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ABSTRACT

A common way of increasing the robustness of affine projec-
tion and normalized least mean squares adaptive filtering algo-
rithms, is to add a scaled identity regularization matrix tothe
input signal correlation matrix before inversion. This ad-hoc
method can also be interpreted as the result of minimizing a
regularized underdetermined least squares criterion. Moreover,
by relating this criterion to linear minimum mean square error
estimation, we can derive MSE optimal APA and NLMS algo-
rithms, which feature a regularization matrix that is not neces-
sarily a scaled identity matrix. The proposed algorithms allow
for incorporating prior knowledge on both the near-end signal
and the true room impulse response, and are intimately linked
to Levenberg-Marquardt regularization and proportionateadap-
tation. Simulation results of echo and feedback cancellation ex-
periments confirm that the adaptive filter convergence speedand
tracking properties may be considerably improved using thepro-
posed algorithms.

1. INTRODUCTION

Several acoustic signal processing applications, such as acoustic
echo cancellation (AEC) [1] or adaptive feedback cancellation
(AFC) [2], require the identification of a room impulse response
(RIR). A typical AEC scenario is depicted in Fig. 1. The true
RIR coefficients of the echo path between the loudspeaker and
the microphone are collected in the parameter vector

f ,
ˆ

f0 f1 . . . fnF

˜T
, (1)

of known lengthnF + 1. The loudspeaker plays back the far-
end signalu(t), which generates an echo signalx(t) = uT (t)f
at the microphone position, with the loudspeaker signal vector
defined as

u(t) ,
ˆ

u(t) u(t − 1) . . . u(t − nF )
˜T

. (2)

The echo signalx(t) is picked up by the microphone, in addition
to a local signalv(t) referred to as the “near-end” signal, hence
the microphone signal can be written asy(t) = x(t) + v(t).
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Figure 1: RIR identification in an AEC scenario.

It is important to note that the near-end signal is in most appli-
cations the signal of interest, however, from a system identifi-
cation point of view,v(t) is a disturbance to the estimation of
the RIR. If at timet a RIR estimatêf(t) is available, then an
echo-compensated signal can be calculated asd(t) = y(t) −

uT (t)f̂(t), which approximates the near-end signalv(t).
A very popular recursive identification algorithm in room acous-
tic applications is the affine projection algorithm (APA) [1], due
to its satisfactory convergence speed for colored input signals,
and itsO(nF ) computational complexity per iteration. The APA
with projection orderM and step sizeµ is given by

f̂(t) = f̂(t − 1) + µU(t)[UT (t)U(t) + αI]−1
ε(t), (3)

ε(t) = y(t) −U
T (t)f̂(t − 1), (4)

with the data matrices defined as follows:

U(t) ,
ˆ

u(t) . . . u(t − M + 1)
˜

, (5)

y(t) ,
ˆ

y(t) . . . y(t − M + 1)
˜T

. (6)

The well-known normalized least mean squares (NLMS) algo-
rithm can then be obtained from the APA by settingM = 1:

f̂(t) = f̂(t − 1) + µ
u(t)ε(t)

uT (t)u(t) + α
, (7)

ε(t) = y(t) − u
T (t)f̂(t − 1). (8)

In this paper, we focus on the regularization part of the above
algorithms. A common problem in room acoustic applicationsis
that the matrixUT (t)U(t), appearing in (3), is ill-conditioned
or even singular, due to poor excitation. If no regularization
is applied, the lack of excitation may lead to divergence of the
adaptive filter, in particular during double-talk periods (i.e., when
both the far-end and near-end signals are non-zero). The stan-
dard solution consists in adding anM × M scaled identity ma-
trix αI to UT (t)U(t) before inverting the matrix. It is known
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that the regularization parameterα should ideally be an a priori
estimate of the near-end signal power [1], yet this parameter is
often chosen to be an arbitrary, small number.
Whereas this traditional regularization approach is an ad-hoc
method to avoid the inversion of an ill-conditioned matrix,the
regularized APA and NLMS algorithms described above can also
be obtained by minimization of a criterion which originatesfrom
minimizing the mean square error (MSE) between the estimated
and true RIR. In this framework, it appears that the existingap-
proach towards regularization can be optimized by taking into
account any prior knowledge, not only on the near-end signal,
but also on the true RIR.
In Section 2, we briefly present the MSE optimal approach to-
wards regularization, referring to [3] for a more detailed expla-
nation. We also indicate how a diagonal (and not necessarily
scaled identity) regularization matrix can be constructed, that
approaches the MSE optimal regularization matrix, using a pre-
viously proposed 3-parameter RIR model [3]. Then in Section
3, we show how minimization of the proposed criterion leads
to MSE optimal APA and NLMS algorithms, which exhibit fea-
tures known as leakage and proportionate adaptation. The re-
sulting algorithms are moreover intimately linked to the widely
used Levenberg-Marquardt regularization approach for recursive
least squares (RLS) algorithms [3], [4], and provide new insight
in the properties of the proportional NLMS (PNLMS) [5], [6]
and proportionate APA (PAPA) [7] algorithms. Finally, in Sec-
tion 4, simulation results are shown, which confirm the improved
convergence behaviour of the proposed algorithms, both in echo
and feedback cancellation problems.

2. MSE OPTIMAL REGULARIZATION

In [3], it is shown that there is a strong link between regular-
ization and linear minimum mean square error estimation. In
particular, minimizing the MSE criterion

min
f̂(t)

E
n

[̂f(t) − f ]T [̂f(t) − f ]
o

(9)

is shown to be equivalent to minimizing a weighted and regular-
ized least squares criterion:

min
f̂(t)

n

[y(t) − U
T (t)f̂(t)]T Rv

−1(t)[y(t) −U
T (t)f̂(t)]

+[̂f(t) − f0]T Rf

−1 [̂f(t) − f0]
o

. (10)

The equivalence holds only in a Bayesian framework, in which
not only the near-end signal vectorv(t) , [v(t) . . . v(t −
M + 1)], but also the true RIR is considered to be drawn from a
stochastic vector process, on which some prior knowledge may
be available through their means and covariance matrices, de-
fined as

E{v(t)} = 0, (11)
(

cov{v(t)} = E
˘

v(t)vT (t)
¯

= Rv(t), (12)

E{f} = f0, (13)
(

cov{f} = E
˘

(f − f0)(f − f0)T
¯

= Rf . (14)

The criterion in (10) features both a least squares data term, and a
regularization term penalizing the deviation of the RIR estimate

from the true RIR expected value. The relative importance of
these two terms is governed by the inverse covariance matrices
of the near-end signal and true RIR distributions.
Before deriving the MSE optimal APA and NLMS algorithms,
we comment on the choice of the covariance matricesRv(t) and
Rf . In this paper, we assume that the near-end signal is drawn
from a Gaussian white noise process with varianceσ2

v(t), such
thatRv(t) is a diagonal matrix:

Rv(t) = diag{σ2
v(t), σ2

v(t − 1), . . . , σ2
v(t − M + 1)}. (15)

The general case of a non-white near-end signal is describedin
[3]. Also, in the sequel, the true RIR covariance matrixRf is
restricted to be diagonal. This leads to anO(nF ) computational
complexity when evaluating matrix-vector products involving
Rf , and still allowsnF +1 degrees of freedom in contrast to the
traditional scaled identity matrix approach with only one degree
of freedom. We may construct a diagonal estimate forRf by
collecting prior knowledge on the acoustic setup, e.g., theroom
volume, loudspeaker and microphone positions, wall absorption
coefficients, etc., as described in [3].

3. REGULARIZED APA AND NLMS ALGORITHMS

Minimizing the criterion in (10), and subsequently applying the
matrix inversion lemma, leads to the following underdetermined
estimate:

f̂(t)=f0+RfU(t)[UT(t)RfU(t)+Rv(t)]−1[y(t)−U
T(t)f0].

A recursive algorithm can be obtained by explicitly bringing in
the dependency on̂f(t − 1), which leads to:

f̂(t) = f0

+{I− [U(t)Rv
−1(t)UT (t) + Rf

−1]−1
Rf

−1}[̂f(t−1) − f0]

+RfU(t)[UT (t)RfU(t) + Rv(t)]−1[y(t) − U
T (t)f̂(t−1)].

It can be seen that the minimizing estimate of the criterion in
(10), consists of three terms: the mean valuef0 of the true RIR
distribution, a leakage term depending on the deviation[̂f(t −
1) − f0] of the previous estimate from the mean value, and a
proportionate adaptation term. The leakage term disappears by
choosingf0 = f̂(t − 1), and hence we obtain a Levenberg-
Marquardt type of regularization [3]. If we finally introduce a
relaxation factorµ, we end up with the so-called Levenberg-
Marquardt regularized affine projection algorithm (LMR-APA)
and, when the projection order is set toM = 1, the Levenberg-
Marquardt regularized normalized least mean squares (LMR-
NLMS) algorithm, which are shown in Table 1. Note that the
traditionally regularized APA and NLMS algorithms, described
in the Introduction, can be obtained as special cases of the pro-
posed algorithms, by choosingRv(t) = σI andRf = νI such
thatσν−1 = α.
The LMR-APA and LMR-NLMS algorithms are closely related
to the proportionate APA (PAPA) [7] and proportionate NLMS
(PNLMS) [5] algorithms. In the PNLMS RIR weight update,

f̂(t) = f̂(t − 1) + µ
G(t)u(t)ε(t)

uT (t)G(t)u(t) + α
, (16)

the diagonal matrixG(t) is constructed as follows:

G(t) =
1

ḡ(t)
diag{g0(t), . . . , gnF

(t)}, (17)
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Table 1: MSE optimally regularized APA and NLMS algorithms

LMR-APA - Levenberg-Marquardt Regularized APA

f̂(t) = f̂(t − 1) + µRfU(t)[UT (t)RfU(t) + Rv(t)]−1
ε(t),

ε(t) = y(t) − U
T (t)f̂(t − 1).

LMR-NLMS - Levenberg-Marquardt Regularized NLMS

f̂(t) = f̂(t − 1) + µ
Rfu(t)ε(t)

uT (t)Rfu(t) + σ2
v(t)

,

ε(t) = y(t) − u
T (t)f̂(t − 1).

with, for k = 0, . . . , nF ,

gk(t) , max
n

ρ · max
˘

δ, |f̂0(t − 1)|, . . . , |f̂nF
(t − 1)|

¯

,

|f̂k(t − 1)|
o

, (18)

ḡ(t) ,
1

nF + 1

nF
X

k=0

gk(t), (19)

whereρ andδ are small positive parameters. This choice ofG(t)
was made somewhat intuitively by Duttweiler [5] with the aimof
allocating a larger portion of the available adaptation energy to
larger adaptive filter weights, to speed up the convergence.Later
on, Chen et al. [6] provided an interpretation of the above choice
of G(t) in terms of Bayesian priors.
The LMR-NLMS algorithm provides an alternative choice for
the matrixG(t) in the PNLMS algorithm, which is optimal in
the sense of minimizing the criterion in (10). The above com-
parison of LMR-NLMS with PNLMS can be done similarly for
the LMR-APA and PAPA algorithms. An important difference
with the existing proportionate adaptation algorithms is that in
the proposed LMR-APA and LMR-NLMS algorithms, the reg-
ularization matrixRf is fixed. As a consequence, the proposed
algorithms may respond somewhat slower to a RIR change, but
on the other hand they are much less computationally demanding
than the PAPA and PNLMS algorithms, in whichG(t) is recal-
culated with (17)-(19) in each iteration of the adaptive filter.

4. SIMULATION RESULTS

All simulations are done in Matlab at a sampling frequencyfs =
8 kHz. The performance measure for comparing the different
algorithms is the misadjustment, which is defined as the normal-
ized Euclidian distance between the estimated and true RIR on a
logarithmic scale:

misadjustment (dB)= 20 log10

‖f̂(t) − f‖

‖f‖
. (20)

4.1. Regularized NLMS Algorithms for Acoustic Echo Can-
cellation in a Non-Stationary Environment

In a first simulation, the performance of regularized NLMS al-
gorithms is compared for acoustic echo cancellation in a non-
stationary environment. We switch between three differentroom

impulse responses of known lengthnF + 1 = 1000, that were
measured in our acoustic lab. The first RIR change occurs around
t/Ts = 1.2 · 105 samples, and consists in a change of 75 cm in
the microphone position, in such a way that the distance between
the loudspeaker and the microphone remains constant. Afterthe
second RIR change, aroundt/Ts = 2.5 · 105 samples, the loud-
speaker and microphone positions remain unchanged, but the
room is made more reverberant by decreasing the absorption co-
efficients of the walls and ceiling. In this simulation, the far-end
signal is a 46 s male speech signal (equivalent toN = 368320
samples), and the near-end signal is a stationary GWN signal
with known varianceσ2

v = 3 · 10−5, resulting in an echo-to-
near-end ratio at the microphone ENRmic = 16 dB.
The reference algorithms are the (unregularized) standardNLMS
algorithm, the proportionate NLMS algorithm withρ = 5/(nF +
1) andδ = 0.01 as suggested in [5], and the traditionally reg-
ularized NLMS algorithm as given in (7)-(8) withα = σ2

v ,
which is further called LMR-NLMSαI. These algorithms are
compared to the proposed LMR-NLMŜRf,3 and LMR-NLMS
R̂f,true algorithms in which the diagonal regularization matrix
is based respectively on the 3-parameter model from [3] (with
d = 75, A = 0.1022, τ = 70 andβ = 10−6), and on exact
knowledge of the first RIR (i.e., a “best-case” scenario). The
regularization matrix is not altered after the two RIR changes,
such that the robustness of the different regularized algorithms
w.r.t. RIR changes can be evaluated. The step sizeµ is individu-
ally tuned for each of the algorithms such that the excess MSEin
a stationary environment would approximately be the same for
all algorithms.
The convergence curves and step sizes are shown in Fig. 2.
First of all, we observe that the improvement in convergence
speed of the existing PNLMS and LMR-NLMSαI algorithms,
as compared to the unregularized NLMS algorithm, is small.
A significantly better convergence behaviour is obtained with
the proposed LMR-NLMŜRf,3 and LMR-NLMS R̂f,true al-
gorithms in the time intervalt/Ts = [0, 1.2 · 105] samples,
where the regularization matrix of the proposed algorithmsis
based on the “correct” RIR. After the first RIR change, the LMR-
NLMS R̂f,true algorithm’s performance decreases dramatically,
whereas the LMR-NLMŜRf,3 algorithm converges as fast as
initially. This is not much of a surprise, since the regularization
matrix R̂f,true based on the true first RIR, will be a bad model
for the second RIR covariance matrix, whereas the 3-parameter
model regularization matrix̂Rf,3 of the first RIR will still be
valid for the second RIR. Indeed, the microphone reposition-
ing does not alter any of the three parameters on whichR̂f,3 is
based, since the distance between the loudspeaker and the micro-
phone remains constant. However, after the second RIR change
the parameterτ in R̂f,3 will have an inaccurate value, since the
room reverberation has increased. This clearly affects theLMR-
NLMS R̂f,3 convergence speed, but still this algorithm outper-
forms the other algorithms.

4.2. Regularized NLMS Algorithms with Prefiltering for
Feedback Cancellation in a Stationary Environment

In a second simulation, the proposed LMR-NLMS algorithm is
applied in a closed-loop scenario for performing adaptive feed-
back cancellation. In this case, the near-end signal is non-white
such that prefiltering of the loudspeaker and microphone signals
with the inverse near-end signal model is desirable [2]. Thenear-
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Figure 2: Convergence curves of regularized NLMS algorithms
for an AEC application with two echo path changes.

end signalv(t), equal to the same male speech signal as in the
previous simulation, is added to the feedback signal beforebeing
amplified and delayed in the forward path. The resulting signal
is sent to the loudspeaker, after which it is filtered in the feed-
back path to yield the feedback signal. An AR(12) model of the
near-end signal as well as the near-end signal varianceσ2

v(t) are
identified by linear prediction, as in the PEM-AFROW algorithm
described in [2]. In this simulation, the feedback path is a 1000-
tap, measured RIR. The forward path delay is set equal to the
linear prediction window lengthL = 160 samples, as suggested
in [2], and the forward path gain is set toK = −19 dB, result-
ing in a closed-loop gain margin of 3 dB. These settings lead to
ENRmic = −11 dB.
The regularized algorithms are compared with the unregularized
NLMS algorithm (without prefiltering) in Fig. 3. It is clear that
the LMR-NLMS algorithms with prefiltering, are better suited to
the closed-loop estimation problem than the NLMS algorithm.
We further note that initially, the LMR-NLMŜRf,3 and LMR-
NLMS R̂f,true algorithms converge considerably faster than the
LMR-NLMS αI algorithm, yet after some time the misadjust-
ment of these three algorithms settles down to approximately the
same level.

5. CONCLUSION

In this paper, we have shown how the use of more than one reg-
ularization parameter, may lead to an increased performance of
regularized affine projection and normalized least mean squares
adaptive filtering algorithms. Based on the equivalence between
an MSE estimation criterion and a regularized least squarescri-
terion, we have illustrated how optimal regularization canbe
achieved by taking into account any prior knowledge on the near-
end signal and on the true room impulse response. The proposed
Levenberg-Marquardt regularized APA and NLMS algorithms
moreover provide a new interpretation of the existing propor-
tionate adaptation algorithms. Simulations point out thatthe pro-
posed algorithms exhibit improved convergence behaviour,and
may have nice tracking properties if the regularization matrix is

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

−12

−10

−8

−6

−4

−2

0

2

4

t/T
s
 (samples)

m
is

ad
ju

st
m

en
t (

dB
)

 

 
NLMS (µ = 0.01)
RP-PEM-AFROW αI (µ = 0.02)

RP-PEM-AFROW R̂f ,3 (µ = 0.03)

RP-PEM-AFROW R̂f ,true (µ = 0.1)

Figure 3: Convergence curves of regularized NLMS algorithms
with prefiltering for an AFC application in a stationary environ-
ment.

constructed in a proper way, e.g., using a previously proposed
3-parameter RIR model.
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