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Abstract— Following the evolution of growing computing This means the need for additional computers to perform,
power of industrial embedded devices, this paper investiges e g. data logging and supervision is no longer requireds Thi
the use Ofba'éé)”cl;”: Model Prz‘lj'cxve Control éMPC)“""lg‘()Sth) evolution makes it possible to leave the often-used path to
on an embedded Programmable Automation Controller o o X
The controller is tested on a pilot-scale binary distillaton !mplemgnt MPC controllers as it is done for large (Chem'c_al)
column to track reference temperatures. A major task in each installations, where the MPC controller and the underlying
model predictive control algorithm is the solution of a quadatic ~ PID-controllers run on different (dedicated) machines][12
problem. The Hildreth quadratic programming algorithm is  For small and moderate installations, all controller level
used for this purpose. It turns out that this algorithm is able -0 wow be run on the same hardware. Hence. this paper
to control the set-up running on the PAC hardware. investigates the use of a PAC system (National Instruments

. INTRODUCTION CompactRIO) to control a pilot-scale binary distillatioalc
in a world where economic and environmental issueumn. Both the PI-controllers and the supervising online MPC
; - Sontroller run on the same device. Hence, before a model
become more and more important, efficient control SyStenfosased controller can be used on a PAC, an accurate (but
have become indispensable. One of these control systems '

J .
.y . su%ple) process model has to be constructed. To this end, a
Model Predictive Control (MPC). This control strategy, dise ) : .
since the 1970s in the chemical industry, has also beco plack-box Multiple Input Multiple Output (MIMO) transfer

ooular in other industrv branches in the recent decade emt?nction model is derived. The use of a linear transfer model
bop y ' €9 justified as they are commonly used in industrial MPC

the automotive industry. The increasing computing power, . ..
. . agphcatlons [12].

of computers and embedded devices as well as algorithmic_ . ) . . .
This paper is organized as follows. Section Il describes

developments to speed up the solution to the Quadratic

Problem (QP), the heart of a model predictive controIIell,he employed MPC formulation and the selected online QP

encourage this evolution. solver. Section Ill discussed the implementation of the MPC

To quickly solve the QP, two main directions have beeﬁontrollgr on th_e PAC system. Ne_xt, in se_ction IV, the pilqt-
followed. One way to solve the QP problem fast is tos.Cale binary d'.St'”at.'gn golumn IS descrlbeq tog_etherhwn
solve the problem offline and employ a look-up table té') the model |dent|f|c§F|on procedqr_e for identifying th.e
find the solution online [2]. To encourage the use of thigontroller model ar!d (”). some .addItIOI"IZ?J model ar_1a|y3|s.
method, toolboxes and software were developed, e.g. [%_he res_ults are er_tten n Se_c'uon V. Finally, Section VI
This approach is often used on embedded devices which la gmmarnzes the main conclusions.
computing power, often in combination with the need for
very fast MPC with update rates in the order of milliseconds. II. M ODEL PREDICTIVE CONTROL
A different way is the use of fast online QP solving routines.

For embedded devices, this approach is more recent. Again, inear MPC is well known in literature [9], [3], [15]

to encourage the use of these algorithms they are integralgQy e reader is invited to read these works for a detailed
in dedicated software, code generators and toolboxes Sur?Qscription. The basic formulation used to control thetpilo

as [4], [10]. ) ) scale distillation column is briefly described below.
As a consequence of the ever growing computing power of

embedded devices such as Programmable Logic Controllers

(PLCs) and Programmable Automation Controllers (PACs). Model predictive control formulation

manufacturers have included all kinds of additional fesgur

Web- and FTP servers, Human-Machine Interaction (HMI), A linear, time invariant discrete-time system is described
(web)panel control and data logging are examples. TH¥:

increasing computing power also adds the possibility to run

online QP solvers for small systems [7]. x(k+1) = Ax(k)+ Bu(k) Q)
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for this system by means of minimizing a cost function: matrices that does not change during runtime. The gradient
H, vectorg from Eq. (4) has to be calculated online. It contains
- . , three parts depending on the current state and the reference
J = k+ilk) — yrer(k +i|k)|[5 2 . .
; 15k +ilk) = yrerlk + ik [, @ of the in- and outputs. Thus g is calculated by:

H.—1
c _ 9= G1€ — G2 Yret — G3Uper 9
+ > lAu(k + 5lk) 13y, - _ _ .
=0 where GG;, G2 and G5 are gradient matricesY e is an
RPHe*1 matrix of the referenceges(k|k) t0 yret(k + H, k).

Yres 1S the output reference arglis the predicted output. The matrices7;, G2 andG3 are constant and are computed

The formulationy(k + i|k) represents the vectoy on

! T offline:
sample timek + ¢ at calculation timek. The change of the
input is Au(k + j|k) = u(k + jlk) —u(k +j — 1|k). H, G. = H'W].F (10)
and H. (with H(_; < H,) are respectively the prediction Gy = HTWy:t;d (11)
and control horizon of the controlledd, € RP*? and a3 — W7 ‘ 12
W, € R™*™ are positive definite weight matrices. - Ubd (12)

The constraints, i.e., the minimum and maximum admissible
One of the key elements of MPC is the possibility tovalues forAU, are calculated onlineAUpay iS a column
handle constraints. For this paper only input constrairts amatrix of H, times Aupmax = umax — u(k — 1). AUy is
taken into account: a column matrix ofH. times Aumin = umin — u(k — 1).
Finally, with a lower triangular matrix of the appropriate

u@ < UMax () identity matricesC'] to convertu to Au, the QP problem to
u(j) = umin. be solved is:
Output constraints are omitted in the current study, but min $AUTHAU + gAU (13)
AU

can easily be introduced. The optimization problem can be ) ' A
formulated as the minimization of Eq. (2), subject to Eq. (1) subject to: AUmin < C1AU < AUmax (14)
and (3). In order to solve this problem, the optimizatiorTo solve this QP problem, the Hildreth quadratic algo-
problem is reformulated by elimination of the states in theithm [5] has been used.

f f P.
orm of a Q . B. The Hildreth QP algorithm
mein J = 5¢9THt9 +476 4) This algorithm has been selected for its easy implemen-
subject to PO < a ) tation. The implementation as presented in [15] has been

employed. One the advantages of this approach is that
with Eq. (4) the quadratic objective function, Eq. (5) thethe solution of the QP is based on an element-by-element
linear inequality constraints ar@ithe decision variables. To search, which can be easily implemented if no extended
reformulate the problem, the following steps are takerstFir mathematical support is available on a device. As no ma-
the state-space model Eq. (1) is rewritten in terms of thi&ix inversions are involved, the computations will not be

augmented state: interrupted, which is an advantage in real-time applicetio
|Ax 6 In case of conflicting constraints, the algorithm will give
£= y ©) a compromised, near-optimal solution. The main steps in

. this algorithm are presented in Algorithm 1. The maximum
W'tth Atx(1k5) :Tﬁ(k)_};(.kt._l) andyt:]he curcrj(_erlﬂy mhea_sured_ number of allowed iterations is 500 and the stop criterium
outpu [ ] 1€ prediction over the prediction NOMzON IS¢ st t610-8. In contrast to explicit MPC strategies on
written in matrix formulation and is formulated as:

Y = F¢ +QAU, (7) 1 Calculate the unconstrained solution
2 if unconstrained solution violate constrairtteen

with ¥ and AU column matrices of predicted outputs and, while maximum iterations not reachexhd solution

delta inputs, respectively. E.A\U € R*#<*1 composed of not founddo

Au(k|k) to Au(k + H. — 1]k). The matrices” and@ can | Solve one iteration of the QP

be found in many works on MPC [9], [15]. The matiiXxis end

post-processed by including the weight matrices resulting if maximum numbers of iterations is reachiben

the hessian of the objective function in Eq. (4): 7 Use calculated solution, but limited to the
H=QTW,,,Q+ W, 8) ) endcorrespondlng constraints

with W,,, and W,,, block diagonal matrices of¥, and ¢ end ) ) )

W,, respectively. To minimize the online calculation work, Algorithm 1: Steps in the QP algorithm.

matrices that can be computed in advance are calculated
offline. The hessian matriX! is one of the precomputed Programmable Logic Controllers (PLCs) [8], [14], the use



of online QP solvers on these devices can be considered [dHjusted by an electric heater which can deliver heat up to a
Hence, an easy to implement algorithm is indispensable asaximum of 250 W. At the bottom of the column a reboiler
the code has to be translated to an appropriate languagepresent containing two electric heaters, each of maximum
following IEC 61131-3 which is used for PLCs. The Hildreth3000 W. In the reboiler, a part of the liquid is vaporized
algorithm is a good candidate. More recent QP solvers [4lyhile the rest is extracted as bottom stream. At the top of
[10] are optimized extremely such that only code generatotee column, a total condenser allows the condensation of
or off-the-shelf software is the best practice to implemerthe entire overhead vapor stream, which is then collected
them. Moreover, these recent solvers contain a lot of code a reflux drum. A part of the condensed liquid is fed
and are often written in C/C++. Hence, a translation to &ack to the column as reflux, while the remainder leaves the
different language is required when these solvers are used aolumn as the distillate stream. In this set-up the follayin

a PLC, which is a fault-sensitive and time consuming step.

The experiments in this paper are set up to investigate the Condensor
applicability of the classical Hildreth QP algorithm habtey Reflux drum
. . . Overhead
a PLC. As a step towards this goal, the algorithm is hosted vapor
on a PAC. Tt (°C) — Distillate F'd
[1l. CONTROLLER IMPLEMENTATION 7= | 65+25 g/min
Tsl (°C)

Section 1

The experimental set-up employed in this paper is a pilot-
scale distillation column. The actuators and sensors are
connected to a Compact Fieldpoint (National Instruments, To1 (°C)
Austin) with a cFP-2020 controller interface and 1/0 module
cFP-RTD-124, cFP-AIO-610, cFP-AIO-600 and cFP-AI-110.
Due to the lack of computing power, this Compact Field-
point is connected to a powerful CompactRIO cRIO-9024
CPU (800 MHz, 512 MB) to run the controller programs.
Two simultaneously running LabVIEW programs (National
Instruments, Austin) have been written.

The first program, thedMI program, contains the PI- Feed Tb (°C)
controllers, the human-machine interface, the data Iaggin Fo: 15030 g/min —|’_

|:| Packing

Ts2 (°C)

Section 2

T (°C) Tv2 4044 °C

Tv2 (°C)

Ts3 (°C)

Section 3

Boilup

and the visualization. This program runs at a rate of 10 Hz.
The second program, th&PC program estimates the
current state of the system by means of a Kalman filter.
This estimated current state is passed, together with the
current value of the top and reboiler temperature, the form%ig. 1. Diagram of the pilot-scale distillation column. Nl set-points
estimated state and the former applied input to a libraryte printed in bold and are followed by the maximum admissitsviations.
written in C++ calculating the gradiegtand the upper and
lower bounds for the QP. Next, the routine to solve the QRbur variables can be manipulated: the reboiler dgty
written in the same software library is called. The solutiofw), the feed rateF'v (g/min), the duty of the feed heater
is returned to LabVIEW. After scaling, the inputs are passeg@y (W) and the reflux flow raté”r (g/min). The distillate
to the HMI program where they are used as new set-poinfsw Fd (g/min) is adjusted to maintain a constant reflux
for the PI-controllers. The software library written in C#8+  drum level. Measurements are available for the reflux flow
called via thecall library functionwhich is part of LabVIEW. rate Fr, the distillate flow rateFd, the feed flow rate
The operating system of the cRIO is VxWorks 6.3. Thery and nine temperatures: the temperature at the top of
compilation of the C++ code is done by gcc 3.4.4. the columnTt, the temperatures in the center of every
packing section (i.eT's1, T's2 andT's3, respectively), the
o temperaturel'vl between section 1 and 2, the temperature
A. Description Tv2 between section 2 and 3, the temperatilifein the

The experimental set-up involves a packed distillatiomeboiler of the column, and the temperatures of the feed
column (see Fig. 1 and 2). The column is about 6 m highefore and after heating (i.&'»0 andT'v2, respectively). All
and has an internal diameter of 6 cm. The column workemperatures are measured in degrees Celsius. There is no
under atmospheric conditions and contains three sectibnsanline measurement of the concentrations in the distidatt
about1.5 m with Sulzer CY packing (Sulzer, Winterthur) bottom stream. These can be measured off-line, e.g., based
responsible for the separation. This packing has a contamt a their refractive index using a refractometer. However,
surface of 700 M¥m? and each meter packing is equivalentince the concentrations for the system under study caly easi
to 3 theoretical trays. The feed stream containing a mixtutge inferred from the temperatures when temperature and
of methanol and isopropanol is fed into the column betweepressure are known, only a controller for the temperatures
packed sections 2 and 3. The temperature of the feed canhmees to be implemented.

Reboiler
Qr 4100 £600 W

Bottoms

IV. DISTILLATION COLUMN SET-UP
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C. Model analysis

To investigate the coupling between the input and output
the Relative Gain Array (RGA) [11], [13] is used. This is
a measure of the influence of a controlled variable, relative
to other controlled variables. Elements close to one are the
preferred control variables for that output. Elements elos
to zero are of less influence for the corresponding output.
Fig. 2. Pictures of the pilot-scale distillation column:ndenser (left), Input-output connections with negative elements indicate
packed section and feed introduction (center), and reb(ight). inverse reaction and should be avoided if possible. The RGA

From Eg. (15) is:
B. Model Identification Fu Qu Qr Fr

For linear MPC, a linear process model is needed. To Tt 0.3688 -0.0411 -1.0201 1.6923
describe the behavior of the column, a model has to be To -0.1792 00783 1.9547 -0.8537
created that links the 4 manipulated variables, i.e. the fe@his matrix indicates a strong influence of the reflux flow
flow rate (Fv), feed duty 'v2), the reboiler duty @r) rate Fr on the top temperatur@t and an inverse gain
and the reflux flow rate {r) with two temperatures, i.e. for the reboiler poweiQr. The reboiler temperaturéb is
the top temperaturel{t) and the reboiler temperatur@®).  strongly determined by the reboiler power and in an inverse
Although the concentration of the end product is actuallyay by the reflux flow rateF'r. As stated above, negative
a desired controller variable, this can easily be inferredlements must be avoided. Hence, when adapting the top
from the temperatures when temperature and pressure #eperature, only the reflux has to be manipulated and the
known. Hence, aMultiple Input, Multiple Output(MIMO)  reboiler power has to be kept constant. This is exactly the
model that controls the reboiler and top temperature will bepposite for the adaptation of the reboiler temperaturéghvh
implemented (Fig. 3). More information on the excitationdemonstrates that control is difficult. Manipulating onehaf
experiments that produced the data from which the modeklo temperatures will always disturb the other.
was derived, can be found in [6]. The linear black-box Both the feed flow rate and feed heating duty have a low

impact as their corresponding values in the RGA are close to

zero. The preferred inputs to manipulate both temperatures

Feed Flow rate—— .
Top are@Qr and F'r. Fv andQu have a low impact on both the
Feed Duty — —— " Temperature top and reboiler temperature and can only be used for small
model corrections.

Reboiler Duty ——| Bottom
Reflux Flow Temperature D. Model predictive control parameters
rate In the above formulation, the control horizon is set to 10

and the prediction horizon is 50. This leads to a hessian of
size 40 in Eqg. (13). The weight matri¥/, is a diagonal

MIMO model was created based on a set of identifiediatrix with elementsi,,, = 1 and W,,, = 0.9. This
Multiple Input, Single OutpugMISO) linear transfer models, pL_m|shes each dewaﬂon fr_om the top temp_erature reference
identified with the Matlab System Identification Toolbox.Slightly more than a deviation from the reboiler temperatur
The resulting MIMO model has been presented in Eq. (152[.‘?9 weight matrixi¥’, has four elements on the diagonal
The time constants and delays are in seconds. uy = 0.8, Wap, =1, Wy, = 0.8 andWy,, = 1 for the
In order to be used in the model predictive controller‘jeed flow rat_e, the feed dqu’ reboiler duty and reflux flow
the model in Eqg. (15) is converted to a discrete state-spaf:%te' respectively. All non-diagonal elements are zero.
model with a discretization interval of 1 minute. After mbde
reduction, the resulting state-space model of order 13 is
controllable, observable and stable. A. Results on control
The validation results presented in [6] have been demon- To make sure that the model is of sufficient quality and
strated that the model for the top temperature is less aecuréo have an idea of the expected measured temperature,
than the model for the reboiler temperature. Nevertheleddardware-In-the-Loop (HIL) experiments are set up. Using
these models are believed to be of sufficient quality to bihe PAC device, the calculated controller inputs are segpli
used in a model based controller. to the original non-reduced linear model of the column. The

Fig. 3. Overview of the in- and outputs of the column model.

V. RESULTS
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(@) Top Temperature Fig. 5. Measured inputs for the experiment depicted in Fig 4.

Measured temperature

= Hardware-In-The-Loop distillation column and its linear model. The small devdat

e S e e from the reference temperature halfway between each step
are caused by the step change of the reference for the other
temperature.

Between the second and fourth hour, both temperatures
have to follow a step down, and return after one hour back
to the starting temperature. At 2h15, the top temperature
starts to decrease, but soon this decrease stops. The temper
ature stays constant until 2h45 and starts increasing glowl
until 3h30. The measured temperature does not follow the
reference nor resembles the HIL experiments. Similarly, th
reboiler temperature decreases rapidly at the beginniittgeof

Reboiler Temperature (°C)

oo ) @ o0 oai0 050 o500 step, but it reaches a temperature almost©.®wer than
et its reference. As soon as the top temperature needs to step
(b) Reboiler Temperature up at 3h10, the reboiler temperature evolves to a temperatur

Fig. 4. Measured outputs for the top- and reboiler tempezatar an  N€arly 0.2C above the reference. Finally, at 4h, the reboiler
experiment tracking a desired reference temperature @rafith a MPC ~ temperature is back on the reference. Both references are no
controller followed well, as both the constraints on the feed flow rate
. %nd reflux flow rate are reached (Fig. 5).

result has been pllotted on Fig. 4 and 5 for the controlle The last two hours of the experiment are a repetition of
temperatures and inputs. _ ~ the first four hours, but slightly faster and with only haléth

After successful HIL experiments, the experiment is pelstep sizes. This time, the measured temperature resembles
formed on the column itself. Fig. 4 depicts the measureghe HIL experiments better, as none of the constraints are
top and reboiler temperature during the experiment. Botfyached. Fig. 5 depicts the four inputs of the distillation
controlled variables follow the same sequence of stepgglumn. The two duties never reach their constraints. The
but the ones for the reboiler temperature are delayed hgfleq duty hardly leaves its reference except around 3h00.
an hour compared to the top temperature. The numerogsh flow rates touch the constraints.
set-point changes yield challenging reference paths to bejt nas to be noted that the difficult control of the tem-
tracked. Moreover, as the time constants of the differefjoratures, reflected by sometimes large deviations from the
subsystems are longer than this half an hour, the system Ne¥emperature reference, was predicted by the relative gain
reaches steady-state. These references are selectedein og;iray' Moreover, as two of the four inputs hardly have any
to combine the column’s safety regulations with a sufficientfrect on the controlled temperatures and set-point change

number of different steps. As the aim of this experiment is 9 ,cceed each other fast, the temperature control can not be
investigate the behavior of the QP solver, the actual qualifyerfect,

of control is less important. _ _

In the first two hours of the experiment, the temperaturd- Results on implementation
are followed quite accurately. The shape of the steps upMore important for future implementations on PLC is
in the temperature references for both temperatures dtee current behavior of the QP solver. The bottom plot in
clearly seen and the measured temperatures are close to figg 6 depicts the number of iterations required to solve
HIL experiments. The differences can be explained by théhe QP problem for experiments on the set-up. The number
environmental conditions and difference between the &ctuaf iterations is mostly one or zero iterations. No iterasion



QP algorithm

- VI. CONCLUSIONS

# This paper has investigated the use of an online model
predictive control algorithm on an embedded programmable
automation controller for a pilot-scale binary distiltai

L ‘ column to track reference temperatures. It has been demon-

strated that it is possible to run an online MPC algorithm

on standard industrial hardware which is not only able to
run the supervisory algorithm, but is also responsible for
~ data logging, Human-Machine Interfacing and low level
control. This proves that a strategy where all procedurés an

B computations needed to control and supervise processes tha

can be described by a moderate size process model (e.g., this

: * pilot-scale distillation column) can be integrated in agén

S~ Ny Y ; i .
00:00 01.00 02:00 03:00 02:00 05:00 06:00 standard industrial embedded device.

Time (Hours)
ACKNOWLEDGMENT

Work supported in part by Katholieke Universiteit Leuven:
means that the solution is the unconstrained solution of th@&T/10/035, OPTEC Center-of-Excellence Optimization ingEn
problem. The number of iterations increases to 13 at the firséering (PFV/10/002), SCORES4CHEM (KP/09/005); by the-Bel
set-point change of the top temperature as the reboiler powgan Federal Science Policy Office: Belgian Program on imtier
reaches its constraint. Up to 70 iterations are needed betweversity Poles of Attraction; by the European Commissioterireg
2h30 and 3h30 when both flow rates reach their constrainta 2 Seas 07022 BE_i-MOCCA. J.F. Van Impe holds the chair
The maximum number of iterations is set to 500, thus thsafety Engineering sponsored by the Belgian chemistry #ad |
algorithm always presents the optimal solution during thisciences federation essenscia.
experiment. In the upper plot of Fig. 6 the corresponding
time is plotted. There is a relation between the time needed
to solve the QP and the number of iterations. More iterationgl] A- Bemporad. Hybrid Toolbox - User's Guide, 2004.

. | ired i but th lot A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. hél
mean In general more required ume, bu ere are a lot 0 explicit linear quadratic regulator for constrained systeAutomatica

exceptions. These exceptions are caused by the fact that the 38(1):3-20, 2002.
algorithm is paused when other tasks are performed on thi8l E. F. Camacho and C. Bordonblodel Predictive Control Springer,

. 2003.
PAC. Althoth the time needed to calculate new PI Set'[4] H. J. Ferreau, H. G. Bock, and M. Diehl. An online active seategy

points is not identical for the same number of iterations, to overcome the limitations of explicit MPQnternational Journal of
it is clear that a new solution is delivered within at most _ Robust and Nonlinear ControlL8(8):816-830, 2008.

. . . [5] C. Hildreth. A quadratic programming procedur&aval Research
3.5 ms for this experiment. The PAC has clearly sufficient™ | isiics Quarterly 4:79 — 85, 1957.

computation power to run the MPC controller together with[6] B. Huyck, K. D. Brabanter, F. Logist, J. D. Brabanter, &rMmpe,

the Pl-controllers, the data Iogging and the Human-Machine and B. De Moor. Identification of a pilot scale distillatiomlemn:

A kernel based approach. [b8th World Congress of the Interna-
Interface. tional Federation of Automatic Contropages 471-476, Milano, Italy,
For future use on PLCs, the memory consumption of  August 28 - September 2 2011.

the employed algorithm is interesting. The current MPCI7] B. Huyck, H. Ferreau, M. Diehl, J. De Brabanter, J. Van &np. De

I . It i h . ith si 40 Moor, and F. Logist. Towards online model predictive cohtio a
controller settings result In a hessian with sizex programmable logic controller: practical consideratiodathematical

elements. This matrix is need to be stored 8 times in memory Problems in Engineeringvol. 2012, Article ID 912603, 20 pages,
for temporary storage to solve the QP. Together with some., 2012. doi:10.1155/2012/912603

L . . . M. Kvasnica, |. Rauova, and M. Fikar. Automatic code gatien for
additional variables and without taklng symmetry of the real-time implementation of model predictive control. Qomputer-

hessian into account, our implementation requires 13281 re  Aided Control System Design (CACSD), 2010 IEEE Internation

variables to be allocated. This number of variables caryeasi __ Symposium arpages 993-998, sept. 2010.
. . . . l[lg] J. Maciejowski. Predictive Control With ConstraintsPearson Educa-
be stored in memory as soon as the PLC is equipped With™ o, | imited, 2002.

more than 64 kB of memory. Speed is not an issue on [&0] J. Mattingley and S. Boyd. Cvxgen: a code generator fobedded
PAC. However, it is impossible to predict the speed of the? | convex optimization.Optimization and Engineeringl3:1-27, 2012.
(]jl

. " . T. Mc Avoy, Y. Arkun, R. Chen, D. Robinson, and P. ScheellA
algorithm on a PLC. Additional research on a PLC is need new approach to defining a dynamic relative gaon. Eng. Prac

to investigate the actual speed of this algorithm on a PLC.  11:907-914, 2002.

For the actual experiment, the required memory ConsumH_Z] S. J. Qin and T. A. Badgwell. A survey of industrial mogheédictive
. . . . control technology.Con. Eng. Prag.11:733-764, 2003.
tion was much higher. Together with the VxWorks operatingi3) r. G. shinskey. Process Control Systems, Application, Design, and

system, the LabVIEW programs require almost 150 MB of ~ Tuning McGraw-Hill Publishing, New York, third edition, 1988.
the available WOI’king memory of the device. Based on th@A] G. Valencia-Palomo and J. Rossiter. Efficient suboatiparametric
. . . . solutions to predictive control for PLC application€ontrol Engi-
results shown in this paper, an MPC controller running in eering Practice 19:732—743, 2011.
parallel with the Pl-controllers and Human-Machine Inter{15] L.Wang.Model Predictive Control System Design and Implementation

face for this pilot-scale distillation column is feasible. Using MATLAB Springer-Verlag London Limited, 2009.

IS
1

w
T

Calculation Time (ms)
- N
T T

|
06:00

=)
S
=)
5}
Q
=
15}
3
Q
N
=}
3
o
@w
=)
5}
o
L
15}
3
o
al
o
3

o o
3 3
T 1
* %
*

iterations
IS
3
T
*}
*
o

N
S
T

Fig. 6. Calculation time and number of iterations for thecu®® algorithm

REFERENCES



