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Abstract— Following the evolution of growing computing
power of industrial embedded devices, this paper investigates
the use of an online Model Predictive Control (MPC) algorithm
on an embedded Programmable Automation Controller (PAC).
The controller is tested on a pilot-scale binary distillation
column to track reference temperatures. A major task in each
model predictive control algorithm is the solution of a quadratic
problem. The Hildreth quadratic programming algorithm is
used for this purpose. It turns out that this algorithm is able
to control the set-up running on the PAC hardware.

I. INTRODUCTION

In a world where economic and environmental issues
become more and more important, efficient control systems
have become indispensable. One of these control systems is
Model Predictive Control (MPC). This control strategy, used
since the 1970s in the chemical industry, has also become
popular in other industry branches in the recent decade, e.g.
the automotive industry. The increasing computing power
of computers and embedded devices as well as algorithmic
developments to speed up the solution to the Quadratic
Problem (QP), the heart of a model predictive controller,
encourage this evolution.

To quickly solve the QP, two main directions have been
followed. One way to solve the QP problem fast is to
solve the problem offline and employ a look-up table to
find the solution online [2]. To encourage the use of this
method, toolboxes and software were developed, e.g. [1].
This approach is often used on embedded devices which lack
computing power, often in combination with the need for
very fast MPC with update rates in the order of milliseconds.
A different way is the use of fast online QP solving routines.
For embedded devices, this approach is more recent. Again,
to encourage the use of these algorithms they are integrated
in dedicated software, code generators and toolboxes such
as [4], [10].

As a consequence of the ever growing computing power of
embedded devices such as Programmable Logic Controllers
(PLCs) and Programmable Automation Controllers (PACs),
manufacturers have included all kinds of additional features.
Web- and FTP servers, Human-Machine Interaction (HMI),
(web)panel control and data logging are examples. The
increasing computing power also adds the possibility to run
online QP solvers for small systems [7].
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This means the need for additional computers to perform,
e.g. data logging and supervision is no longer required. This
evolution makes it possible to leave the often-used path to
implement MPC controllers as it is done for large (chemical)
installations, where the MPC controller and the underlying
PID-controllers run on different (dedicated) machines [12].
For small and moderate installations, all controller levels
can now be run on the same hardware. Hence, this paper
investigates the use of a PAC system (National Instruments
CompactRIO) to control a pilot-scale binary distillation col-
umn. Both the PI-controllers and the supervising online MPC
controller run on the same device. Hence, before a model
based controller can be used on a PAC, an accurate (but
simple) process model has to be constructed. To this end, a
black-box Multiple Input Multiple Output (MIMO) transfer
function model is derived. The use of a linear transfer model
is justified as they are commonly used in industrial MPC
applications [12].

This paper is organized as follows. Section II describes
the employed MPC formulation and the selected online QP
solver. Section III discussed the implementation of the MPC
controller on the PAC system. Next, in section IV, the pilot-
scale binary distillation column is described together with
(i) the model identification procedure for identifying the
controller model and (ii) some additional model analysis.
The results are written in Section V. Finally, Section VI
summarizes the main conclusions.

II. M ODEL PREDICTIVE CONTROL

Linear MPC is well known in literature [9], [3], [15]
and the reader is invited to read these works for a detailed
description. The basic formulation used to control the pilot-
scale distillation column is briefly described below.

A. Model predictive control formulation

A linear, time invariant discrete-time system is described
by:

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k),

with A ∈ R
n×n, B ∈ R

n×m andC ∈ R
p×n. Herem, n and

p are the number of inputs, states and outputs, respectively.
The objective of the controller is to find the optimal input



for this system by means of minimizing a cost function:

J =

Hp
∑

i=1

‖ŷ(k + i|k)− yref(k + i|k)‖
2

Wy
(2)

+

Hc−1
∑

j=0

‖∆u(k + j|k)‖
2

Wu
.

yref is the output reference and̂y is the predicted output.
The formulationy(k + i|k) represents the vectory on
sample timek + i at calculation timek. The change of the
input is ∆u(k + j|k) = u(k + j|k) − u(k + j − 1|k). Hp

and Hc (with Hc ≤ Hp) are respectively the prediction
and control horizon of the controller.Wy ∈ R

p×p and
Wu ∈ R

m×m are positive definite weight matrices.

One of the key elements of MPC is the possibility to
handle constraints. For this paper only input constraints are
taken into account:

u(j) ≤ uMax (3)

u(j) ≥ uMin .

Output constraints are omitted in the current study, but
can easily be introduced. The optimization problem can be
formulated as the minimization of Eq. (2), subject to Eq. (1)
and (3). In order to solve this problem, the optimization
problem is reformulated by elimination of the states in the
form of a QP.

min
θ

J =
1

2
θTHθ + gT θ (4)

subject to : Pθ ≤ α (5)

with Eq. (4) the quadratic objective function, Eq. (5) the
linear inequality constraints andθ the decision variables. To
reformulate the problem, the following steps are taken. First,
the state-space model Eq. (1) is rewritten in terms of the
augmented state:

ξ =

[

∆x

y

]

(6)

with ∆x(k) = x(k)−x(k−1) andy the currently measured
output [15]. The prediction over the prediction horizon is
written in matrix formulation and is formulated as:

Ŷ = Fξ +Q∆U, (7)

with Ŷ and∆U column matrices of predicted outputs and
delta inputs, respectively. E.g.∆U ∈ R

nHc×1 composed of
∆u(k|k) to ∆u(k +Hc − 1|k). The matricesF andQ can
be found in many works on MPC [9], [15]. The matrixQ is
post-processed by including the weight matrices resultingin
the hessian of the objective function in Eq. (4):

H = QTWybd
Q+Wubd

(8)

with Wybd
and Wubd

block diagonal matrices ofWy and
Wu, respectively. To minimize the online calculation work,
matrices that can be computed in advance are calculated
offline. The hessian matrixH is one of the precomputed

matrices that does not change during runtime. The gradient
vectorg from Eq. (4) has to be calculated online. It contains
three parts depending on the current state and the reference
of the in- and outputs. Thus g is calculated by:

g = G1ξ −G2Yref −G3Uref (9)

where G1, G2 and G3 are gradient matrices.Yref is an
R

pHc×1 matrix of the referencesyref(k|k) to yref(k+Hp|k).
The matricesG1, G2 andG3 are constant and are computed
offline:

G1 = HTWT
ybd

F (10)

G2 = HTWT
ybd

(11)

G3 = WT
ubd

(12)

The constraints, i.e., the minimum and maximum admissible
values for∆U, are calculated online.∆UMax is a column
matrix of Hc times∆uMax = uMax − u(k − 1). ∆UMin is
a column matrix ofHc times ∆uMin = uMin − u(k − 1).
Finally, with a lower triangular matrix of the appropriate
identity matricesC1 to convertu to ∆u, the QP problem to
be solved is:

min
∆U

1

2
∆UTH∆U+ g∆U (13)

subject to : ∆UMin ≤ C1∆U ≤ ∆UMax (14)

To solve this QP problem, the Hildreth quadratic algo-
rithm [5] has been used.

B. The Hildreth QP algorithm

This algorithm has been selected for its easy implemen-
tation. The implementation as presented in [15] has been
employed. One the advantages of this approach is that
the solution of the QP is based on an element-by-element
search, which can be easily implemented if no extended
mathematical support is available on a device. As no ma-
trix inversions are involved, the computations will not be
interrupted, which is an advantage in real-time applications.
In case of conflicting constraints, the algorithm will give
a compromised, near-optimal solution. The main steps in
this algorithm are presented in Algorithm 1. The maximum
number of allowed iterations is 500 and the stop criterium
is set to10−8. In contrast to explicit MPC strategies on

1 Calculate the unconstrained solution
2 if unconstrained solution violate constraintsthen
3 while maximum iterations not reachedand solution

not founddo
4 Solve one iteration of the QP
5 end
6 if maximum numbers of iterations is reachedthen
7 Use calculated solution, but limited to the

corresponding constraints
8 end
9 end

Algorithm 1: Steps in the QP algorithm.

Programmable Logic Controllers (PLCs) [8], [14], the use



of online QP solvers on these devices can be considered [7].
Hence, an easy to implement algorithm is indispensable as
the code has to be translated to an appropriate language
following IEC 61131-3 which is used for PLCs. The Hildreth
algorithm is a good candidate. More recent QP solvers [4],
[10] are optimized extremely such that only code generators
or off-the-shelf software is the best practice to implement
them. Moreover, these recent solvers contain a lot of code
and are often written in C/C++. Hence, a translation to a
different language is required when these solvers are used on
a PLC, which is a fault-sensitive and time consuming step.
The experiments in this paper are set up to investigate the
applicability of the classical Hildreth QP algorithm hosted by
a PLC. As a step towards this goal, the algorithm is hosted
on a PAC.

III. C ONTROLLER IMPLEMENTATION

The experimental set-up employed in this paper is a pilot-
scale distillation column. The actuators and sensors are
connected to a Compact Fieldpoint (National Instruments,
Austin) with a cFP-2020 controller interface and I/O modules
cFP-RTD-124, cFP-AIO-610, cFP-AIO-600 and cFP-AI-110.
Due to the lack of computing power, this Compact Field-
point is connected to a powerful CompactRIO cRIO-9024
CPU (800 MHz, 512 MB) to run the controller programs.
Two simultaneously running LabVIEW programs (National
Instruments, Austin) have been written.

The first program, theHMI program, contains the PI-
controllers, the human-machine interface, the data logging
and the visualization. This program runs at a rate of 10 Hz.
The second program, theMPC program, estimates the
current state of the system by means of a Kalman filter.
This estimated current state is passed, together with the
current value of the top and reboiler temperature, the former
estimated state and the former applied input to a library
written in C++ calculating the gradientg and the upper and
lower bounds for the QP. Next, the routine to solve the QP
written in the same software library is called. The solution
is returned to LabVIEW. After scaling, the inputs are passed
to the HMI program where they are used as new set-points
for the PI-controllers. The software library written in C++is
called via thecall library functionwhich is part of LabVIEW.
The operating system of the cRIO is VxWorks 6.3. The
compilation of the C++ code is done by gcc 3.4.4.

IV. D ISTILLATION COLUMN SET-UP

A. Description

The experimental set-up involves a packed distillation
column (see Fig. 1 and 2). The column is about 6 m high
and has an internal diameter of 6 cm. The column works
under atmospheric conditions and contains three sections of
about 1.5 m with Sulzer CY packing (Sulzer, Winterthur)
responsible for the separation. This packing has a contact
surface of 700 m2/m3 and each meter packing is equivalent
to 3 theoretical trays. The feed stream containing a mixture
of methanol and isopropanol is fed into the column between
packed sections 2 and 3. The temperature of the feed can be

adjusted by an electric heater which can deliver heat up to a
maximum of 250 W. At the bottom of the column a reboiler
is present containing two electric heaters, each of maximum
3000 W. In the reboiler, a part of the liquid is vaporized
while the rest is extracted as bottom stream. At the top of
the column, a total condenser allows the condensation of
the entire overhead vapor stream, which is then collected
in a reflux drum. A part of the condensed liquid is fed
back to the column as reflux, while the remainder leaves the
column as the distillate stream. In this set-up the following

Fig. 1. Diagram of the pilot-scale distillation column. Nominal set-points
are printed in bold and are followed by the maximum admissible deviations.

four variables can be manipulated: the reboiler dutyQr

(W), the feed rateFv (g/min), the duty of the feed heater
Qv (W) and the reflux flow rateFr (g/min). The distillate
flow Fd (g/min) is adjusted to maintain a constant reflux
drum level. Measurements are available for the reflux flow
rate Fr, the distillate flow rateFd, the feed flow rate
Fv and nine temperatures: the temperature at the top of
the columnT t, the temperatures in the center of every
packing section (i.e.Ts1, Ts2 and Ts3, respectively), the
temperatureTv1 between section 1 and 2, the temperature
Tv2 between section 2 and 3, the temperatureTb in the
reboiler of the column, and the temperatures of the feed
before and after heating (i.e.,Tv0 andTv2, respectively). All
temperatures are measured in degrees Celsius. There is no
online measurement of the concentrations in the distillateand
bottom stream. These can be measured off-line, e.g., based
on a their refractive index using a refractometer. However,
since the concentrations for the system under study can easily
be inferred from the temperatures when temperature and
pressure are known, only a controller for the temperatures
has to be implemented.



[

Tt

Tb

]

=

[

−2.26
(1+2565s)(1+135s)

0.53
1+735s

3.74
(1+1803s)(1+78s)

−3.45
(1+2698s)(1+72s)

e
−53.3s

−2.13
(1+1098s)

e
−77.9s 0.89

1+1551s
5.37

2980s+1
e
−37.1s −2.42

(1270s+1)(545s+1)

]


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
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




(15)

Fig. 2. Pictures of the pilot-scale distillation column: condenser (left),
packed section and feed introduction (center), and reboiler (right).

B. Model Identification

For linear MPC, a linear process model is needed. To
describe the behavior of the column, a model has to be
created that links the 4 manipulated variables, i.e. the feed
flow rate (Fv), feed duty (Tv2), the reboiler duty (Qr)
and the reflux flow rate (Fr) with two temperatures, i.e.
the top temperature (T t) and the reboiler temperature (Tb).
Although the concentration of the end product is actually
a desired controller variable, this can easily be inferred
from the temperatures when temperature and pressure are
known. Hence, aMultiple Input, Multiple Output(MIMO)
model that controls the reboiler and top temperature will be
implemented (Fig. 3). More information on the excitation
experiments that produced the data from which the model
was derived, can be found in [6]. The linear black-box

model

Feed Flow rate

Feed Duty

Reboiler Duty

Reflux Flow
rate

Top
Temperature

Bottom
Temperature

Fig. 3. Overview of the in- and outputs of the column model.

MIMO model was created based on a set of identified
Multiple Input, Single Output(MISO) linear transfer models,
identified with the Matlab System Identification Toolbox.
The resulting MIMO model has been presented in Eq. (15).
The time constants and delays are in seconds.

In order to be used in the model predictive controller,
the model in Eq. (15) is converted to a discrete state-space
model with a discretization interval of 1 minute. After model
reduction, the resulting state-space model of order 13 is
controllable, observable and stable.

The validation results presented in [6] have been demon-
strated that the model for the top temperature is less accurate
than the model for the reboiler temperature. Nevertheless,
these models are believed to be of sufficient quality to be
used in a model based controller.

C. Model analysis

To investigate the coupling between the input and output
the Relative Gain Array (RGA) [11], [13] is used. This is
a measure of the influence of a controlled variable, relative
to other controlled variables. Elements close to one are the
preferred control variables for that output. Elements close
to zero are of less influence for the corresponding output.
Input-output connections with negative elements indicatean
inverse reaction and should be avoided if possible. The RGA
From Eq. (15) is:

Fv Qv Qr Fr

T t 0.3688 -0.0411 -1.0201 1.6923
Tb -0.1792 0.0783 1.9547 -0.8537

This matrix indicates a strong influence of the reflux flow
rate Fr on the top temperatureT t and an inverse gain
for the reboiler powerQr. The reboiler temperatureTb is
strongly determined by the reboiler power and in an inverse
way by the reflux flow rateFr. As stated above, negative
elements must be avoided. Hence, when adapting the top
temperature, only the reflux has to be manipulated and the
reboiler power has to be kept constant. This is exactly the
opposite for the adaptation of the reboiler temperature, which
demonstrates that control is difficult. Manipulating one ofthe
two temperatures will always disturb the other.

Both the feed flow rate and feed heating duty have a low
impact as their corresponding values in the RGA are close to
zero. The preferred inputs to manipulate both temperatures
areQr andFr. Fv andQv have a low impact on both the
top and reboiler temperature and can only be used for small
corrections.

D. Model predictive control parameters

In the above formulation, the control horizon is set to 10
and the prediction horizon is 50. This leads to a hessian of
size 40 in Eq. (13). The weight matrixWy is a diagonal
matrix with elementsWy11

= 1 and Wy22
= 0.9. This

punishes each deviation from the top temperature reference
slightly more than a deviation from the reboiler temperature.
The weight matrixWy has four elements on the diagonal
Wu11

= 0.8, Wu22
= 1, Wu33

= 0.8 andWu44
= 1 for the

feed flow rate, the feed duty, reboiler duty and reflux flow
rate, respectively. All non-diagonal elements are zero.

V. RESULTS

A. Results on control

To make sure that the model is of sufficient quality and
to have an idea of the expected measured temperature,
Hardware-In-the-Loop (HIL) experiments are set up. Using
the PAC device, the calculated controller inputs are supplied
to the original non-reduced linear model of the column. The



00:00 01:00 02:00 03:00 04:00 05:00 06:00
58.5

59

59.5

60

60.5

61

Time (Hours)

T
op

 T
em

pe
ra

tu
re

 (
°C

)

 

 
Measured temperature
Hardware−In−The−Loop
Reference temperature

(a) Top Temperature

00:00 01:00 02:00 03:00 04:00 05:00 06:00
77.2

77.4

77.6

77.8

78

78.2

78.4

78.6

78.8

79

Time (Hours)

R
eb

oi
le

r 
T

em
pe

ra
tu

re
 (

°C
)

 

 
Measured temperature
Hardware−In−The−Loop
Reference temperature

(b) Reboiler Temperature

Fig. 4. Measured outputs for the top- and reboiler temperature for an
experiment tracking a desired reference temperature profile with a MPC
controller

result has been plotted on Fig. 4 and 5 for the controlled
temperatures and inputs.

After successful HIL experiments, the experiment is per-
formed on the column itself. Fig. 4 depicts the measured
top and reboiler temperature during the experiment. Both
controlled variables follow the same sequence of steps,
but the ones for the reboiler temperature are delayed half
an hour compared to the top temperature. The numerous
set-point changes yield challenging reference paths to be
tracked. Moreover, as the time constants of the different
subsystems are longer than this half an hour, the system never
reaches steady-state. These references are selected in order
to combine the column’s safety regulations with a sufficient
number of different steps. As the aim of this experiment is to
investigate the behavior of the QP solver, the actual quality
of control is less important.

In the first two hours of the experiment, the temperatures
are followed quite accurately. The shape of the steps up
in the temperature references for both temperatures are
clearly seen and the measured temperatures are close to the
HIL experiments. The differences can be explained by the
environmental conditions and difference between the actual
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Fig. 5. Measured inputs for the experiment depicted in Fig 4.

distillation column and its linear model. The small deviations
from the reference temperature halfway between each step
are caused by the step change of the reference for the other
temperature.

Between the second and fourth hour, both temperatures
have to follow a step down, and return after one hour back
to the starting temperature. At 2h15, the top temperature
starts to decrease, but soon this decrease stops. The temper-
ature stays constant until 2h45 and starts increasing slowly
until 3h30. The measured temperature does not follow the
reference nor resembles the HIL experiments. Similarly, the
reboiler temperature decreases rapidly at the beginning ofthe
step, but it reaches a temperature almost 0.3◦C lower than
its reference. As soon as the top temperature needs to step
up at 3h10, the reboiler temperature evolves to a temperature
nearly 0.2◦C above the reference. Finally, at 4h, the reboiler
temperature is back on the reference. Both references are not
followed well, as both the constraints on the feed flow rate
and reflux flow rate are reached (Fig. 5).

The last two hours of the experiment are a repetition of
the first four hours, but slightly faster and with only half the
step sizes. This time, the measured temperature resembles
the HIL experiments better, as none of the constraints are
reached. Fig. 5 depicts the four inputs of the distillation
column. The two duties never reach their constraints. The
feed duty hardly leaves its reference except around 3h00.
Both flow rates touch the constraints.

It has to be noted that the difficult control of the tem-
peratures, reflected by sometimes large deviations from the
temperature reference, was predicted by the relative gain
array. Moreover, as two of the four inputs hardly have any
effect on the controlled temperatures and set-point changes
succeed each other fast, the temperature control can not be
perfect.

B. Results on implementation

More important for future implementations on PLC is
the current behavior of the QP solver. The bottom plot in
Fig. 6 depicts the number of iterations required to solve
the QP problem for experiments on the set-up. The number
of iterations is mostly one or zero iterations. No iterations
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means that the solution is the unconstrained solution of the
problem. The number of iterations increases to 13 at the first
set-point change of the top temperature as the reboiler power
reaches its constraint. Up to 70 iterations are needed between
2h30 and 3h30 when both flow rates reach their constraint.
The maximum number of iterations is set to 500, thus the
algorithm always presents the optimal solution during this
experiment. In the upper plot of Fig. 6 the corresponding
time is plotted. There is a relation between the time needed
to solve the QP and the number of iterations. More iterations
mean in general more required time, but there are a lot of
exceptions. These exceptions are caused by the fact that the
algorithm is paused when other tasks are performed on the
PAC. Although the time needed to calculate new PI set-
points is not identical for the same number of iterations,
it is clear that a new solution is delivered within at most
3.5 ms for this experiment. The PAC has clearly sufficient
computation power to run the MPC controller together with
the PI-controllers, the data logging and the Human-Machine
Interface.

For future use on PLCs, the memory consumption of
the employed algorithm is interesting. The current MPC
controller settings result in a hessian with size 40×40
elements. This matrix is need to be stored 8 times in memory
for temporary storage to solve the QP. Together with some
additional variables and without taking symmetry of the
hessian into account, our implementation requires 13281 real
variables to be allocated. This number of variables can easily
be stored in memory as soon as the PLC is equipped with
more than 64 kB of memory. Speed is not an issue on a
PAC. However, it is impossible to predict the speed of the
algorithm on a PLC. Additional research on a PLC is needed
to investigate the actual speed of this algorithm on a PLC.

For the actual experiment, the required memory consump-
tion was much higher. Together with the VxWorks operating
system, the LabVIEW programs require almost 150 MB of
the available working memory of the device. Based on the
results shown in this paper, an MPC controller running in
parallel with the PI-controllers and Human-Machine Inter-
face for this pilot-scale distillation column is feasible.

VI. CONCLUSIONS

This paper has investigated the use of an online model
predictive control algorithm on an embedded programmable
automation controller for a pilot-scale binary distillation
column to track reference temperatures. It has been demon-
strated that it is possible to run an online MPC algorithm
on standard industrial hardware which is not only able to
run the supervisory algorithm, but is also responsible for
data logging, Human-Machine Interfacing and low level
control. This proves that a strategy where all procedures and
computations needed to control and supervise processes that
can be described by a moderate size process model (e.g., this
pilot-scale distillation column) can be integrated in a single
standard industrial embedded device.
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