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Abstract: Linear system identification is an important tool in experimental modal 
analysis.  It allows for the extraction of resonance frequencies, damping ratios and mode 
shapes of a vibrating structure.  In general, the model order is chosen quite high so as to 
catch all the important characteristics of the structure, even in the presence of large 
amounts of measurement noise.  This often results in the appearance of non-physical, or 
so-called spurious modes.  In this paper we will present a set of heuristic techniques to 
remove spurious modes from a previously identified model.  The advantage of the 
techniques that will be presented is that they do not rely on statistical information, making 
them ideally suited for use in combination with subspace identification.  The quality of 
the techniques will be assessed using simulated data and observations from in flight 
flutter tests.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
System identification is a standard tool for the 
analysis of forcefully or ambient excited vibrating 
structures (Van der Auweraer, 2001).  A linear model 
for the structure is built from available observations, 
based on which modal characteristics as resonance 
frequencies and modal shapes can be estimated.  
Typically, the vibrating structure is equipped with 
tens to hundreds of sensors and the average 
identification order needed to obtain a suitable model 
is reasonably high.  Since measurements on the 
structure are often disturbed by large amounts of 
measurement noise, and unknown inputs do not 
always satisfy the white noise assumption, eg. during 
in flight tests with an aircraft subjected to turbulence, 
choosing a model order is often a difficult task, 
certainly when the amount of available measurements 
is limited.  Not seldomly do models in which the 
order was chosen according to some order selection 
technique, therefore prove inadequate to describe all 
relevant characteristics of the structure.  In modal 
analysis, one therefore typically uses an identification  
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order that is guaranteed to be larger than necessary.  
Unfortunately however, as the order of the model is 
increased, so will the amount of identified modes.  
This will in many cases inevitably result in the 
appearance of so-called spurious modes which bear no 
immediate physical relevance.  A common technique 
to remove spurious modes from a model is the 
stabilization diagram (Van der Auweraer, 2001), 
where models of increasing order are compared, and 
modes that are repeatedly found in these models with 
about the same characteristics are considered to be 
physical.  A problem however is that the comparisson 
is highly user interactive, making the stabilization 
diagram unsuited for use in an online envionment.  In 
this paper we will describe several automatic 
techniques to detect spurious modes and remove them 
from the model.  Although the techniques are in 
general quite heuristic in nature, as is the stabilization 
diagram, we will show by means of a simulation and 
an example from the avionics industry that in many 
practical cases a quick discrimination between 
spurious and physical modes can effectively be made, 
without reverting to an analysis of the stabilization 
diagram.  An advantage of the techniques that will be 
presented is that they are ideally suited to be applied 
to models obtained using subspace identification.  
Subspace identification is a popular concept that 



 

     

allows for a fast and robust identification of MIMO 
systems by using projections of subspaces spanned by 
the rows and columns of Hankel matrices containing 
input- and output measuremens (Verhaegen 1996; 
Van Overschee and De Moor, 1996; Bauer and Ljung, 
2002), but does unfortunately not return stochastic 
information as confidence bounds around poles and 
zeros, which are used by some recently proposed 
mode selection techniques (Verboven et al., 2002). 
 
In section 2 we will briefly refresh the basic concepts 
of subspace identification, state space models and the 
theory of balanced model reduction from a practical 
point of view. Several mode selection techniques will 
then be presented in section 3.  In section 4, we will 
assess the quality of the proposed techniques by 
means of a simulated example, and an analysis of data 
obtained from a test flight of an airplane.  We will 
show that the methods presented in section 3 can 
effectively be applied to detect and remove spurious 
modes from a linear model, even in the presence of 
large amounts of measurement noise.  Finally, in 
Section 5, some conclusions will be drawn. 
 
Some common notations that will be used throughout 
this text are the following: { }⋅E  will be used to denote 

the expected value of an expression.  ):,:( lkjiA  

denotes a submatrix of A, bounded by the ith and jth 
row and kth and lth column.  If a colon (:) is used on its 
own (eg. A(:,k:l)) all available rows and/or columns 
are included in the submatrix. 

 
 

2. SUBSPACE IDENTIFICATION AND THE 
STATE SPACE FORMULATION 

 
The aim of subspace identification is to identify 
models of the form: 
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where { }⋅E  denotes the expected value operator and 

pqδ the Kronecker delta.  It is assumed that:  
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The elements of the vectors l
ky ¶∈  and m

ku ¶∈  

are given observations of the outputs and inputs of the 
system at the discrete time index k.  The vector 

�

¶∈kx  is the unknown state vector at time k.  The 

unobserved process and measurement noise n
kw ¶∈  

and l
kv ¶∈  are assumed to be white, zero mean, 

gaussian with covariance matrices as given in (2).  

The system matrices A,B,C,D and the covariance 
matrices Q, S, and R have appropriate dimensions. 
 
In subspace identification, the model (1) is obtained 
using projections of rows and columns of so-called 
block Hankel matrices containing the inputs and 
outputs of the system.  These projections can typically 
be calculated using basic tools as QR- and SVD-
decompositions, eliminating the need for a costly 
optimization of a non convex cost function as in many 
predictor-error methods, and making the method 
inherently robust. 
 
The obtained state-space representation (1) is not 
unique.  Applying a basis transformation Txx →  and 
a corresponding transformation  of the state space 

matrices, ),,,(),,,( 11 DCTTBTATDCBA −−→ , the 

model (1) can be written in a multitude of forms, 
which all describe the same input-output behavior. A 
common representation in modal analysis is the so-
called modal representation. 
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where the system matrix Λ  is diagonal and mainly 
consists of pairs of complex conjugated eigenvalues 

λλ ,  being the poles of the system.  For this to be 
possible the original system matrix A needs to be 
diagonalizable which is in practical applications 
usually the case.  The modal characteristics of the 
structure under study can then easily be obtained from 
(6) as follows: 
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with if , id  and iv  the resonance frequency, 

damping and mode shapes corresponding to the ith 
pole .),( iii λ=Λ  sT  is the sampling rate. 

 
Another commonly used representation is the so-
called Balanced representation (Obinata and 
Anderson, 2001).  The idea of the Balanced 
representation is to decompose the controllabity and 
observability grammians of the model into principal 
components in order to evaluate the contributions of 
each mode to the overall input/output behavior of the 
model.  The controllability Grammian P and 
observability Grammian Q can easily be obtained as 
solutions to the following Lyapunov equations: 
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The key property of a balanced realization is that a 

state transformation Txxb =  and a corresponding 



 

     

similarity transformation ,(),,,( 1−= TATDCBA bbb  

),, 1 DCTTB − is selected such that the controllability 

and observability grammians are both equal to a 
diagonal matrix Σ . 
 

 
0

0

=−Σ+Σ
=−Σ+Σ

bTbbTb

TbbTbb

CCAA

BBAA  (7) 

 
The larger a diagonal entry of the grammians, the 
bigger the contribution of the corresponding entry of 
the state vector to the overall input/output behavior of 
the model.  The diagonal entries are therefore usually 
sorted on the diagonal in descending order.  The so 
called concept of Balanced model reduction is then 
nothing else than the removal of the last entries of the 
state.  More concretely, if the balanced system 
matrices are partitioned as follows: 
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The reduced model would be ),,,( 1111 DCBA bbb . 

 
 

3. METHODS FOR MODE DISCRIMINATION 
 

3.1. Introduction 
 

In this section we will describe some techniques to 
remove spurious modes from a model of the form (1).  
We will thereby make extensive use of the modal and 
balanced representations of a system, as introduced in 
section 2. 
 
 
3.2. 2H  and ∞H  modal truncation 

 
A first naive approach would be to write the model in 
its modal form, as given in (4), remove a certain 
mode, and assess the “damage” done to the model in 

H 2  and H ∞  norm.  Hence, if the full order model is 

called Hfull, and Hreduced is the lower order model 

formed by removing the complex conjugated poles 

iλ and iλ from (4), the following expressions are 

evaluated: 

 

 ∞−− reducedfull2reducedfull , HHHH , (10) 

 

where  

 

 [ ] .
:),(

:),(

0

0
)(:,)(:,

)()()(
1

2

reducedfull























−

==−
−

iB

iB
zIiCiC

zHzHzH

i

i

i

λ
λ  (11) 

The expressions in (10) can be calculated as: 
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where iP  is the controllability matrix of the second 

order model (11), and can be obtained by solving a 

Lyapunov equation as in (6).  Numerical  procedures 

are widely available for the calculation of the infinity 

norm (Boyd et al., 10).  After repeatedly calculating 

(12), once for each mode, the distance measures 

obtained are divided by their maximal value, this is, 

the maximal distance that can be obtained by 

removing 1 mode.  The result is a number between 0 

and 1 for each mode, and each criterium ( 2H  and 

)∞H  which will be used as a significance parameter 

describing the importance of the mode in section 4. 

 

In general it seems reasonable to assume that the more 

important a mode is, the bigger will be the influence 

of its removal from the model, and hence its 

significance parameter.  Furthermore it is shown in 

(Jonckheere, 1984) that for nearly undamped 

structues, the grammians of the modal form are almost 

diagonal, meaning that the modal and the balanced 

form are “close” to each other in some sense.  Hence, 

for such structures, modal truncation makes perfect 

sense since it leads to similar results as balanced 

model reduction.  In many practical cases, however, 

the structure under study is not nearly undamped, and 

modal truncation may lead to an inadequate rejection 

of spurious modes due to phenomena as mode 

coupling, which make it very hard to assess the 

importance of a mode by examining a single second 

order subsystem.  This will also be shown in the 

examples in section 4.  In order to draw better 

conclusions for complicated structures, we will 

therefore look into the connection between the 

balanced and the modal representation of the 

identified model. 

 

 

3.3. Connection between the balanced and the modal 
form 

 
Since the balanced and the modal form are both 

representations of the same model, there is always a 

similarity transformation T linking one form to the 

other: 
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From 1−=Λ TTAb  it follows that the diagonal 

elements of Λ  are a linear combination of the entries 

of bA , where we know that the entries of bA  that are 

most relevant for the input/output behavior of the 

model in the sense of Moore are situated in its upper 



 

     

left part.  A formal way to exploit this fact in a mode 

selection context is to replace bA  with a significance 
matrix S of the same dimensions, where the elements 
of S give a measure of the importance of the 

corresponding entries in bA , eg. 
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and inspect the diagonal elements of 1−⋅⋅ TST , 

with T  the elementwise absolute value of T, to 

obtain a measure for the significance of the 
corresponding pole in Λ .    Again, the significance 
parameters are rescaled so as to lie between 0 and 1. 
 
 
3.4. Continuous extension to balanced truncation 
 
Closely related to the former technique is the concept 
of a continuous extension to balanced truncation.  
Instead of truncating the model and completely 
removing the last entries of the state, one might opt to 
change the balanced system matrix, 
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and introduce a parameter ε  to continuously remove 
the last entries of the state, eg. as follows: 
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While ε  is continuously decreased, starting from one, 
the influence on the system poles can be assessed, eg. 
by using the euclidean distance measure in the 
complex plane.  Again it is assumed that modes that 
are mainly related to the least important elements of 

bA  will be influenced more and can hence be 
classified as spurious. 
 
 
3.5. Pole/zero cancellations 

 
Pole/zero cancellations, a zero of a rational entry in 
the transfer function matrix that is almost or 
completely equal to a system pole, rendering a mode 
nearly uncontrollable or unobservable with respects to 
some or all of the inputs and outputs, are not 
uncommon in models identified from vibrating 
structures, especially when a high modeling order is 

used, and are often an indication that the cancelled 
pole is spurious.  It is however seldom a good idea to 
revert to measures as the distance between a pole and 
some nearby transfer function zeros as the basis of 
mode selection techniques, as lowly damped, weakly 
excited modes may well be accompanied by a nearby 
zero, even if the mode is quite important for the 
physical characteristics of the structure as a whole.  In 
(Verboven et al. 2002), it was therefore proposed to 
take extra statistical information as the variance of a 
pole into account when examining pole/zero 
cancellations.  One of the techniques described in this 
work is to construct a confidence region around every 
pole and count the number of transfer function zeros 
within this region.  Such confidence regions, however, 
are not available if the model is obtained using 
subspace identification.  It is however reasonably 
acceptable that if we started moving a pole in our 
model, the influence on the model as a whole would 
be inversely proportional to the unknown variance on 
the pole position.  As a mode selection rule, similar to 
the one presented in (Verboven et al. 2002) we 
therefore propose to move each pole to its lm ×  
closest transfer function zeros and assess the influence 
on the model as a whole in each of the lm ×  cases, 
eg. by calculating the sum of the 2- or infinity-norms 
of the differences between the adjusted and the 
original models.  As usual, a significance parameter is 
obtained by dividing the distances so obtained by their 
maximal value resulting in a value between 0 and 1. 
 
 
3.6. Cross correlations with SISO models 

 
An obvious critertium, proposed in (Verboven et al. 
2002), is to check to what extent poles of the full 
MIMO model (1) can be retrieved from smaller 
models obtained from individual or groups of input 
and output sequences.  For our examples in section 4, 
we constructed l MISO models from the available 
observations, one for each output, and compared the 
poles so obtained with the ones from the full MIMO 
model using the standard euclidean distance measure 
in the complex plane.  To speed up the procedure, the 
individual models can for instance be obtained using a 
fast ARX modeling procedure. 
 
 

4. EVALUATION 
 
In order to evaluate the techniques outlined in section 
3, we applied them to two datasets.  The first was 
generated by filtering white noise through a known 
twelfth order model and adding 40% of measurement 
noise to the simulated output so obtained.  A second 
example involves observation data from an in flight 
flutter test of an aircraft.  This dataset was also 
analyzed by the aircraft’s manufacturer to allow for a 

comparisson with our selection methods. 

 

 

 

 

 



 

     

4.1. A simulation 
 
Six dominant modes, obtained from a ground 
vibration test of an airplane were used to create a 
twelfth order model with 38 outputs, one known input 
and three unknown noise sources.  White, zero mean, 
stationary, gaussian noise with unit variance was 
applied to the known, as well as the three unknown 
inputs in order to create 64 seconds of output data, 
sampled at 256 Hz.  40% of measurement noise was 
added and the output data together with the known 
input where thereafter used for identification using a 
robust N4SID subspace algorithm, described in (Van 
Overschee et al., 1996), where the modelling order 
was set to 30.  Frequencies, dampings, and 
significance parameters as returned by the different 
heuristic mode selection techniques are given in table 
1, where the six true modes are located on top.  The 
heuristic mode selection techniques are ordered from 
left to right in the same order as described in this 
paper, and the last column (sum) is nothing else than 
the sum of all the significance parameters for a certain 
mode.  It is important to note here that a significance 
parameter smaller than 0.5 does not necessarily mean 
that the mode is unimportant.  The significance 
parameters are mostly rescaled distances which means 
that their absolute value has little meaning.  In a 
modal analysis context a proper way to remove 
spurious modes would be to sort the modes in 
descending order of significance and look for a 
sudden decrease in significance or, if not available, set 
a treshhold for the maximal number of modes you are 
willing to consider in your further analysis.  From 
table 1 it is clear that the six true modes are correctly 
identified as the six most important ones by all 
heuristic techniques except for 2H , which can be 

explained by the effect of mode coupling of the modes 
around 5 Hz, where individual modes reinforce each-
other so as to create a clear resonance, although the 
individual modal subsystems have a low 2H  norm. 

 
 
4.2. In Flight flutter testing of an aircraft 
 
67 seconds of measurement data, sampled at 256 Hz, 
obtained during in flight flutter tests of a fly-by-wire 
airplane equipped with 12 accelerometers and excited 
by white noise where identified using the same 
subspace algorithm as in the previous example, with 
the modelling order set to 40.  As in the previous 
example, frequencies, dampings, and results for the 
different heuristic techniques are given in table 2.  
The most important modes, as given by the airplane’s 

manufacterer are printed in bold, and a stabilization 

diagram is added for comparison in figure 1.  Note 

that all modes are classified correctly, except for the 

mode at 3.897 Hz, printed in italic, which is stabilized 

in figure 1,  but was not accepted as such by our 

algorithms.  Further analysis revealed that the mode in 

question was extremely poorly excited during the test-

flight, which clarifies its classification as 

insignificant.  For a correct classification of such 

weak modes, a combination of the proposed 

techniques with an automatic analysis of the 

. 

Fig. 1. Stabilization diagram from in-flight flutter test 

measurements. ‘f’ is used for stable frequencies 

(1%), ‘d’ for stable damping ratios (5%) and ‘v’ 

for stable vectors (2%).  If all conditions are 

satisfied, the pols is labeled as stable ‘s’. 

 

 

stabilization diagram, as presented in (Vechhio et al., 
2003) might be useful 

 

5. CONCLUSIONS 

 

In this paper, several techniques were proposed for the 

removal of spurious mode from a previously 

identified model.  A special property of the presented 

techniques is that they do not rely on statistical 

information, making them ideally suited for use with 

models obtained using subspace identification.  

Although the techniques presented are quite heuristic 

in nature, it was shown by a simulation and an 

example from the avionics inductry that in many 

cases, a distinction between true and spurious modes  

can effectively be made, even in the presence of large 

amounts of measurement noise.  Problems may 

however occur if modes are very poorly excited.  
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Table 1  Frequencies, dampings, and significance parameters for a simulation using a 12
th

 order 

model.  Modes are ordered according the the sum of their significance paramaters.  The true modes 

are printed in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  Frequencies, dampings, and significance parameters for data obtained from an in-flight 

flutter test.  Modes are ordered according the the sum of their significance paramaters.  The true 

modes are printed in bold.  The status of the mode at 3.897 Hz, printed in italic, is unsure.  It is well 

stabilized in the stabilization diagram, but not recognized as such by the selection procedures.  

Further analysis revealed that the mode in question is very poorly excited. 

 
Frequency Damping H2 Hinf Balanced Continuous Pole/zero Cross-corr. Sum 

3.296Hz 4.92% 1.000 1.000 0.948 0.244 1.000 0.473 4.665 
3.439Hz 2.75% 0.692 0.338 1.000 0.590 0.678 1.000 4.298 
5.901Hz 4.09% 0.748 0.891 0.914 1.000 0.499 0.241 4.293 
2.609Hz 2.53% 0.017 0.023 0.859 0.187 0.163 0.847 2.096 
5.590Hz 2.77% 0.183 0.104 0.836 0.059 0.144 0.289 1.615 
5.179Hz 2.73% 0.112 0.072 0.790 0.096 0.066 0.165 1.302 
3.006Hz 3.05% 0.032 0.020 0.715 0.124 0.072 0.212 1.175 
6.597Hz 5.44% 0.035 0.018 0.548 0.157 0.043 0.076 0.877 
3.418Hz 4.22% 0.114 0.066 0.436 0.060 0.042 0.078 0.796 
5.259Hz 4.98% 0.141 0.064 0.429 0.072 0.045 0.036 0.786 
6.008Hz 2.99% 0.059 0.055 0.479 0.074 0.018 0.090 0.775 
3.220Hz 3.93% 0.067 0.035 0.489 0.078 0.015 0.013 0.697 
6.416Hz 1.24% 0.008 0.023 0.437 0.075 0.003 0.134 0.679 
6.118Hz 6.27% 0.093 0.055 0.189 0.215 0.029 0.039 0.619 
4.813Hz 4.60% 0.013 0.006 0.368 0.069 0.028 0.121 0.605 
3.897Hz 4.11% 0.005 0.013 0.124 0.052 0.000 0.226 0.421 
4.514Hz 1.72% 0.002 0.001 0.245 0.057 0.001 0.082 0.388 

Frequency Damp H2 Hinf Balanced Continuous Pole/zero Cross-corr. Sum 

3.169Hz 0.69% 0.3565 0.1303 1.0000 1.0000 1.0000 1.0000 4.4867 
3.743Hz 0.82% 0.2871 0.3605 0.9288 0.9288 0.7273 0.6563 3.8887 
4.627Hz 1.30% 0.1401 0.1043 0.7485 0.7485 0.0853 0.1802 2.0069 
5.099Hz 1.95% 0.2760 0.1951 0.7557 0.7557 0.1395 0.0778 2.1998 
5.885Hz 1.27% 1.0000 1.0000 0.8474 0.8474 0.2756 0.2607 4.2311 
8.392Hz 1.54% 0.1237 0.1107 0.6425 0.6425 0.0515 0.0673 1.6381 
6.161Hz 6.23% 0.2324 0.0322 0.5486 0.5486 0.0132 0.0076 1.3826 
5.610Hz 7.48% 0.1752 0.0247 0.4871 0.4871 0.0059 0.0084 1.1885 
0.541Hz 55.73% 0.0224 0.0042 0.3780 0.3779 0.0016 0.0048 0.7888 
1.923Hz 13.29% 0.0139 0.0025 0.3368 0.3368 0.0006 0.0056 0.6961 
9.030Hz 2.38% 0.0070 0.0019 0.2630 0.2630 0.0002 0.0061 0.5412 
3.175Hz 9.30% 0.0195 0.0037 0.2277 0.2277 0.0001 0.0072 0.4859 
3.490Hz 25.20% 0.0602 0.0099 0.1845 0.1844 0.0004 0.0026 0.4419 
7.976Hz 11.05% 0.0121 0.0021 0.1516 0.1516 0.0002 0.0069 0.3245 
3.414Hz 8.56% 0.0119 0.0035 0.1318 0.1318 0.0000 0.0071 0.2862 



 

     

 


