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Abstract

In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals
has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme,
named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much higher
computational burden compared to the conventional approach. In this paper, we propose to solve the optimization problem by combin-
ing splitting methods with two approaches: the Douglas–Rachford method and the alternating direction method of multipliers. These
methods allow to obtain solutions with a higher computational efficiency, orders of magnitude faster than with general purpose software
based on interior-point methods. Furthermore, computational savings are achieved by solving the sparse linear prediction problem with
lower accuracy than in previous work. In the experimental analysis, we clearly show that a solution with lower accuracy can achieve
approximately the same performance as a high accuracy solution both objectively, in terms of prediction gain, as well as with percep-
tually relevant measures, when evaluated in a speech reconstruction application.
! 2015 Elsevier B.V. All rights reserved.

Keywords: Sparse linear prediction; Speech and audio processing; Linear programming; Real-time optimization; Speech reconstruction; Packet loss
concealment

1. Introduction

Linear prediction (LP) is a well understood technique
for the analysis, modeling, and coding of speech signals
(Vaidyanathan, 2009). The widespread use of LP of speech
can be attributed to its correspondence to the source-filter

model of speech production (Makhoul, 1975; Bäckström,
2004). An emitted speech sound can be modeled as a
combination of the excitation process (the air flow) and
the filtering process (vocal tract effect). The vocal tract
can, to a large extent, be modeled as a slow varying
low-order all-pole filter, while the air flow can be modeled
by a white noise sequence, for unvoiced sounds, or an
impulse train generated by periodic vibrations of the vocal
chords pulses, for voiced sounds (Hansen et al., 1987).

In speech analysis, the purpose of the all-pole model
obtained through LP is to construct a spectral envelope
that models the behavior of the vocal tract. For a segment
of unvoiced speech, considering the excitation of the
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all-pole filter as white noise, the envelope is the same as its
power spectrum of and the LP model coincides theoreti-
cally with the autoregressive (AR) model (Stoica and
Moses, 2005). However, for a segment of voiced speech,
the connection is more complex. The power spectrum of
the voiced speech signal has a clear harmonic structure that
can be approximated more effectively as a line spectrum
(Christensen and Jakobsson, 2009). The line frequencies
are located at the multiples of the pitch frequency and their
amplitude are given by the shape of the spectral envelope.

The all-pole coefficients are usually identified by mini-
mizing the mean-squared (2-norm) error of the difference
between the observed signal and the predicted signal
(Atal and Hanauer, 1971). In the source-filter model, this
approach yields the LP all-pole filter, thus the prediction
error (the residual signal) represents the source. Unvoiced
speech lends itself readily to the principles of the 2-norm
error criterion as a means of estimating the model param-
eters (Makhoul, 1975). Furthermore, the 2-norm is consis-
tent with an i.i.d. Gaussian interpretation of the prediction
residual (Saito and Itakura, 1967; Itakura and Saito, 1970).
The quality of the 2-norm based LP all-pole model in the
context of voiced speech, which is approximately two-
thirds of speech, is questionable and, theoretically, not
well-founded. In particular, the all-pole spectrum does
not provide a good spectral envelope and sampling the
spectrum at the line frequencies does not provide a good
approximation of their amplitudes (Murthi and Rao,
2000). In general, the shortcomings of LP in spectral envel-
ope modeling can be traced back to the 2-norm minimiza-
tion.2 In particular, analyzing the goodness of fit between a
given harmonic line spectrum and its LP model, as done in
Makhoul (1975), a major flaw can be derived. The LP tries
to cancel the input voiced speech harmonics causing the
resultant all-pole model to have poles close to the unit cir-
cle. Consequently, the LP spectrum tends to overestimate
the spectral powers at the formants, providing a sharper
contour than the original vocal tract response. A wealth
of methods have been proposed to mitigate these effects.
Some of the proposed techniques involve a general rethink-
ing of the spectral modeling problem (notably El-Jaroudi
and Makhoul, 1991; Murthi and Rao, 2000; Ekman
et al., 2008) while some others are based on changing the
statistical assumptions made on the prediction error in
the minimization process (notably Lee, 1988; Denoel and
Solvay, 1985). Many other formulations for finding the
parameter of the all-pole model exist, a special mention is

for methods that include perceptual knowledge into the
estimation process (e.g., Hermansky, 1990; Magi et al.,
2009), or account for the non-linearities in the speech pro-
duction model, e.g., Thyssen et al. (1994).

Despite the wealth of alternative methods introduced to
overcome the deficiencies of the 2-norm criterion, tradi-
tional usage of LP methods is, however, still confined to
modeling only the spectral envelope (the vocal tract trans-
fer function), i.e., the short-term redundancies of speech.
Hence, in the case of voiced speech, the predictor does
not fully decorrelate the speech signal because of the
long-term redundancies of the underlying pitch excitation.
This means that the residual will still have pitch pulses pre-
sent and the spectrum will still show a clear harmonic
structure. The usual approach is then to employ a cascaded
structure where, after LP is initially applied to determine
the short-term prediction coefficients, a long-term predictor
is determined to model the harmonic behavior of the spec-
trum (Hansen et al., 1987). Such a structure is arguably
suboptimal since it ignores the interaction between the
two different stages (Kameoka et al., 2010; Bensaid and
Slock, 2012). This is known in the literature and early con-
tributions have outlined gains in performance in jointly
estimating the two filters (the work in Kabal and
Ramachandran (1989) is perhaps the most successful
attempt). The combination of the two filters determines a
high-order linear predictor with a pretty evident sparse
characteristics.

In recent work (Giacobello et al., 2008; Giacobello et al.,
2012), a more general framework for LP was presented
with several benefit by introducing sparsity in the LP
minimization framework. This was renamed sparse linear
prediction (SpLP). In particular, while reintroducing
well-known methods to seek a short-term predictor that
produces a residual that is sparse rather than minimum
variance (e.g., Denoel and Solvay, 1985; Murthi and
Rao, 1998), the idea of employing high-order SpLP
(HOSpLP) to model the cascade of short-term and long-
term predictors was also introduced (Giacobello et al.,
2009,). The application of HOSpLP was originally
introduced for speech processing purposes, however its
formulation is intimately related to the regularization of
ill-conditioned problems and to the precise modeling of
long-term redundancies, thus it quickly found applications
in diverse fields, such as radar (Erer et al., 2014), geology
(Bochud et al., 2013), video packet-loss concealment
(Koloda et al., 2013), and general signal representations
(Angelosante et al., 2013; Angelosante, 2014).

The SpLP problem can be posed as a linear program-
ming problem, a special case of convex optimization. In
order to be deployed in real-time applications, it requires
its convex optimization core to be embedded directly in
the algorithm that runs online and where strict real-time
constraints apply. While convex optimization problems
can be efficiently solved, both in theory, with worst-case
polynomial complexity (Nesterov and Nemirovskii, 1994),
and in practice, such as Andersen et al. (2003), it is rarely

2 To the authors’ knowledge, the ‘‘original sin” behind the use of the
2-norm in LP, comes from its first application in speech coding, trying to
reduce the entropy of speech for more efficient encoding than simple
differential pulse code modulation (Atal, 2006). The fundamental theorem
of predictive quantization (Gersho and Gray, 1992) states that the mean-
squared reproduction error in predictive encoding is equal to the
mean-squared quantization error when the residual signal is presented
to the quantizer. Therefore, by minimizing the 2-norm of the residual,
these variables have a minimal variance whereby the most efficient coding
is achieved.
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limited in its implementation by real-time constraints as
discussed in Mattingley and Boyd (2010). The real-time
implementation of such schemes calls for application-
tailored optimization methods able to solve instances of
the optimization problem at hand in a fast and reliable
way (see, e.g., Defraene et al., 2012; Jensen et al., 2013;
Defraene et al., 2014 for application in signal processing).
Convex optimization solvers are usually based on iterative
approaches, which is in contrast to traditional methods
relaying on closed-form solutions. This is also the case
for LP and SpLP. The former, has a closed-form solution
that, e.g., can be calculated via the Levinson–Durbin algo-
rithm with time complexity OðN 2Þ, with N being the predic-
tion order. The latter, when solved with, e.g., interior-point
methods (Alipoor and Savoji, 2012; Jensen et al., 2013), has
a time complexity of OðT 2N þ T 3Þ or OðN 2T þ N 3Þ
depending on the setup where T is the frame size. Thus,
considering the high-order case where N $ T , the sparse
solution is at least a order of magnitude more costly to
achieve.

To reduce the complexity of solving the SpLP problem,
we turn our attention to two other methods, specifically the
Douglas–Rachford (DR) method and the alternating direc-
tion method of multipliers (ADMM). These two methods
applied with a splitting technique that have become popu-
lar in recent years for problems requiring only moderate
accuracy, see e.g. the treatment in Boyd et al. (2011) and
Vandenberghe (2013). The DR method originates from
Douglas and Rachford (1956) and Lions and Mercier
(1979), and have recently found applications in signal pro-
cessing problems, e.g., Combettes and Pesquet (2007) and
O’Connor and Vandenberghe (2014). Similar, the ADMM
method originates from Glowinski and Marroco (1975)
and Gabay and Mercier (1976) and have also found appli-
cations in signal processing, e.g., Afonso et al. (2010) and
Yang and Zhang (2011). Interestingly, there are known
connections among proximal methods, Bregman iterative
regularization, and the DR and ADMM algorithms.
Specifically, ADMM can be understood as the DR method
applied to the dual problem (Gabay, 1983; Eckstein and
Bertsekas, 1992; Yin et al., 2008).

In this paper, we will show how to reduce the
per-iteration time complexity for an iterative solver for
the SpLP problem employing splitting methods rather
than interior-point methods. The splitting methods require
solving a subproblem involving a symmetric positive
definite Toeplitz coefficient matrix. By exploiting this
particular structure, the time complexity is quadratic
(OðN 2 þ T 2Þ) for the initialization step but linearithmic
(OðN logN þ T log T Þ) for all the subsequent iterations.
In order to evaluate the approximate solutions, firstly, we
assess their performance via prediction gain and, secondly,
assess the performance in terms of perceptual objective
quality measures in a speech reconstruction framework.
Despite solving the SpLP problem to a lower accuracy
compared to interior-point methods, the results show that

the solutions still achieve similar performance when
employed in typical speech processing applications.

The paper is organized as follows. In Section 2, we pre-
sent principles of linear prediction including conventional
methods and sparse linear prediction. The proposed meth-
ods for solving the sparse linear prediction problem are
presented in Section 3, and the computational costs are
assessed by timings the methods in Section 4. Finally, we
present experimental results of the performance of the pre-
sented predictors both in objective terms by analyzing their
prediction gains in Section 5.1 and in perceptual terms by
employing them to reconstruct missing data in a speech
reconstruction framework in Section 5.2. In Section 6, we
provide additional discussions and conclude our work.

2. Principles of linear prediction

Linear prediction is based on the following model,
where a stationary set of samples of speech x½t&, for
t ¼ 1; . . . ; T , are written as a linear combination of N past
samples (Vaidyanathan, 2009)

x½t& ¼
XN

n¼1

anx½t ( n& þ r½t&; ð1Þ

where fang are the prediction coefficients and r½t& is the pre-
diction error. The optimization problem is then to find the

prediction coefficient vector a ¼ ½a1; a2; . . . ; aN &T so that the
prediction error in this interval is minimized (Stoica and
Moses, 2005). If we rewrite this model for the segment of
T samples considered in matrix form

x ¼ Xaþ r; ð2Þ

the optimization problem becomes

minimize
a

kx( Xakpp ð3Þ

where k ) kp is the p-norm defined as kxkp ¼ ð
PN

n¼1jxðnÞj
pÞ

1
p

for p P 1 and

½xjX & ¼

x½T 1& ) ) ) x½T 1 ( n&

..

. . .
. ..

.

x½T 2& ) ) ) x½T 2 ( n&

2

664

3

775: ð4Þ

Assuming x½t& ¼ 0 for t < 1 and t > T , the indexes T 1 and
T 2 can be chosen in various ways which lead to different
types of solutions with different properties (Stoica and
Moses, 2005).

2.1. Conventional linear prediction

In a common case, the starting and ending point of the
window used to determine the set of equation in (3) are
chosen as T 1 ¼ 1 and T 2 ¼ T þ N and the 2-norm is
minimized (p ¼ 2). This leads to the conventional linear
prediction problem
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minimize
a

kx( Xak22 ð5Þ

with x 2 RM*1; X 2 RM*N ; a 2 RN*1; M ¼ T þ N , and an
analytic solution satisfying the normal equation

XTXa ¼ XT x: ð6Þ

This approach is also known as the Yule–Walker method
for autoregressive (AR) spectral estimation or the autocor-
relation method (Stoica and Moses, 2005). By exploiting
the Toeplitz structure of the autocorrelation matrix
R ¼ XTX , the system can be solved efficiently with, e.g.,
the Levinson–Durbin algorithm in OðN 2Þ (Vaidyanathan,
2009).

2.2. Long-term prediction

Generally, linear prediction models only short-term
redundancies of speech, thus is often used in combination
with a single-tap or multi-tap long-term predictor (Kabal
and Ramachandran, 1989). The speech model for the
long-term predictor is

d½t& ¼
XK

k¼0

/kd½t ( T p ( k& þ r½t&; ð7Þ

where, similarly to (1), f/kg are the prediction coefficients
and r½t& is the prediction error. The major difference of the
model, other than the relatively small number of taps K
employed gathered around the pitch period T p is that the
optimization problem is generally done on the (usually
weighted) output of the short-term filter d½t&. Considering
the matrix form of (7)

d ¼ D/þ r; ð8Þ

we can obtain the coefficients by solving the optimization
problem

minimize
/

kd ( D/k22: ð9Þ

The method obviously requires an estimate of T p which can
be found with a variety of methods all with different com-
plexity and accuracy trade-offs (Christensen and
Jakobsson, 2009).

2.3. Combining short-term and long-term prediction

If we consider the cascade of the long-term and short-
term predictor, it is not hard to see that a sparse high-
order filter is obtained. This was noted already in Kabal
and Ramachandran (1989), and used to find short-term
and long-term predictors jointly. In particular, the sparse
filter will have two well distinguished nonzero regions:
the first N taps will correspond to the short-term predictor
a while the taps after the pitch period T p will correspond to
the convolution between the short-term and long-term
coefficients . ¼ a + /.

This gives us the opportunity of seeing the estimation
problem as

minimize
v

kx( Utk22 ð10Þ

where U is a column-wise partition of X accounting only
for the nonzero elements of the combined filter

t ¼ aT .T½ &T . Again, applying the same traditional linear
prediction approach shown in (5), we obtain the normal
equations

UTUt ¼ UT x; ð11Þ

where UTU retains a Toeplitz structure and its size is much
smaller than XTX , as only a fraction of the elements in x is
used to estimate the combined predictor t.

2.4. High-order prediction

As mention earlier, LP of speech is well known mostly
for its modeling capabilities of short-term redundancies,
which corresponds to a model of the envelope of the spec-
trum. When the LP order increases, the model starts
encompassing more and more details of the spectrum, thus
allowing for a more complete frequency representation.
This follows directly from the theory, where for N ! 1
the spectrum of the predictor matches the one of the signal
(Makhoul, 1975). This means that also in the voiced speech
case, we can model the signal using just a high-order LP
model without worrying about, e.g., pitch estimation.
However, calculating a high-order predictor generally
results in a ill-conditioned problem as the model order N
approaches the length of the frame T (van Waterschoot
and Moonen, 2008). The ill-conditioning can be easily
tracked back to the autocorrelation matrix R ¼ XTX . In
particular, the eigenvalue spread of the autocorrelation
matrix corresponds to the ratio between maximum and
minimum value of the power spectrum of the speech seg-
ment analyzed, therefore, except for few exceptions, a high
order in LP for speech makes R easily ill-conditioned and
can cause large variance of the estimated model parame-
ters, leading to spurious peaks in the signal spectral esti-
mate (Kay, 1979). While regularization is possible to
reduce the eigenvalue spread and thus conditioning, this
also corresponds to adding a noise floor, affecting the accu-
racy of the solution.

2.5. High-order sparse linear prediction

In our recent work (Giacobello et al., 2012), we general-
ized the optimization problem in (3) by adding a regular-
ization criterion on the solution vector

minimize
a

kx( Xakpp þ ckakll: ð12Þ

Considering the similarities with conventional high-order
LP, imposing sparsity on the high-order predictor while
retaining a 2-norm criterion on the prediction error, the
problem can be seen as a more educated regularization
approach that accounts for the sparsity of the predictor
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resulting from modeling short-term and long-term redun-
dancies (Giacobello et al., 2009)

minimize
a

kx( Xak22 þ ckak1: ð13Þ

However, when imposing sparsity on both the residual vec-
tor and high-order predictor, gains can been obtained both
in terms of modeling and coding performance (Giacobello
et al., 2009)

minimize
a

kx( Xak1 þ ckak1: ð14Þ

For problem (14) we denote a solution aH, objective
f ðaÞ ¼ kx( Xak1 þ ckak1 and optimal objective

fH ¼ f ðaHÞ. The regularization term c in (14) can be seen
as related to the prior knowledge of the prediction coeffi-
cients vector a. While sparsity is often measured by the
cardinality cardðxÞ ¼ jfijxi – 0gj, we use the more
computational tractable 1-norm k ) k1, which is known
throughout the sparse recovery literature (see, e.g.,
Donoho and Elad, 2002) to perform well as a relaxation
of the cardinality measure with equivalence in certain cases.

3. Solving the sparse linear prediction problem

The objective function in (14), as well as the terms that
compose it, is convex but not differentiable, thus proximal
gradients method are not directly applicable (Nesterov,
2007; Beck and Teboulle, 2009; Wright et al., 2009). The
optimization can be solved as a general linear program-
ming problem using interior-point methods (Alipoor and
Savoji, 2012; Jensen et al., 2013). However, solving (14)
using interior-point methods introduces certain diagonal
matrices D1; D2 into the problem, such that when using
the augmented form approach, it is required to solve a lin-
ear system of equations with the coefficient matrix
C ¼ XTD1X þ D2 where D1; D2 change at each iteration.
This makes it difficult to exploit the structure in X and
XTX using direct method (see, e.g., O’Connor and
Vandenberghe, 2014). In Jensen et al. (2013), the coefficient
matrix C is explicit formed and solved via a Cholesky fac-
torization followed by triangular solves with a per iteration
complexity of OðM2N þM3Þ or OðN 2M þ N 3Þ depending
on the setup (Jensen et al., 2013).

In the following, it is showed how to exploit the DR and
the ADMM methods to reduce the per-iteration complex-
ity. Specifically, with the use of splitting combined with
ADMM and DR methods, an auxiliary symmetric positive
definite Toeplitz system arises that can be solved with a
total per-iteration complexity of OðN logN þM logMÞ
(forming right-hand side and solving the system). The algo-
rithm for solving the system is described in the subsequent
Section 3.3.

The saving in per-iteration complexity of the DR and
ADMM methods reflects into a slower convergence than
interior-point methods. However, when tailored to speech
processing applications, a low-accuracy solution of the

problem (14) obtained via the DR or ADMM method is
sufficient for practical purposes, as we will show in
Section 5.

3.1. Douglas–Rachford

In the following we will rewrite the SpLP into a form
applicable to the DR algorithm. We will write the problem
in (14) as

minimize
a

f 1ðaÞ þ f 2ðXaÞ ð15Þ

where f 1ðuÞ ¼ ckuk1 and f 2ðuÞ ¼ kx( uk1. Introducing the
variable splitting hðu1; u2Þ ¼ f 1ðu1Þ þ f 2ðu2Þ the problem
can be reformulated as the optimization problem

minimize
u1;u2

hðu1; u2Þ

subject to u2 ¼ Xu1:
ð16Þ

Before we proceed, we define two functions. The proximal
mapping of a convex function f is given by (see, e.g.,
Moreau (1965) or Combettes and Wajs (2005) for a more
recent treatment)

proxf ðxÞ ¼ argmin
u

f ðuÞ þ 1

2
ku( xk22

! "
: ð17Þ

The Euclidean projection of x onto a set C is PCðxÞ given
by

PCðxÞ ¼ argmin
y2C

kx( yk22: ð18Þ

Using the indicator function IC of the set C, we obtain

PCðxÞ ¼ proxIC
ðxÞ: ð19Þ

Let Q ¼ f½u1; u2&T ju2 ¼ Xu1g, the Douglas–Rachford split-
ting method applied to problems of the form

minimize
u2RU

hðuÞ

subject to u 2 Q
ð20Þ

can be written in a number of equivalent forms, including
(O’Connor and Vandenberghe, 2014; Eckstein and
Bertsekas, 1992; Spingarn, 1985)

uðkþ1Þ ¼ proxthðzðkÞÞ ð21Þ
yðkþ1Þ ¼ PQð2uðkþ1Þ ( zðkÞÞ ð22Þ
zðkþ1Þ ¼ zðkÞ þ gðyðkþ1Þ ( uðkþ1ÞÞ ð23Þ

with the iterates uðkÞ; zðkÞ; yðkÞ 2 RU*1. Here g 2 R is a
relaxation parameter 0 < g < 2; t 2 R; t > 0 is a step-size
parameter, or, equivalently a scaling of the problem.

The individual steps for solving the sparse linear predic-
tion problem using Douglas–Rachford splitting are
described in the following. For the update in (21), notice

that proxthðu1; u2Þ ¼ ½proxtf1ðu1Þ; proxtf2ðu2Þ&
T , i.e., it is

separable since the binding is done in the constraints. A
classical result is that with f 1ðu1Þ ¼ cku1k1
proxtf1ðvÞ ¼ StcðvÞ ð24Þ

T.L. Jensen et al. / Speech Communication 76 (2016) 143–156 147



where S is the soft-thresholding function given by

ðStðvÞÞi ¼ signðviÞmaxðjvij( t; 0Þ ð25Þ

and ð)Þi denotes the ith element. For f 2ðuÞ ¼ kx( uk1 we
have

proxtf2ðvÞ ¼ argmin
u

tkx( uk1 þ
1

2
ku( vk22

! "

¼ x( argmin
w

tkwk1 þ
1

2
kw( ðx( vÞk22

! "

¼ x( proxtk)k1ðx( vÞ ¼ x( Stðx( vÞ: ð26Þ

So, proxthðu1; u2Þ ¼ ½proxtf1ðu1Þ; proxtf2ðu2Þ&
T ¼ ½Stðu1Þ; x (

Stðx( u2Þ&T can be calculated with complexity OðM þ NÞ.
The projection PQðvÞ is given by

PQðvÞ ¼ argmin
u2Q

ku( vk22 ð27Þ

¼ argmin
u2¼Xu1

ku1 ( v1k22 þ ku2 ( v2k22: ð28Þ

This is a convex quadratic problem with the KKT
conditions

u1 ( v1 ( XT m ¼ 0 ð29Þ
u2 ( v2 þ m ¼ 0 ð30Þ

u2 ¼ Xu1 ð31Þ

from which we obtain

0 ¼ u1 ( v1 ( XT m ð32Þ
¼ u1 ( v1 ( XT ðv2 ( u2Þ ð33Þ
¼ u1 ( v1 ( XT v2 þ XTXu1: ð34Þ

Hence we obtain the linear systems ðI þ XTX Þu1 ¼
v1 þ XT v2 and u2 ¼ Xu1. The projection is then

PQðvÞ ¼
I

X

# $
ðI þ XTX Þ(1ðv1 þ XT v2Þ: ð35Þ

To compute (35) we need to solve a linear system of
equations with coefficient matrix I þ XTX and varying
right-hand sides (v1 þ XT v2). The coefficient matrix is
positive definite, symmetric and Toeplitz. Specifically, let

R ¼ XTX ¼

r0 r1 ) ) ) rN(1

r1 r0 ) ) ) rN(2

..

. . .
. ..

.

rN(1 rN(2 ) ) ) r0

2

6666664

3

7777775
: ð36Þ

and

t0 ¼ 1þ r0 ð37Þ
tk ¼ rk; k ¼ 1; . . . ;N ( 1 ð38Þ

then the positive definite, symmetric Toeplitz matrix is

I þ XTX ¼

t0 t1 ) ) ) tN(1

t1 t0 ) ) ) tN(2

..

. . .
. ..

.

tN(1 tN(2 ) ) ) t0

2

66664

3

77775
: ð39Þ

It is well known that linear systems with a coefficient
matrix given as (39) can be solved efficiently. We will
discuss different methods in Section 3.3.

3.2. Alternating direction method of multipliers

A first step in deriving an ADMM algorithm consists in
reformulating the problem in (14) as a basis pursuit prob-
lem, following the procedure in Yang and Zhang (2011).
To this end, we first rewrite the unconstrained problem in
(14) as an equality constrained problem

minimize
a;e

kek1 þ ckak1
subject to Xaþ e ¼ x

ð40Þ

where e ¼ x( Xa represents the linear prediction residual.
Next, we perform a change of variables by stacking a
scaled version of the linear prediction coefficient vector
and the linear prediction residual in a new parameter
vector

~z ¼
ca

e

# $
: ð41Þ

This allows to reformulate the problem in (40) using
ckak1 ¼ kcak1 in terms of a single parameter vector as
follows (Yang and Zhang, 2011)

minimize
~z

k~zk1

subject to ~X~z ¼ ~x
ð42Þ

where

~X ¼ X cI½ & ð43Þ
~x ¼ cx: ð44Þ

In a second step, we write the basis pursuit problem in (42)
in the ADMM form as explained in Boyd et al. (2011). To
this end, we define the set U ¼ f~z 2 Rmþnj~X~z ¼ ~xg and
introduce an variable ~y 2 Rmþn such that the basis pursuit
problem can be split over ~z and ~y,

minimize
~z;~y

IUð~zÞ þ k~yk1
subject to ~z( ~y ¼ 0

: ð45Þ

This problem formulation readily brings us to an ADMM
algorithm defined by the iterations (Boyd et al., 2011)

~zðkþ1Þ ¼ PUð~yðkÞ ( ~uðkÞÞ ð46Þ
~yðkþ1Þ ¼ S1=qð~zðkþ1Þ þ ~uðkÞÞ ð47Þ
~uðkþ1Þ ¼ ~uðkÞ þ ~zðkþ1Þ ( ~yðkþ1Þ: ð48Þ

Variables ~zðkÞ and ~yðkÞ denote iterates of the primal
variables, ~uðkÞ denotes the scaled dual variable, and q > 0
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is the augmented Lagrangian parameter. Similarities can
then be seen with the DR algorithm in (21)–(23).

We will now focus on the ~z-update in (46), which is the
most involved step of the algorithm. The ~z-update consists
in the projection of the point ~yðkÞ ( ~uðkÞ onto the convex set
U with the following KKT conditions

~zþ ð~yðkÞ ( ~uðkÞÞ ( ~XTk ¼ 0 ð49Þ
~X~z ¼ ~x: ð50Þ

It is instructive to rewrite these KKT conditions in terms of
the original parameter vectors a and e by substituting the
variable definitions (41), (43), and (44) in the KKT system
(49) and (50)

ca( ð~yðkÞ1 ( ~uðkÞ1 Þ ( XTk ¼ 0 ð51Þ

e( ð~yðkÞ2 ( ~uðkÞ2 Þ ( ck ¼ 0 ð52Þ
Xaþ e ¼ x ð53Þ

where

~yðkÞ ¼
~yðkÞ1

~yðkÞ2

" #

; ~uðkÞ ¼
~uðkÞ1

~uðkÞ2

" #

; ð54Þ

have been partitioned similarly to ~z in (41). From the KKT
conditions we obtain

0 ¼ ca( ð~yðkÞ1 ( ~uðkÞ1 Þ ( XTk ð55Þ

¼ ca( ð~yðkÞ1 ( ~uðkÞ1 Þ ( 1

c
XT ðe( ð~yðkÞ2 ( ~uðkÞ2 ÞÞ ð56Þ

¼ ca( ð~yðkÞ1 ( ~uðkÞ1 Þ ( 1

c
XT ðx( Xa( ð~yðkÞ2 ( ~uðkÞ2 ÞÞ: ð57Þ

This results in the following system to be solved for the lin-
ear prediction coefficient vector a

ðXTX þ c2IÞa ¼ XT þ cð~yðkÞ1 ( ~uðkÞ1 Þ ( XT ð~yðkÞ2 ( ~uðkÞ2 Þ
¼ XT x( (cI X T

% &
ð~yðkÞ ( ~uðkÞÞ:

ð58Þ

The solution aðkþ1Þ to this system in the ðk þ 1Þth ADMM
iteration can be expressed as the sum of an iteration-
independent term and an iteration-dependent term,

aðkþ1Þ ¼ ðXTX þ c2IÞ(1
XT x|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

,ac;2

(ðXTX þ c2IÞ(1 (cI X T
% &

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

,
(cI

X

# $þ

ð~yðkÞ (~uðkÞÞ

ð59Þ

where ð)Þþ denotes the Moore–Penrose pseudo-inverse.
The iteration-independent term ac;2 is the solution to the
‘2-regularized linear prediction problem in (12) with
p ¼ l ¼ 2. This system may, e.g., be solved by applying
the Levinson–Durbin algorithm to the modified autocorre-
lation sequence fr0 þ c2; r1; . . . ; rNg with rk as defined in
(36) for k ¼ 0; . . . ;N ( 1 and similarly for k ¼ N . The
iteration-dependent term in (59) can be computed by solv-
ing a positive definite, symmetric Toeplitz system similar to
the system solved in the DR method.

The ADMM iterations (46) and (48) can hence be
rewritten as follows

aðkþ1Þ ¼ ac;2 (
(cI

X

# $þ
ð~yðkÞ ( ~uðkÞÞ ð60Þ

eðkþ1Þ ¼ x( Xaðkþ1Þ ð61Þ

~yðkþ1Þ ¼ S1=q
caðkþ1Þ

eðkþ1Þ

" #

þ ~uðkÞ
 !

ð62Þ

~uðkþ1Þ ¼ ~uðkÞ þ
caðkþ1Þ

eðkþ1Þ

" #

( ~yðkþ1Þ: ð63Þ

Note that with ~yð0Þ ( ~uð0Þ ¼ 0, we have að1Þ ¼ ac;2, and the
ADMM algorithm can then be interpreted as iterative
‘‘sparsification” of the ‘2-regularized ‘‘classical” linear pre-
diction solution.

3.3. Solving a positive definite symmetric Toeplitz system

A classical algorithm for solving a (positive definite)
symmetric Toeplitz system is the Levinson algorithm with
time complexity OðN 2Þ and space complexity OðNÞ
(Levinson, 1947; Golub and van Loan, 2013). Algorithms
like the Levinson algorithm with time complexity OðN 2Þ
are called fast algorithms, but there also exist superfast

algorithms with time complexity OðN log2NÞ, see Bitmead
and Anderson (1980) and Ammar and Gragg (1988). These
algorithms also have the advantage that the first solution

can be obtained in OðN log2NÞ and any other solution with
the same coefficient matrix but different right-hand side is
possible with linearithmic time complexity OðN logNÞ.
There are also algorithms where there is a one time penalty
of OðN 2Þ and again all subsequent solutions with same
coefficient matrix but a different right-hand side only
requires OðN logNÞ (Jain, 1979; Ammar and Gragg,
1988). The constant in the first step of a superfast algo-
rithm is large and hence there is a break-even point in
the number of operations at approximately N ¼ 256 for
N as a base 2 number (Ammar and Gragg, 1988). Since
the experiments in Sections 4 and 5 uses N < 256 and that
the OðN 2Þ algorithm in the first step is much simpler, we
use the algorithm in Jain (1979), see also Ammar and
Gragg (1988).

The inverse of a Toeplitz matrix !T can be described by
the Gohberg–Semencul formula

dN(1
!T(1 ¼ !T 1

!T T
1 ( !T T

0
!T 0 ð64Þ

where

!T 0 ¼

0 0 ) ) ) 0

q0 0 ) ) ) 0

..

. . .
. . .

. ..
.

qN(2 ) ) ) q0 0

2

66664

3

77775
; ð65Þ

and
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!T 1 ¼

1 0 ) ) ) 0

qN(2 1 ) ) ) 0

..

. . .
. . .

. ..
.

q0 ) ) ) qN(2 1

2

66664

3

77775
; ð66Þ

and

dN(1
!T(1 ¼

1 qN(2 ) ) ) q0

qN(2

..

.
S

q0

2

66664

3

77775
ð67Þ

and S 2 RðN(1Þ*ðN(1Þ denotes the remaining submatrix. The
variables dN(1 and q0; . . . ; qN(2 can be obtained using the
Szegö recursion in OðN 2Þ operations as a one time–cost
per system. The solution to the system !T x ¼ b is then given
by

x ¼ !T(1b ¼ 1

dN(1

!T 1
!T T
1 b( !T T

0
!T 0b

( )
: ð68Þ

Since !T 0; !T 1 are Toeplitz, a product like T 0b can be evalu-
ated via FFTs/IFFTs, see Jain (1979) for an algorithm for
fast evaluation of (68) in OðN logNÞ operations. So, all
subsequent solutions with the same coefficient matrix are
available in OðN logNÞ operations. Recall that the coeffi-
cient matrix is XTX þ I ¼ Rþ I for the DR algorithm
and XTX þ c2I ¼ Rþ c2I for the ADMM algorithm. From
the perspective of signal processing, the coefficient matrices
XTX þ I ¼ Rþ I and XTX þ c2I ¼ Rþ c2I are updated for
each frame. It is only during each call of the DR and
ADMM algorithms that the coefficient matrix is fixed.
For each call the computation of dN(1 and q0; . . . ; qN(2

with appropriate discrete Fourier transforms (DFTs) of
the latter sequence can be seen as an initial caching to make
subsequent iterations cheaper (as in, e.g., Afonso et al.,
2010). Note that the diagonal term provides regularization
to the solver.

4. Implementation and empirical computation time

The DR and ADMM algorithms for solving the SpLP
problem using the Levinson algorithm to solve the symmet-
ric positive definite Toeplitz system, are denoted DR-L and
ADMM-L. The DR and ADMM algorithm that are using
the method in Jain (1979) to solve the symmetric positive
definite Toeplitz system are denoted DR-GS and
ADMM-GS.

The algorithms3 were implemented in C++ using Intel
Math Kernel Library (MKL) (Intel(R) Math Kernel
Library) for BLAS level 1 routines. The application of
matrix–vector product with X and XT was implemented
as FFT filtering using the FFTW3 library (Frigo and

Johnson, 2005). The time from call of the solver to return
was measured using the POSIX function gettimeofday
(for the C++ implementations). The timing was measured
over 100 executions of each frame to average out possible
system processes (note that each frame was then static
and the solvers then run with the exact same input). The
setting c ¼ 0:12 was found in Section 5 and fixed for all
simulations. The simulations were executed on an Intel
(R) Dual Core(TM) i5-2410M CPU at 2.3 GHz with
Ubuntu Linux kernel 3.2.0–32-generic, MKL 10.3 and
Matlab 7.13.0.564. The algorithms implemented with
C++ were compiled using gcc-4.8 and the -Os -March=
native optimization option. We compared the implemen-
tation with the general purpose software Mosek 7.0
(Andersen et al., 2003) and CVX+SeDuMi 1.21 (Grant
and Boyd, 2011; Sturm, 1999). This problem was too large
to use CVXGEN (Mattingley and Boyd, 2012). Algorithms
Cprimal and Cprimal(s/d) are presented in Jensen et al.
(2013) and were C++ implementations of interior-point
methods.

Analytically motivated selections of parameters
q; t requires that one of the functions applied to the
Douglas–Rachford setup are smooth and/or strongly
convex, see Patrinos et al. (2014). Since this is not the case,
we empirically found g ¼ 1:8 and t ¼ 0:1 to be useful. For
the ADMM based algorithms we empirically found
q ¼ 100 to be useful.

We chose the following stopping criteria. Algorithms
ADMM-L and ADMM-GS were stopped if

1

M þ N
k~zðkþ1Þ ( ~yðkþ1Þk22 6 ! ð69Þ

q
M þ N

k~yðkþ1Þ ( ~yðkÞk22 6 !: ð70Þ

This reflected the primal and dual residual and was (up to a
scaling of q ¼ 100) the absolute criteria in Boyd et al.
(2011). The algorithms DR-L and DR-GS were stopped if

1

N þM
kzðkÞ ( zðk(1Þk22 6 !: ð71Þ

For both the DR and ADMM based algorithms we
selected ! ¼ 10(6 and also stopped if a maximum of
k ¼ 100 iterations were reached. Such a maximum of
allowed iterations is useful to bound the worst-case execu-
tion time.

Here we presented results for T ¼ 320; N ¼ 250
(M ¼ 570) processed on a 2 s speech signal sampled at
16 kHz taken from the testing database. The results are
shown in Table 1.

From Table 1 we observed that the splittings methods
are orders faster than general purpose software and one
order faster than hand-tailored interior-point methods. It
was also clear that using the algorithm (Jain, 1979) for
solving the auxiliary symmetric positive definite Toeplitz
system was faster that the classical Levinson–Durbin
algorithm for these dimensions (otherwise the methods
were equivalent in that the same iterations are generated).

3 MATLAB and C++ implementations are available from http://kom.
aau.dk/,tlj/.
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The ADMM based methods converged faster to the used
stopping criteria and this was the reason for being faster
than the DR based methods. Specifically, the ADMM
based algorithms used on average 13.5 iterations, while
the DR based algorithms used 35.3 iterations.

The splitting methods solved the problem to a low accu-
racy. Specifically, using the metrics

mDR ¼ f DR ( fH

fH
; mADMM ¼ f ADMM ( f H

f H
ð72Þ

we observed than on average mDR and mADMM is 0.14 and
0.12, respectively, i.e. approximately only a 10(1 sub-
optimal solution (fH is approximated via the solution from
Mosek). The impact of this low accuracy was then assessed
in the experimental analysis, presented in Section 5. An
example of the different convergence behaviors of the DR
and ADMM algorithms is illustrated in Fig. 1 with the

metric f ðaðkÞÞ(fH

fH
using a single frame from the simulations

in Table 1. Notice that the ADMM-L algorithm converges
faster the few first iterations. The endpoint of the graphs
illustrates where the stopping criteria was activated and
stopped the iterative algorithms.

Algorithms CVX+SeDuMi,Mosek, Cprimal, Cprimal(s/d)
are all primal–dual interior-point methods, and the accu-
racy of these methods is all higher than using the DR
and ADMM algorithms. However, the DR and ADMM
algorithms have the advantage that some of the elements
in an approximate solution â $ aH are exactly 0 due to
the soft-thresholding function (25) applied at (21) and
(62). On the other-hand, interior-point methods reformu-
late the problem as a constrained problem and approach
the solution from the interior but never exactly reach the
bound of the constraints of the reformulated problem, such
that the small magnitude elements in âIP $ aH are small but
not exactly 0.

5. Experimental analysis

In this section, we outline some of the properties of the
different LP models introduced in Section 2 and, in partic-
ular the SpLP method of Section 2.5 equipped with the sol-
vers proposed in Section 3. Firstly, we present their
objective spectral modeling properties by analyzing their

prediction gain. Secondly, we provide a more practical
example of their modeling properties in a speech recon-
struction scenario where we also evaluate the goodness of
the approximate solutions of Section 3 through perceptual
objective quality measures. The algorithms compared are
outlined in Table 2. The splitting methods solvers in algo-
rithmsHOSpLPdr andHOSpLPadmm used the same stop-
ping criteria as outlined in Section 4. The TIMIT database
(Garofolo et al., 1993) was chosen for the analysis because
of its manageable size with a sufficiently large number of
speakers for testing speech processing algorithms accuracy.
Since our algorithms windows are in the order of few mil-
liseconds, we can reasonably assume that the conclusions
of the experimental analysis done with the TIMIT dataset
extent to a larger class of speakers.

5.1. Prediction gain

The vowel and semivowel phones (Halberstadt and
Glass, 1997) from the TIMIT database (sampled at
16 kHz) were processed, belonging to 3696 sentences from
462 speakers. We chose the ones of duration of at least 640
samples (40 ms) for a total of about 40,000 voiced speech
frames.

The methods compared are presented in Table 2. In
LTP, LTP3, and LTP3j the short-term predictor had 20
coefficients. For the purposes of comparison, the autocor-
relation method was used for both the short-term and
long-term predictors. The value of the pitch lag in LTP
and LTP3 was chosen such that the prediction gain was
maximized. This was accomplished by an exhaustive search
over the allowable range T p 2 34; 231½ &, as used in AMR-
WB (Bessette et al., 2002), effectively covering pitch fre-
quencies belonging to the range 69; 470½ & Hz. For LTP3j,
the pitch lag found in LTP3 was used in the optimization.
Note that, while a plethora of methods exist for pitch esti-
mation (see, e.g., Christensen and Jakobsson, 2009), we
chose the exhaustive search to guarantee the prediction

Table 1
Timing in milliseconds. Format: Average/min/max. The setting is
T ¼ 320; N ¼ 250 (M ¼ 570).

Methods Timings

CVX + SeDuMi 2467.29/1327.29/3619.74
Mosek 224.71/145.54/307.60
Cprimal 92.70/55.24/180.46
Cprimal(s/d) 63.66/33.59/112.09
DR-L 6.62/0.65/10.11
DR-GS 2.28/0.61/3.26
ADMM-L 2.99/0.65/5.14
ADMM-GS 1.29/0.61/1.92

Fig. 1. Example of the convergence behavior of the algorithms DR-L and
ADMM-L. The endpoints of the graphs illustrates where the stopping
criteria has become active and stopped the iterative algorithm.
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performance not to be biased by a possible erroneous esti-
mation of the pitch lag.

In the methods HOLP, HOSpLP, HOSpLPdr and
HOSpLPadmm the order of the filter was fixed to 250,
allowing to cover the above-mentioned pitch lag range
and a related bulk of nonzero coefficients clustered around
the maximum allowable pitch lag. In order to find an
appropriate value of the regularization parameter, we ana-
lyzed a set of voiced speech frames (different from the one
used in the experiments) and determined the point of max-
imum curvature on the curve kak1; kx( Xak1ð Þ, a modified
version of the L-curve (Hansen and O’Leary, 1993), appro-
priate to determine trade-offs between the sparsity of the
predictor and the sparsity of the residual. The regulariza-
tion parameter was then chosen fixed, c ¼ 0:12.

For a fair comparison, after calculating HOSpLP,
HOSpLPdr and HOSpLPadmm, only the 21 largest values
were retained, this kept the actual sparsity of the methods
the same as the simple LTP. Note that the actual number
of nonzero samples for LTP would be 40 considering the
convolution of short-term and long-term predictors in the
analysis.

The average prediction gains are shown in Table 3. The
95% confidence intervals showed a clear distinction
between the various method as well as a certain consistency
in performance. Clearly, HOLP was the best performing
method. This behavior can be explained from Parsevals
theorem and the power spectrum matching properties of
the all-pole spectrum obtained with 2-norm LP that could
approximate the power spectrum of a signal with arbitrar-
ily small error (Makhoul, 1975). The performance of
HOLP then determined the upper bound of performance.

The methods HOSpLP, HOSpLPdr and HOSpLPad-
mm behaved, in statistical terms, identically, thus providing
further proof of the reliability of the proposed fast solu-
tion, even though the latter two calculated a much less
accurate solution to the problem (14). In general, the
sparseness criterion helped providing a net reduction in
the number of nonzero samples while obtaining just
slightly lower performance. The LTP, LTP3, and LTP3j
methods provided proof of the gain in prediction gain
given by the joint estimation of short-term and long-term
coefficients provided by the high-order sparse model which
achieves more than 10 dB gain compared to traditional
LTP.

A proof of concept example is shown in Figs. 2 and 3 for
a 640 samples segment of the vowel/a/uttered by a female
speaker where the predictors and related frequency magni-
tudes are shown. Visually, the dissimilarities between
LTP3j and the sparse methods, which behave very simi-
larly, come mostly from the lower order short-term predic-
tor necessary to model the envelope (around 10 taps versus
20) and the larger cluster of taps around T p needed to
model the pitch redundancies. This allowed the sparse
methods not to just have a more parsimonious representa-
tion, but also allowed for general better modeling thanks to

Table 2
Prediction methods used for comparison.

Method Description

LTP Combined 20 tap short-term LP and 1 tap long-term LP calculated separately
LTP3 Combined 20 tap short-term LP and 3 tap long-term LP calculated separately
LTP3j Combined 20 tap short-term LP and 3 tap long-term LP calculated jointly using (11)
HOLP High-order LP with 2-norm criterion calculated with high-order (Section 2.4)
HOSpLPip High-order sparse LP (14) obtained with interior point solution
HOSpLPdr High-order sparse LP (14) obtained with DR algorithm
HOSpLPadmm High-order sparse LP (14) obtained with ADMM algorithm

Table 3
Average prediction gains for segments of different length N. A 95%
confidence interval is shown. The number of nonzero elements, cardð)Þ, is
shown for comparison.

METHOD Cardð)Þ T

320 640

LTP 21 17.3 ± 0.8 14.2 ± 1.0
LTP3 23 22.3 ± 0.8 19.9 ± 0.9
LTP3j 43 24.2 ± 0.6 22.6 ± 0.8
HOLP 250 32.4 ± 0.6 31.3 ± 0.7
HOSpLPip 21 28.6 ± 1.1 27.8 ± 1.4
HOSpLPdr 21 28.5 ± 1.4 27.6 ± 1.6
HOSpLPadmm 21 28.3 ± 1.7 27.2 ± 1.6

Fig. 2. Magnitude of the frequency response of the different methods
proposed. A 640 samples segment of the voiced speech (vowel/a/uttered by
a female speaker) is used for the analysis.
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the sparse criteria imposed both on the predictor and
residual.

5.2. Speech reconstruction

Considering speech as a slowly-varying process, we can
verify the performance of the different predictors presented
in Table 2 in a statistical cross-validation framework. In
particular, for a given speech segment, we can determine
how accurately the predictors perform in reconstructing a
set of unknown speech samples given the known samples
and their prediction model. The problem can then be
rewritten as a maximum a posteriori (MAP) estimator

maximize
xu

pðxujxk; aÞ ð73Þ

where xk represents the known samples and xu represents
the unknowns samples of a given speech segment of length
T and the predictor a is calculated using only the known
samples. It is therefore imperative that a is effective in mod-
eling the underlying statistics without underfitting or over-
fitting in order to have the best estimate of xu. This problem
is well-known in the statistical audio processing literature
as AR model-based speech reconstruction (Godsill and
Rayner, 1998). Considering the segment of T speech sam-
ples x as partitioned in terms of known and unknown
samples

x ¼ Kxk þ Uxu; ð74Þ

where U and K are T * T ‘‘rearrangements” matrices that
form a columnwise partition of the identity matrix I, and
if we consider the data samples x as drawn by an AR pro-
cess with parameters a, we can rewrite the interpolation
error as

e ¼ AðKxk þ UxuÞ ð75Þ

where A is the so-called analysis matrix obtained with a
(Godsill and Rayner, 1998), thus (75) is just another way
to rewrite the system of equations in (2). If we fit the inter-
polation error into an i.i.d. Gaussian process, which is rea-
sonable given the limited knowledge of the reconstruction
process, we obtain

pðxujxk; aÞ / expð(kek22Þ
¼ expð(kAðKxk þ UxuÞk22Þ:

ð76Þ

Maximizing the argument of (76), we obtain

xu ¼ ( AT
uAu

( )(1AT
u Akxk ð77Þ

where Au ¼ AU and Ak ¼ AK. This solution is then equiva-
lent to minimizing the mean-square error of e of (75). Note
that the basic formulation given in (73) assumes that the
AR parameters are known a priori. In practice, there are
ways to obtain a robust estimate during the detection stage
(Godsill and Rayner, 1998), however, in our case we will
limit ourselves to estimating a over the known speech sam-
ples. Considering the reconstruction Eq. (77), it can be seen
that traditional LP model might fail to properly recon-
struct the pitch periodicity if the estimator of the model
parameters a used to generate A do not account for long-
term redundancies.

We compared the different methods presented in Table 2
in the reconstruction approach presented in (73) to esti-
mate the predictor used to generate the matrix A. Differ-
ently from Section 5.1, in this section we measured the
reconstruction using the mean opinion score (MOS), as cal-
culated through POLQA (ITU-T, 2010), to account for
perceptual qualities as well.

In this experiment we targeted both voiced and unvoiced
speech, in order to provide proof of the overall robustness
of the sparse linear predictor introduced. This is different
from Section 5.1, where we targeted uniquely voiced speech
as a proof of concept. The comparison was carried out for
missing segment length T gap of 4, 6, 8, 10, and 20 ms,
respectively, 64, 96, 128, 160, and 320 samples at 16 kHz.
We process 1000 sentences coming from several different
speakers with different characteristics (gender, age, pitch,
regional accent) taken from the TIMIT database. We
applied a robust speech activity detector to avoid applying
the reconstruction and calculating statistics over silence.
For each file, the losses were produced every 150 ms, the
40 ms (640 samples) before the loss are used to generate
the known vector xk, while the varying length gap forms
the unknown vector xu. The predictor was calculated
with the methods presented in Table 2 on the known vector
xk, the unknown segment was then reconstructed using
(77). For comparison, we have also added a traditional
low-order method sLP of order 20.

The results shown in Table 4 gave a different perspective
on the performance of the different predictors. While the
prediction gain results of Table 3 showed HOLP to per-
form significantly better, in terms of perceptual quality of
the reconstructed signal the higher order did not mean

Fig. 3. A 640 samples segment of the voiced speech (vowel/a/uttered by a
female speaker) and the calculated predictors for the different methods
proposed.
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higher quality, unless it has actually a clear meaning of
representing short-term and long-term redundancies of the
speech signal. Thus,HOSpLP,HOSpLPdr andHOSpLPadmm
performed better being more accurate and avoiding overfit-
ting the data. It was interesting to notice that LTP3 and
LTP3j also performed fairly closely to HOLP. The sLP
method performance were close to the other 2-norm based
methods for the smallest gap size, however they decay quite
rapidly as the gap size increased. Finally, we noted that,
differently from other interpolation approaches that
involve a Estimation-Maximization (EM) approach to
enhance the estimation of the AR model and reconstructed
signal, while a slight increase in mean-squared error was
achieved, no improvement in MOS was actually seen.

6. Discussion and conclusions

We presented algorithms suitable for finding approxi-
mate solutions to the high-order sparse linear prediction
problem in speech applications. In particular, we pointed
out that a lower accuracy and slower convergence did
not affect the overall performance of the predictors when
applied in realistic applications that required both objective
and subjective quality metrics to be met. The resilience to
this approximation could be explained from the actual
solution needed by the problem being actually different
from the ‘‘true” 1-norm solution found by the interior
point method. We are indeed looking for a residual and
predictor that are ‘‘small” and with sparse structures and
not particularly for the 1-norm solution. Thus, further
work can include better sparse approximations, rather than
seeking more accurate convergence methodologies, as done
with, e.g., interior point methods.
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