter describes classical £-means, kernel k~-means, and spectral clustering algorithms
and discusses their advantages and disadvantages in the context of clinical microarray data
analysis. Since classical k-means clustering cannot handle high-dimensional microarray
experiments for computational reasons, principal component analysis (PCA) is used as a
preceding dimensionality-reduction step. Kernel £&-means and spectral clustering are capable
of directly handling the high-dimensional microarray experiments since they make use of the
kernel trick, which allows them to work implicitly in the feature space. Several internal and
external cluster-validation criteria commonly used in the input data space are described and
extended forusage in the feature space. The advantages of nonlinear clustering techniques in
case of clinical microarray data analysis are further demonstrated by means of the clustering
resuits on several microarray data sets related to cancer.

Preprocessing

This chapter uses standardization as a preceding preprocessing step forall clustering methods.
However, classical &-means clustering should not be directly applied to the high-dimensional
microarray data as such. In all practical cases, the number of genes (the dimensionality)
is much larger than the number of arrays (the data points) such that only a small subspace
of the data space is actually spanned by the data. Therefore, in case of classical #-means,
standardization is followed by principal component analysis to obtain a representation of
the data with a reduced dimensionality (without any selection of principal components). In
this section, we describe these unsupervised preprocessing steps, as well as filtering, which
is also commonly used for that purpose.

Filtering

A set of microarray experiments, generating gene expression profiles (measurements of a
single gene under several conditions), frequently contains a considerable number of genes
thatdonotreally contribute to the clinical process that is being studied. The expression values
of these profiles often show little variation over the different experiments (they are called
“constitutive” with respect to the clinical process studied). Moreover, these constitutive genes
will have seemingly random and meaningless profiles after standardization (division by a
smail standard deviation resulting in noise inflation), which is a very common preprocess-
ing step. Another problem with microarray data sets is the fact that these regularly contain
highly unreliable expression profiles with a considerable number of missing values. Due
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to their number, replacing these missing values in these expression profiles is not possible
within the desired degree of accuracy.

Ifthese data sets were passed to the clustering algorithms as such, the quality of the clustering
results could significantly degrade. A simple solution (that can also be used in combination
with other preprocessing steps) is to remove at least a fraction of the undesired genes from
the data. This procedure is in general called filtering (Eisen, Spellman, Brown, & Botstein,
1998). Filtering involves removing gene expression profiles from the data set that do not
satisfy one or possibly more criteria. Commonly used criteria include a minimum thresh-
old for the standard deviation of the expression values in a profile (removal of constitutive
genes) and a threshold on the maximum percentage of missing values. Another similar
method for filtering takes a fixed number or fraction of genes best satisfying one criterion
{like the criteria stated above).

Standardization or Rescaling

Biologists are mainly interested in the relative behavior instead of the absolute behavior
of genes. Genes that are up- and down-regulated fogether should have the same weights
in subsequent algorithms. Applying standardization or rescaling (sometimes also called
normalization) to the gene expression profiles can largely achieve this (Quackenbush,
2001).Consider a gene expression profile, denoted by the column vector g = [¢', &% ..., &) ...,
'], measured for ¢ experiments. Rescaling is commonly done by replacing every expres-
sion level gfin g by:

g —u
s

where p is the average expression level of the gene expression profile and is given by

This is repeated for cvery gene expression profile in the data set and results in a collection
of expression profiles all having an average of zero and standard deviation of one (i.e., the
absolute differences in expression behavior have been largely removed). The division by the
standard deviation is sometimes omitted (rescaling is then called mean centering).
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Principal Component Analysis

PCA looks for linear combinations of gene expression levels in order to obtain a maximal
variance over a set of patients. In fact, those combinations are most informative for this set
of patients and are called the principal components, One can either use all principal com-
ponents or select only a subset for usage in subsequent analyses.

One formulation (Joliffe, 1986) to characterize PCA probiems is to consider a given set
of centered (zero mean) input data {x j}f,:, as a cloud of poeints for which one tries to find

projected variables w' x with maximal variance. This means:
ool o) — o
max Var(w’ x)=w' Cw,
w

where the covariance matrix C is estimated as

£
T
XX,
1

o]
£-14

n

One optimizes this objective function under the constraint that w” w =1, Solving the con-
strained optimization problem gives the eigenvalue problem:

Cw =Aw.

The matrix C is symmetric and positive semidefinite. The eigenvector w corresponding to
the largest eigenvalue determines the projected variable having maximal variance,

Kernel versions of principal component analysis and canonical correlation analysis among
others have been formulated by Schélkopf, Smola, and Miiller (1998). Primal-dual formula-
tions of these methods are introduced by Suykens, Van Gestel, De Brabanter, De Moor, and
Vandewalle (2002). This formulation for kernel principal component analysis has already
extensively been tested as a dimensionality-reduction technique on microarray data by
Pochet, De Smet, Suykens, and De Moor (2004).

Classical Clustering Methods

In arecent review, Handl et al. (2005) state that although there have recently been numerous
advances in the development of improved clustering techniques for (biological and clinical)
microarray data analysis (e.g., biclustering techniques [Madeira & Oliveira, 2004; Sheng,
Moreau, & De Moor, 2003], adaptive quality-based clustering [De Smet, Mathys, Marchal,
Thijs, De Moor, & Moreau, 2002), and gene shaving [Hastie et al., 2000)), traditional
clustering techniques such as &-means (Rosen et al., 2005; Tavazoie, Hughes, Campbell,
Cho, & Church, 1999) and hierarchical clustering algorithms (Eisen et al., 1998) remain
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the predominant methods, According to this review, this fact is arguably more owing to
their conceptual simplicity and their wide availability in standard software packages than to
their intrinsic merits. In this context, this chapter focuses on a class of linear and nonlinear
clustering techniques based on the traditional k-means clustering.

k-Means

The k-means clustering algorithm aims at partitioning the data set, consisting of £ expres-
sion patterns {X,, .., X,} in an #-dimensional space, into k disjoint clusters {C,. }'kl , such that
the expression patterns in each cluster are more similar to each other than to the expression
patterns in other clusters (Dubes & Jain, 1988). The centers or centroids (i.e., prototypes)
of all clusters m,, ..., m, are returied as representatives of the data set, together with the
cluster assignments of ail expression patterns. The general objective of k-means is to obtain
a partition that minimizes the mean squared error for a fixed number of clusters, where the
mean squared error is the sum of the Euclidean distances between each expression pattern
and its cluster center.

Suppose a set of expression patterns x , j = 1,..., £. The objective function, that is, the mean
squared error criterion, is then defined as:

2
X, —m,.ﬁ ,

k£
se=22 2,0,
il j=t

where Z¢, is an indicator function defined as

1 ifx, eC,
ZC,.!, = .
0 otherwise®

with

k
Yz, =l Y
i=1
and m, is the center of cluster C, defined as

1 {
m, =—ZZC! X,
IC,_ v = H

where IC,-] is the cardinality (number of elements) of the set C. The Euclidean distance is
often used as dissimilarity function D(x, m ) in the indicator function. The iterative A-means
clustering algorithm first proposed by MacQueen (1967) optimizes this nonconvex objec-
tive function as follows.
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k-Means Clustering Algorithm
1. Select & initial centroids m,,..,m,

2. Assign each expression pattern x 5 15 j = {,tocluster C, with the closest centroid m,
based on the indicator fanction;

{1 D(xj,m,.)<D(xj,mh),Vh¢i,i, h=1..k
vy =

0 otherwise

3. Calculate the new centers m_ of ali clusters C, as:

£

1
m, :l—a';z&,}x}..

Repeat Steps 2 and 3 until convergence (no change).
3. Returnmi 1 <i<k.

This algorithm can easily be implemented and works very well for compact and hyperspheri-
cally shaped clusters. Although convergence is always reached, k&-means does not necessarily
find the most optimal clustering (i.e., the global minimum for the objective function). The
result of the algorithm is highly dependent on the number of clusters £ and the initial selec-
tion of the & cluster centroids. Cluster-validation criteria are required in order to choose the
optimal settings for k and the initialization. Finally, remember that one disadvantage of this
classical k-means algorithm is that preprocessing is required in order to allow clustering,

Kernel Clustering Methods

Kernel clustering methods have already shown to be useful in text-mining applications (De
Bie, Cristianini, & Rosipal, 2004; Dhillon et al., 2004) and image data analysis (Zhang &
Rudnicky, 2002), among others. For example, Qin, Lewis, and Noble (2003) proposed a
kernel hierarchical clustering algorithm on microarray data for identifying groups of genes
that share similar expression profiles. Support vector clustering (Ben-Hur, Horn, Siegelmann,
& Vapnik, 2001} is another clustering method based on the approach of support vector ma-
chines. These kernel clustering methods have recently emerged for clustering data in which
the clusters are not linearly separable in order to find nonlinear relationships in the data.
Moreover, these techniques allow for dealing with high-dimensional data, which makes it
specifically interesting for application on microarray data, In this section, we focus on kernel
k-means and spectral clustering,
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Kernel k-Means

Kemel k-means clustering is an extension of the linear A-means clustering algorithm in
order to find nonlinear structures in the data, Consider a nonlinear mapping ¢(.} from the
input space to the feature space. No explicit construction of the nonlinear mapping ¢(.) is
required since in this feature space inner products can easily be computed by using the
kernel trick k(x, ¥) = #(x) ¢(y). Mercer’s condition {Vapnik, 1998) guarantics that cach
kernet function x(x, y), that is, a positive semidefinite symmetric function, corresponds to
an inner product in the feature space. This allows for the construction of an £ x ¢ symmetric
and positive definite kemei matrix K holding all pairwise inner products of the input data

g =K (x,,%,), Vi, j = L,...,£. This kemel trick can be applied to each algorithm that can be
expressed in telms of inner products The kernel functions used in this chapter are thelinear
kernel, k{(x,, X} =x X,,and the RBF kernel:

K(x,, X} = exp(—"x,.—x}.ilz/sz)-

The polynomial kernel of degree d, k(x,, X, } = (T+x ) with t > 0, is another com-
monly used kernel function.

The objective function of kernel k-means clustering is exactly the same as the objective
function of the classical k&-means clustering stated earlier except for the fact that it is now
rewritten in terms of inner products that can be replaced by a kernel function K (X, Y }(Dhil-
fon et al., 2004; Zhang & Rudnicky, 2002), By introducing the feature map ¢(.), the mean
squared error function can be expressed in the feature space by:

=iiijj B(x,) —m;”llz

i=} j=1

with m?, the cluster center of cluster C, defined by

Iclzzc 00x)

The Euclidean distance between ¢(x ) and ¢(xj) can be writien as:

D($(x,),0x,) = Jotx,) - 40x )
= 40,7 (x,) ~ 2005, ) 6(x,) +§(x, ) d(x,)

=K(X,, X, )~ 2K(X,, X ; )+ K(X , X}
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The computation of distances in this feature space can then be carried out by:

D@(x,) m$) =[dx) -m
:iQ(Xj) | lz C:,d)(xI

=(x,) §(x,)-

1

D02 % 7, G0 B(X,)

2
I ‘I f=1 p=1

[C !ch, x,d)(x ) ¢(X,)+

Application of the kernel trick results in:
Dz(q’(xj) ,ll‘lf) = Ki,‘ + f(C]!xj) + g(C,-),

with

f(Ci’xj)z |Ci§

IC 12 I=1 p=

This gives the following formulation of the mean squared error criterion in the feature
space:

= Z_ZE:Z(‘;‘SI (Kﬂ + f(Cij)"' g(C;)),

i=l j=1

The kernel-based &-means algorithm solving the nonconvex optimization problem is then
as follows,

Kernel &-Means Clustering Algorithm

I. Assign an initial clustering value to each sample, 2, .1 <i<k,1<j <{, forming
k initial clusters C, ..., C,.

2. For each cluster C, compute IC,.I and g(C).

3. For each training sample X, and cluster C, compute f{C, X )

4.  Assign X;to the closest cluster by computing the value of the indicator function

i JCx)+8(C) < IC,x )+ g(C)Yh #i, ik = 1,.. .k
“u T o otherwise :
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Repeat Steps 2, 3, and 4 until convergence is reached.

6.  For each cluster C, select the sample that is closest to the center as the representative
centroid of cluster C, by computing:

m, = _min Did(x;),m}), | <i< k.

LYEL R e

Note also that in this algorithm, the factor K_ is ignored because it does not contribute to
determine the closest cluster. Remember that the term g(C)) needs to be computed only once
for each cluster in each iteration, while the term f{C, x) is catculated once per data point.

The objective function of the kernel k-means algorithm (see distortion score in the feature
space) monotonically decreases in each iteration, which also holds for the classical &-means
algorithm. The general structure of the traditional algerithm is thus preserved in its nonlinear
version. Nevertheless, there are two main differences between both algorithms, namely, the
nonlinear mapping via the kernel irick and the lack of an explicit centroid in the feature
space. The mapping from the feature space back to the input space is called the pre-image
problem and is nontrivial. Typically, the exact pre-image does not exist and can therefore
only be approximated, which is typically considered with respect to kernel principal com-
ponent analysis (Scholkapf et al., 1998). In this algorithm, a pseudocentroid is calculated
instead. However, there exist iterative nonlinear optimization methods that attempt to solve
this problem (Mika, Scholkopf, Smola, Miiller, Scholz, & Riitsch, 1999).

This algorithm, unfortunately, is prone to focal minima since the optimization probiem is
not convex. Considerable effort has been devoted to finding good initial guesses or inserting
additional constraints in order to limit the effect of this fact on the quality of the solution
obtained. The spectral clustering algorithm is a relaxation of this problem for which it is
possible to find the global solution.

Spectral Clustering

Spectral clustering techniques have emerged as promising unsupervised tearning methods to
group data points that are similar. These methods have been successfully applied to machine
learning, data analysis, image processing, pattern recognition, and very large-scale integra-
tion (VLSI) design. These methods can be regarded as relaxations of graph-cut problems
on a fully connected graph. In this graph, each node represents a data point, and the edges
between the data points are assigned weights that are equal to the affinities. Clustering then
corresponds to partitioning the nodes in the graph into groups. Such a division of the graph
nodes in two disjoint sets is called a graph cut.

In order to achieve a good clustering, one can see that it is undesirable to separate two nodes
into different clusters if they are connected by an edge with a large weight (meaning that
they have a large affinity). To cast this into an optimization problem, several graph-cut cost
functions for clustering have been proposed in the literature, among which are the cut cost,
the average cut cost, and the normalized cut cost (Shi & Malik, 2000). The cut cost is im-
mediately computationally tractable (Blum & Chawla, 2001), but itofien leads to degenerate
results (where all but one of the clusters is trivially small; see Figure 2 (vight) and Joachims,

Copyright © 2007, 1dea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.



Kernei Clustering for Knowledge Discovery in Clinical Microarray Dala Analysis 75

2003, for an instructive artificially constructed example). This problem can largely be salved
by using the average or normalized cut-cost functions, of which the average cut cost seems
to be more vulnerable to outliers (distant samples, meaning that they have low afTinity to all
other points). Unfortunately, both optimizing the average and normalized cut costs are NP-
complete problems. To get around this, spectral relaxations of these optimization problems
have been proposed (Cristianini et al., 2002; Ng, Jordan, & Weiss, 2002; Shi & Malik, 2000).
These speciral relaxations are known as spectral clustering algorithms,

Given an undirected graph G = (¥ E) where V is the set of £ nodes and E is the set of edges,
the problem of graph partitioning consists of separating the graph into two sets A and B by
eliminating edges connecting the two sets. The sets should be disjoint such that 4 U B=
and 4 N B =, The total weight of the edges that have to be eliminated is called the cut

cut{ A, B) = Z wla,b)= Zw(i, Mg, —q ,-)2,

ac A bed

where w (a,b) is the associating weight between nodes a and b, and g, is a cluster member-
ship indicator of the form:

[ 1, ified
9711, ifien

Minimizing the cut cost is equivalent to the following problem;

ming” (D-W)g
q

suchthatq e {—l,l}’,

where I} is an £x{ diagonal matrix with
d; = > w(i, /)
J

on its diagonal, that is, the total connection from node / to all other nodes, and W is an

x{ symmetric with jjth entry equal to w(i,j). This problem, however, is NP hard due to the

constraint on q. A suboptimal selution can be found by relaxing the constraint and allowing
P

real values for g. The solution to the relaxed problem with constraint q'q = 1is given by
the following eigenvalue problem:

Lg=2q,

The matrix L is the Laplacian of the graph, and it is defined as L= I) — W, though other
definitions may be found in the literature. The suboptimal solution q is the eigenvector cor-
responding to the second smallest eigenvalue (also catled the Fiedler vector). The cut-cost
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criterion, however, has a bias for separating small sets of points. This is due to the fact that
there are no restrictions related to the size or the balance of the clusters.

‘Fhe normalized-cut criterion {Shi & Malik, 2000), defined as:

neut (A, @) = cul( A, B) + cut( A, B)
d, d,

withd, = Za’,,

icd

penalizes small sets or isolated points by taking into account the total weight of each cluster.
Minimizing the normalized cut is equivalent to:

r
min qTLq
. g Dg

suchthatq e i-11¥,q4"D1 =0,

where 1 is a £x1 vector of ones. However, this problem is NP complete in the same manner
as the cut cost; an approximate solution can be found efficiently by relaxing the discrete
consfraint on q. If q can take real values, then the normalized cut corresponds to the Rayleigh
quotient of the following generalized eigenvalue problem:

L =AD§:

The constraint §7D1 =0 is automatically satisfied in the generalized eigenproblem. The re-
laxed solution to the normalized cut is the Fiedler vector. Figure 2 illustrates a comparison
between the normalized-cut and cut costs,

Adifferent spectral algorithm was proposed in Ng et al. (2002), where the affinity matrix is first
normalized using symmetric divisive normalization. The resulting ¢igenvalue problem is:

D—-lll wD—II?.q — )'El,

Whereas standard clustering methods often assume Gaussian class distributions, spectral
clustering methods do not. In order to achieve this goal, one avoids the use of the Euclidean
distance (as a dissimilarity measure) or the inner product (as a similarity or affinity measure).
Instead, often an affinity measure based on an RBF kernel is used:

A, x,) = exp(—“xiv-xjuz/Zcz).
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Figure 2. Partitioning for two different fully connected graphs. (Lefl) Normalized-cut cost of
the graph attempis to produce balanced (similar-sized) clusters, while the cuf cost (number of
edges} is minimized. (Right) Cut cost favors cutting small sets of isolated nodes in the graph
as the cuf increases with the number of edges going across the two partitioned paris.

[

b
R

The width o® of the kernel function controls how rapidly the affinity matrix A, falls off

with the distance between x, and x, Even though in spectral clustering often (though not

exclusively) an RBF kernel is used, the positive definiteness of the RBF kemnel is in fact

not a requirement. On the other hand, affinities should be symmetric and ali entries must

be positive (which is the case indeed for the RBF kernel). The matrix containing the affini-

ties between all paits of samples should therefore be referred to as the affinity matrix in a
- spectral clustering-context-(and not as the kernel matrix), '

Suppose a data set that contains samples x,, ..., x,. A well-known instance of spectral cluster-
ing, proposed by Ng et al. (2002), finds k clusters in the data as follows.

Spectral Clustering Algorithm

2
1. Formtheaffinity matrix 4 (with dimensions £x()definedby A, = exp(—”x,. -X f" / 26%)
iti#j,and A, =0.
2. Define D to be the diagonal matrix of which the element (j, i) is the sum of row 7 of
A, and construct the matrix L = D2AD 72,

3. Findu, .., u, the & largest eigenvectors of L {chosen to be orthogoenal to each other
in the case of repeated eigenvalues), and form the matrix U = {u, v, .., u,] (with
dimensions {x£) by stacking the eigenvectors in columns,

4. Form the matrix V from U by renormalizing each row of U to have unit length, that
is, v, = U'J‘/((Z,« U;)IQ).

5. Treating each row of V as a sample with dimension £, cluster these into k clusters via
k-means or any other algorithm (that attempts to minimize the distortion).

6. Finally, assign the original sample x, to cluster C, ifand only if row / of the matrix V
is assigned to cluster C.
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Figure 3. (Left) The block diagonal structure of the affinity matrix clearly shows that iwo
dense clusters with sparse connections between them are present. (Right) Eigenvector 42
holds the informaition of the frue partition of the data.
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Conditions in which the algorithm is expected to do well are described by Ng et al. (2002),
Once the samples are represented by rows of V (with dimension £), tight clusters are formed.
An artificial example is illustrated in Figure 3.

Cluster-Validation Methods

Validation of the clustering results can be done internally, that is, by assessing the quality of
aclustering result based on statistical properties, and externally, that is, reflecting the level of
agreement of a clustering result with an external partition, for example, existing diagnostic
classes generally used in clinical practice (Bolshakova et al., 2005; Halkidi & Vazirgiannis,
2005; Handl ef al., 2005; Jain & Dubes, 1988; Milligan & Cooper, 1985). Moreover, internal
cluster-validation techniques can also be used for selecting the best clustering result when
comparing different clustering methods, several random initializations, a different number
of clusters, a range of kernel parameters (e.g., the width o * of the RBF kernel), and so forth.
In this section, a formulation of three well-known internal validation methods in the input
space (global sithouette index, Calinski-Harabasz index [F-statistic], and distortion score)
and two external validation methods (Rand index and adjusted Rand index) are given first
(applied in the input space) for reason of completeness. However, in order to be useful for
kernel k-means clustering (and eventually other kernel clustering methods as well), we also
derive the internal validation criteria for usage in the feature space.
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Internal Validation

Global Sithouette Index

An expression pattern from a patient can be considered to be well clustered if its distance to
the other expression patterns of the same cluster is small and the distance to the expression
patterns of other clusters is larger. This criterion can be formalized by using the silhouette
index (Kaufinan & Rousseeuw, 1990), that is, for testing the cluster coherence. This mea-
sure validates the cluster result on statistical grounds only (statistical validation). Clinical
information is not used here.

Suppose x, is an expression pattern that belongs to cluster C,. Call w(x) (also called the
within dlssnmlauty) the average distance of x; to all other expression patterns from C.

Suppose C, is a cluster different from C,. Define w(x)) (also called the between dissimilar-
ity) as the minimum over all clusters C different from C, of the average distance from X,
to all expression patterns of C,. The s:lhoueite width s(x) of expression patterns X, is now
defined as follows:

w(x;)—v(x,)

max(v(x,), w(x,)),

s(x,) =
with x, € C;, and

- w(x, )wm——-m Z[,x x,"

ch
I;RX;

“(x )m h=l,..., 0~ lHl [IC
h

Note that —1 < s(x ) < 1. Consider two extreme situations now. First, suppose that the within
dissimilarity v(x ) is significantly smaller than the between dissimilarity w(x). This is the
ideal case and s(x) will be approximately equal to one. This occurs when x is well clustered
and there is little doubt that x_is assigned to an appropriate cluster. Second, suppose that
v(x) is significantly larger than w(x) Now s(x ) will be approximately -1 and x, has in fact
been assigned to the wrong cluster (worst case scenario}).

>,

xpelly,

Two other measures can now be defined: the average silhouette width of a cluster and the
average silhouette width of the entire data set. The first is defined as the average of s(x,) for
all expression patterns of a cluster, and the second is defined as the average of s(xj) for all
expression patterns in the data set. This last value can be used to mutually compare differ-
ent cluster results and can be used as an inherent part of clustering algorithms if its value is
optimized during the clustering process.

When using this validation measure in combination with kernel clustering methods perform-
ing the actual clustering in the feature space, for example, kernel k-means clustering, using
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this definitien of the silhouette index leads to wrong results since the distances between the
expression patterns are computed in the input space. We therefore derive the definition of
the silhouette index for computation in the feature space.

By introducing the feature map ¢(-), v(xj) and w(xj) can be expressed in the feature space
as:

vH(x,)= > Jocx) - o
!Cl ) :rf;
whx,)=,  min Z][q)(x) o(x)| ), for x, ..

R X0,

Replacing all the dot products by a kernel function k(:,") results in:

1
Jé R —_—
O e 2 S e
L7y X;AX
wH(x,)= min w}wmx(x X )~~2— Z k(XX )~l—L Z k(x,,x,)
T hebieLiv g |Chi L |Ch e ! Ich EreA P forxeC,

Consequently, the sithouette index can be computed in the feature space as:

Wé(xj)_‘ﬁ(xj)
max(v! (x,), w(x,)).

s*(xj)=

Calinski-Harabasz Index

The Calinski-Harabasz index (Calinski & Harabasz, 1974; Milligan & Cooper, 1985), also
called F-statistic, is a measure of intercluster dissimilarity over infraciuster dissimilarity. For
¢ expression patterns and £ clusters, the Calinski-Harabasz index CH is defined as:

B (k1)

CH=
""V/(E - k):

with B and ¥ the between- and within-cluster scatter mairices (measures of dissimilarity),
respectively. A larger value for CH indicates a better clustering since the between-cluster
dissimilarity is then supposed to be large, while the within-cluster dissimilarity is then sup-
posed to be small. Maximum values of the CH index are often used to indicate the correct
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number of partitions in the data. The trace of the between-cluster scatter matrix B can be
written as;

=3, - = ey ¥, - zx!

x eC, x,eS

[C

where IC idenotes the number of elements in cluster C, with centroid i, and 1 the centroid
of the entire data set S. The trace of the within-cluster scatter matrix I can be written as:

oW =3 Ylx,-m -

i=1xeC, i=1 x,€C,

Z"r ‘

il xeC;

Therefore, the CH index can be written as:

/_

Sl Tx -1 2

CH Xy el x,ES
22| SR |
i=f x eCi %60,

By introducing the feature map ¢(), the traces of the between-cluster scatter matrix B and
of the within-cluster scatter matrix ¥ can be expressed as:

rrB*—Z|c] B lE(ia(x Zrb(x,)

x,eC) x,ES

and

e =i Z

=] %0,

¢'(Xj) ' ]Z¢(XI)

xpe(;

Afier applying the kernel trick (as done for the global silhouette index), the CH index can
be calculated in feature space by:

b o B =D

Wk,
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Distortion Score

The mean squared error criterion, which is the objective function in both classical and kernel
k-means clustering, can be used for internal validation. In this context, the mean squared
error criterion is called the distortion score.

For a set of expression patterns X, j= 1, ..., £, the distortion score is formulated as:

2
-m f" ,

with the indicator function z¢,, defined as

i if x,eC,
z(.',.x, = .

se HZZZC .

i=l j=1

0 otherwise

with

k
Zz(,',,:j = I VJ
i=l
and the centroid (or prototype) m, of cluster C, defined as

IC |Z (-1‘,' I
In the feature space, the distortion score can be expressed by:

ol
A

Ze,o, (K + (Cx,) + 2(C)),

=l

EI
Mn—

i

J=1

4
>, 2%,
3

M:.-

i

with AC, x), g(C), and m! defined as in the kernel k-means algorithm.
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External Validation

Rand Index

The Randindex (Rand, 1971, Yeung, Fraley, Muua, Raftery, & Ruzzo, 2001; Yeung, Haynor,
& Ruzzo, 2001) is a measure that reflects the level of agreement of a cluster result with an
external partition, that is, an existing partition of a known cluster structure of the data. This
external criterion could, for example, be the existing diagnostic classes generally used by
experts in clinical practice (e.g., groups of patients with a similar type of cancer, groups of
patients responding to therapy in a similar way, or groups of patients with a similar kind
of diagnosis), a predefined cluster structure if one is clustering synthetic data where the
clusfers are known in advance, or another cluster result obtained using other parameter set-
tings for a specific clustering algorithm or obtained using other clustering algorithms. Note
that the latter could be used to investigate how sensitive a cluster result is to the choice of
the algorithm or parameter seiting. If this result proves fo be relatively stable, one conld
assume that pronounced structures are present in the data possibly reflecting subcategories
that are clinically relevant.

Suppose one wants to compare two partitions {the cluster result at hand and the external
criterion) of a set of £ expression patterns. Suppose that 4 is the number of expression pat-
tern pairs that are placed in the same subset (or cluster) in both partitions. Suppose that d is
the number of expression pattern pairs that are placed in different subsets in both partitions.
The Rand index is then defined as the fraction of agreement between both partitions:

_a+d
M

with M as the maximum number of all expression pattern pairs in the data set, that is,
M = (£ — 1)/2. This can also be rewritten by M = g + b + ¢ + 4, with b as the number
of expression pattern pairs that are placed in the same cluster according to the external
criterion but in different clusters according to the cluster result, and ¢ as the number of
expression pattern pairs that are placed in the same cluster according to the cluster resuit
but in different clusters according {o the external criterion. The Rand index lies between
zero and one (one if both partitions are identical), and can be viewed as the proportion of
agreeing expression pattern pairs between two partitions.

Adjusted Rand Index

One disadvantage of the Rand index is that the expected value of two random partitions is
not a constant value (Yeung, Haynor, et al., 2001) and depends on the number of clusters
k. In order to compare clustering results with different numbers of clusters £, the adjusted
Rand index was proposed by Hubert and Arabie (1985).

The general form of an index with a constant expected value is:
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index — expected index
maximum index — expected index ,

which is bounded above by 1 and below by -1, and has an expected value of 0 for random
clustering,

Let 17, be the number of expression patterns that are in both cluster u, (according to the ex-
ternafcriterion) and cluster v, (according to the cluster result). Let 7, and #,be the number of
expression patterns in cluster &, and cluster v, respectively. According to Hubert and Arabie
(1985), the adjusted Rand index can be expressed in a simple form by:

2GR
()G EER)E

Experiments

In this section, the clustering and cluster-validation methods described are demonstrated on
acute leukemia data (Golub et al., 1999) and colon cancer data (Alon et al., 1999). Golub et
al. studied microarray data obtained from the bone marrow or peripheral bloed of 72 patients
with ALL or AML using an Affymetrix chip. Although the structure of this data set is simple
and the separation between the two conditions is more pronounced than in most other cases,
it can still be considered as a frequently used benchmark. The data set contains 47 patients
with ALL and 25 patients with AML. The expression matrix contains 7,129 genes, Alon et
al. studied 40 tumor and 22 norinal colon tissue samples using an A ffymetrix chip. The array
contained probes for more than 6,500 genes, but the data that can be downloaded includes
only the 2,000 genes with the highest minimal intensity across the 62 tissues,

Preprocessing of the acute feukemia data set is done by thresholding and log transformation,
similar to how it was done in the original publication. Thresholding is achieved by restrict-
ing gene expression levels to be larger than 20; that is, expression levels that are smaller
than 20 will be set to 20. Concerning the log transformation, the natural logarithm of the
expression levels is taken. For the colon cancer data sct, only log transformation is done, as
in the original publication. Further preprocessing of both data sets is done by standardization
(normalization). For classical k-means, this is followed by principal component analysis
(without the selection of principal components). Although kernel clustering technigues are
capable of handling high-dimensional data, one should not forget the possible benefits of
performing preprocessing steps that remove noise before using any clustering technique.

Tuning of the hyperparameters is an important issue, discussed previously in a large number
of publications. We therefore only refer to some of these studies (Halkidi & Vazirgiannis,
2005; Handl et al., 2005). However, since kernel clustering methods require tuning of the
kernel parameters as well, some research effort still needs to be performed on this subject,
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Note that classical k-means clustering and kernel k-means clustering with a linear kernel
require the optimization ofa number of clusters and the random initialization. Kernei k-means
with an RBF kernel and spectral chustering, however, also require the additional optimization
of the kernel parameter o Tuning these hyperparameters needs to be performed based on
internal validation criteria.

Results

Since both data sets contain two given diagnostic categories, we restrict the number of
clusters & to be equal to two. The initialization is optimized by repeating each f-means or
kernel ~-means algorithm 100 times, selecting the best result based on the distortion score
within these atgorithms (note that this is done for each value of o). Optimization of this
kernel parameter o?is done based on the global silhouette index. Note that only intervals for
o2 with meaningful cluster results are considered. For the optimal value of 62, both external
validation indices {i.e., the Rand and adjusted Rand index) are reported as well.

Silhouette plots (representing for each cluster the sorted silhouette indices for all samples)
and tuning curves (tuning the kernel parameter o?based on the global silhouette index),
followed by a table presenting global silhouette, Rand, and adjusted Rand indices for the
optimal kernel parameter 62, are first shown for the acute leukemia data and then for the
colon cancer data,

From these results, we can conclude that spectral clustering, unlike the other clustering al-
gorithms, gives very good and consistent clustering resuits in terms of the global silhouette
~index (internal validation) for both data sets. Note that the results obtained by any optimally
tuned clustering algorithm (classical &-means, kernel £-means with linear or RBF kernel, and
spectral clustering) are not correlated to the given diagnostic categories {external partitions).
However, this does not mean that these clustering results are clinically or biologically irrel-
evant; that is, these could correspond to other known or unknown diagnaostic categories.

Figure 4. Silhouette plots of classical k-means (Tefi) and kernel k-means clustering (right)
on the acute leukemia daia. These plots show the sorted silhoueite indices (x-axis) for all
samples in each cluster (y-axis).
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Figure 5. Tuning curve (lefl) and sifhouette plot (right) of kernel k-means clustering on the
acute leukemia data. The tuning curve shows the global silhouette index (y-axis) for a range
of values for kernel parameter o* (x-axis). The sithouette plot shows the sorted silhouette
indices (x-axis) for all samples in each cluster (y-axis).
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Figure 6. Tuning curve (Iefi) and silhouette plot (right) of speciral clustering on the acute
leukemia data. See Figure 5 for more detailed information on the tuning curve and sithou-
ette plot.
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Table 1. Global silhouette, Rand, and adjusted Rand indices for the optimal kernel parameter
o are given for all clustering methods on the acute lewkemia data. There are iwo conclu-
sions: (a) Spectral clustering clearly gives the best results in terms of internal validation,
and (2) external validation shows that the clustering results are not correlated to the given
diagnostic categories. However, these results could correspond fo other known or nnknown
diagnostic categories.

Kemel paramieter Global Adjusted Rand
ot sithouette index Rand index index
k-means clustering - 0.12988 -0.021418 0.49335
Kernel k-nteans clustering with
linear kernel - 0.15456 «0,017564 0.49452
Kermel k-means clustering with
RBF keemnel 709220.0 0.15337 -0.017564 0.49152
Spectral clustering 5%13.0 0.78436 0.06258 049656
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Figure 7. Silhouette plots of classical k-means (left) and kernel k-means clustering (right) on
the colon cancer data. See Figure 4 for more detailed information on the silhouette plot.
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Figure 8. Tuning curve (lefl) and sithouette plot (vight) of kernel k-means clustering on
the colon cancer data. See Figure 3 for more detailed information on the tuning curve and
silhouette plot.
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Figure 9. Tuning curve (left) and silhouette plot (right) of spectral clustering on the colon
cancer data. See Figure 5 for more detailed information on the tuning curve and silhoueite
plot.
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Table 2. Global silhouette, Rand, and adjusted Rand indices for the optimal kernel parameter
o’ are given for all clustering methods on the colon cancer data. There are two conclu-
sions: (a) Spectral clustering clearly gives the best results in terms of internal validation,
and (b) external validation shows that the clustering results are not correlated to the given
diagnostic categories. However, these results could correspond to other known or wnknown
diagnostic cafegories.

Kemet paramicter  Global silbouette Adjusted Rand Rand
a? index index index
k-means clustering - 0.3948 -0.0058061 0.49656
Kernel k-means clustering
with linear kemel - 0.41423 -0.0058 0.49656
Kemel £-means clustering
with RBF kemet 1989700 0.41073 -0.0058061 0.49656
Spectral clustering 25964 0.82046 «0.0058 0.49556
-
Conclusion

Most of the classical techniques that have previously been applied to analyze microarrays
rely on specifically designed procedures in order to deal with the particular challenges posed
by the gene expression data at hand (Alon et al., 1999; Golub et al., 1999). Therefore, these
procedures are not guaranteed to perform well on other microarray data sets and cannot be
considered as a general approach. In most publications, some way of input selection of a
subset of relevant genes is performed first instead of systematically anaiyzing thousands
of genes simultaneously. Although performing gene selection before clustering may im-
prove the discrimination between the known groups, the choice for the best gene-selection
method is highly dependent on the data set considered. The techniques presented here do
not make any assumptions neither on the distribution of the data nor on the relevance on
the input variables (genes), providing a more general approach that can be systematically
extended to other microarray data sets. The model-selection step, that is, the choice of the
kernel width and the choice of the optimal number of clusters, is often skipped for both
kernel &-means and spectral clustering in most of the related publications. In this chapter, at
least three variants for tuning this parameter based on different internal quality measures of
the clusters have been proposed. Since these are internal measures, however, high correla-
tions with external partitions are not ensured. Consequently, more sophisticated methods
rather than the silhouette index (e.g., kernel alignment [Cristianini et al., 2002] and bounds
derived from the formulation [Shi & Malik, 2000]) need to be considered or even defined
for model selection. This way, the results and correlation with external partitions could be
further improved.

In summary, kernel clustering methods like kernel k-means and spectral clustering are
especially designed for clustering data that contain clusters that are not linearly separable
in order to handle nonlinear relationships in the data. Moreover, these techniques atlow for
dealing with high-dimensional data. It was shown in this chapter that these properties make
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kernel clustering methods specifically interesting for application on the high-dimensional
microarray data (with or without preprocessing steps). Using these techniques for knowledge
discovery in clinical microarray data analysis may therefore allow the discovery of new
clinically relevant groups in the future.
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