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Abstract

In this paper a new recursive output-only identification algorithm is proposed based on stochastic realization, a
classical covariance driven subspace identification technique. The recursive algorithm yields results that are in
close agreement with those of its non-recursive counterpart. Furthermore, the relatively low complexity of the
algorithm makes it an excellent kandidate for use during in-flight flutter tests.

1 INTRODUCTION

In-flight flutter tests require a continuous monitoring of vibrational modes and their evolution. Traditionally this is accomplished
by applying various types of artificial excitation during flight tests and analyzing the vibro-acoustic response of the plane using
semi-online input-output system identification techniques. Such tests are expensive, due to their time consuming nature, and
the necessity of the excitation devices. Current research efforts therefore focus on the possibility of the use of output-only
identification techniques for flight-tests and the replacement of semi-online identification techniques by fully recursive online
versions. In general such identification techniques need to satisfy two goals:

1. Allow for the continuous online monitoring of modal frequencies and dampings with a reasonably fast response to changes
in the response of the airplane, at least in the order of minutes.

2. Provide a good nominal model for fault detection techniques, which look for sudden discrepancies between incomming
data and the nominal model. As such sudden changes may signal the onset of flutter, the quality of the fault detection
algorithm, and hence also of the nominal model that it uses is of critical importance.

In this paper a recursive subspace identification algorithm is proposed to reach these goals. The algorithm will be shown to be
suited for online applications and capable of both the tracking of modal parameters and the generation of a good nominal model
for fault detection algorithms.

The outline of the paper is as follows; In Section 2 subspace algorithms will be introduced and their use in modal analysis
discussed. In Section 3 a brief overview of the stochastic realization algorithm for offline use will be given. In Section 4, the basic
ingredients of the IV-PAST algorithm will be discussed and applied to the stochastic realization algorithm. In Section 5 the new
recursive algorithm will be tested by means of some examples. In Section 6, finally, the conclusions will be drawn.

Throughout this paper, we will make extensive use of vector- and matrix-notations. In general, lowercase symbols (u,v,..) denote
column vectors. Uppercase symbols (A,B,..) will be used for matrices. Submatrices will be refered to in matlab-style, eg. A(:, 1)
denotes the first column of A, B(1 : 2, 1 : 2) is the uppermost 2 by 2 submatrix of B.
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2 SUBSPACE ALGORITHMS

Subspace identification algorithms have gained increasing attention in the modal analysis community over the last few years
[1, 2]. This due to their inherent robustess and their ability to deal with large numbers of inputs and outputs. In contrast to
classical predictor error methods where a costly, often nonlinear, optimization has to be performed, subspace identification
techniques derive models for linear systems solely by applying well conditioned operations like projections and QR- and SVD-
decompositions on structured data matrices.

Subspace algorithms can roughly be divided in two groups, based on the information that is available in the structured data
matrices. A first group, the so-called data-driven methods are directly applied to input-output or output-only data. Various
such subspace algorithms (see eg. [3, 4]) have been proposed , and are actively used in many industrial domains, such as the
chemical industry [5] and wireless communication [6]. For the input-output case, recursive versions have recently been studied
to extend the applicability of subspace algorithms from offline to online applications. Especially the use of fast approximate
subspace tracking algorithms like PAST (projection approximation subspace tracking) and its instrumental variable extension
IV-PAST, as reported in [7], seems promising. A second group of subspace algorithms, the covariance-driven methods, are
applied to auto- and cross-covariance measurements of inputs and outputs. Especially in their output-only setting, the so-called
stochastic realization algorithm [8], they have become the primal choice for modal analysis on ambiently excited structures in
many research groups [1, 2]. In the following sections, we will show that also for the stochastic realization algorithm, a recursive
version can be derived using the IV-PAST algorithm. Given the fact that the stochastic realization algorithm has been shown to
be well suited for the identification of vibrational modes from in-flight test data [9, 10], such a recursive algorithm is an excellent
candidate for mode-tracking during in-flight flutter tests.

3 THE STOCHASTIC REALIZATION ALGORITHM

Consider an nth order linear output-only system of the form:

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

with yk ∈ R
l×1 the output of the system at time k, xk ∈ R

n×1 the internal state, and wk ∈ R
n×1 and vk ∈ R

l×1 the process and
measurement noise at time k which are assumed to be white, stationary, gaussian zero mean with covariance matrix:
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Systems of the form (1) have been extensively used to model large vibrating structures like bridges, cars and airplanes [1, 9].
Following a system identification procedure on measured output only data, estimates for the resonance frequencies fi, dampings
di, and modal vectors νi of the structure are easily found as:

fi = arg

„

λi
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«

, (3)
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ln (|λi|)

q
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2 + arg (λi)

2
, (4)

νi = Real (CV (:, i)) , (5)

where A = V ΛV −1 is the eigenvalue decomposition of A and Ts is the sampling frequency. Defining G ≡ E{xky
T

k } and
Ri ≡ E{yky

T

k−i}, Ri ≥ 0 it can be proven that Ri = CAiG. As a result, with O and C the infinity observability and controllability
matrices of a system (A,G,C), we have:
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Given a finite set of measured covariances R̂0 . . . R̂2i, and defining

Ĥ =

2

6

6

6

6

4

R̂0 R̂1 . . . R̂i

R̂1 R̂2 R̂i+1

...
. . .

...
R̂i R̂i+1 . . . R̂2i

3

7

7

7

7

5

, (7)



a finite dimensional estimate Ô for O can now be found by taking the singular value decomposition of Ĥ and retaining the left
singular vectors corresponding to the n highest singular values. If the exact model order is not known, as is most often the case,
a good estimate for n can for instance be found by looking for a sudden drop in the ordered set of singular values. From Ô,
estimates for A and C can be derived as:

Ĉ = Ô(1 : l, :), (8)

Â = Ô
†
Ô, (9)

with Ô and Ô shorthand notations for Ô with its last, respectively first l lines removed. It is important to note that in practical
applications Ĥ can easily be calculated starting from data by defining:
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and calculating
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T
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where k is ranging over the entire set of available data and p is an optional normalization parameter. As multiplying Ĥ by a
constant does not affect the obtained matrices Â and Ĉ, p can be set to 1 without further influence on the obtained models.
Equation (11) will play a leading role in the derivation of the recursive identification algorithm in the following section.

4 A RECURSIVE VERSION FOR THE STOCHASTIC REALIZATION ALGORITHM

By far the most time-consuming step in the stochastic realization as outlined in Section 3 is the singular value decomposition.
It will therefore come as no surprise that efforts to deduce a recursive version of the stochastic realization algorithm will focus
on updating the singular value decomposition of the matrix Ĥ when new data becomes available. Suppose we have an initial
measured output sequence {y0, . . . , yN−1} ∈ R

l×N , Ĥ has been formed according to (11) with p = 1, and an initial estimate for
the model order n and the matrices O and C has been obtained using the singular value decomposition. if a new data point yN+1

is measured, y+
N+1−i

, and y−
N+1−i

can be formed and the hankel matrix Ĥ can be updated in one of the three following ways.

1. Exponential forgetting: Old data is exponentially forgotten by multiplying the existing Ĥ by a factor β with β in general
close to one. The new data is added as follows:

ĤN+1 = βĤN + y
+
N+1−i

(y−
N+1−i

)
T

. (12)

2. Sliding window: The recursive algorithm forms a sliding window over the data. New data is incorporated into Ĥ at the
same rate as old data is removed. A typical updating rule for Ĥ might look as follows.
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. (13)

It is important to note that the length of the output sequence used for the initial estimate of the model N , does not
necessarily have to be equal to the window-size of the recursive algorithm. One might decide to start with a small or
empty initial sequence, gradually extend it while updating Ĥ, and only start removing data from Ĥ once a suitable window
length has been reached.

3. Combined approach: The recursive algorithm forms a sliding window over the data. Inside this sliding window, exponential
forgetting is applied. Some book-keeping is required when using this approach to make sure that old-data is removed with
a weight equal to the exponential forgetting that the data has undergone while inside the window. A typical update rule
might look like:

ĤN+1 = βĤN + y
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+
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It is clear that all manipulations of Ĥ amount to updates of the form Ĥt = µĤt−1 + y+
t y

−
t

T

. As the influence of a multiplication
with µ is obvious, the problem of updating the stochastic realization reduces to the problem of updating the singular value



decomposition of Ĥt−1, given a rank 1 update. An approximate algorithm to do this has been described in [11]. It was shown
that

V [W (t)] = ‖Ĥt −W (t)WT (t)Ĥt‖
2
F (15)

with W (t) ∈ R
(i+1)×n reaches its global minimum for W (t) = ÛsT with T an arbitrary unitary matrix and Us the n dominant

singular vectors in the singular value decomposition of Ĥt.
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0 Ŝn

– »

V̂ T

s

V̂ T

n

–

. (16)

Hence, in stead of calculating the singular value decomposition of Ĥt, an estimate for Ôt can be found by minimizing the criterium
(15). A recursive algorithm to do so can be found by replacingWT (t) byWT (t−1), which reduces the problem to a least squares
problem with the following update rule.

W (t) = Ĥt

h

W
T (t− 1)Ĥt

i†

, (17)

Calculating (17) is numerically less expensive than re-calculating the entire singular value decomposition, but still too complex
to be used for online applications as mode tracking for in-flight flutter tests. A faster implementations based on the multiplication
of WT (t − 1) with every incomming data vector y+

t rather than the entire covariance matrix Ĥt, and employing the inversion
theorem to speed up the calculation of the pseudo inverse has been outlined in [11]. From a practical point of view, the algorithm
can be summarized as follows:

1. Suppose estimates for W (t− 1), P (t− 1), Ĥt−1, and Ŵt−1 are available at a certain iteration step t, where:

Ŵt−1 = W (t− 1)Ĥt−1, (18)
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2. Given a rank one update y+
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−
t

T

of Ĥt−1, calculate new estimates W (t), P (t), Ĥt, and Ŵt−1 using the following algorithm:
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3. Continue the iteration in step 2 until all data has been processed.

Note that the iteration step t in the algorithm is not necessarily a measure for the number of data-samples that have been
processed. Recursive algorithms with a sliding window may need two iterations for each data-sample, one updating, and one
downdating. The complexity of the algorithm is 3n(i+ 1) +O(mn) for each iteration as opposed to O(i+ 1)3 for the full singular
value decomposition. Hence, a fast recursive stochastic realization technique is effectively obtained when applying this algorithm
to the update rules (12-14). In the following section, the tracking capabilities of the algorithm will be studied on a set of examples.

5 EXAMPLES

Two examples will be given in this section to evaluate the tracking capabilities of the recursive stochastic realization as discussed
in Section 4. In a first example, a single output, simulated dataset with a length of 7 minutes, sampled at 32 Hz was used. Three



modes are present in the dataset, of whom two modes are kept constant during the experiment at 5.1 and 10.7 Hz with damping
coefficients 0.8 % and 0.5 % respectively. The damping of a third mode at 6.6 Hz was made to vary between 0.2 and 1.9 % with
a sudden drop in damping at about 4 minutes into the dataset. A phenomenon, not uncommon, during in-flight flutter tests and
usually a reason for concern. The dataset was identified with the recursive stochastic realization algorithm as outlined in Section
4 with a forgetting factor of 1 (no forgetting) and a moving window of 1.5 minutes. The identification parameters were set to n = 6
and i = 40. The results are shown in Figure 1. The dashed lines are the known frequencies and damping coefficients. The
stars symbolize the estimated modal parameters in a time window, 1.5 minutes long, centered around the displayed estimate.
From the figure, it is clear that, although on a time-scale of 1.5 minutes damping estimates using output only techniques can be
expected to be quite noisy [12], the most important development during the experiment, which is the change of the damping of
the mode at 6.6 Hz is nicely tracked.
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Figure 1: Extracted frequencies and damping coefficients from a simulated dataset containing three modes. True values
are depicted with a dashed line. Estimated values with a ’*’. Estimated values are placed with the time-window in which

they are derived centered around the symbols. Simulations where run with an empty initial dataset. Note the fast
convergence of the frequencies (in the order of seconds) and the changing damping which is correctly tracked

Furthermore, a comparisson of the models obtained in a certain window using the IV-PAST algorithm and a classical stochastic
realization algorithm reveales that the recursive algorithm yields models that are almost of the same quality as its non-recursive
counterpart (Figure 2).

In Figures 1 and 2, the plotted damping coefficients are the ones estimated in a time window centered around the displayed
estimate. Although this is a logical way to display data for offline analysis, in online applications, only past measurements are
available. In Figure 3, experimental results are displayed as they would appear during an online application. Note the obvious
delay between true damping coefficients and their estimates, about half the length of the time-window. This situation could be
improved by adding a forgetting factor so that more recent data gets weighted more heavily in the estimation procedure. For
the tracking of very fast variations one has to revert to fault detection techniques as reported in [10, 13], in which a recursively
updated nominal model based on recent data as discussed in Section 4 is a powerfull asset.

In a second example, the proposed algorithm was applied, to a reallife dataset available within the Eureka project Flite (see
acknowledgments). A data sample from a test-flight was recursively identified with a forgetting factor β set to 1 (no forgetting)
and a window length of 24 seconds. The identification parameters were set to i = 64 and n = 32. In Figure 4 the evolution of the
obtained frequency and damping for one of the dominant modes in an arbitrary time-slice with a length of slightly more than one
minute is displayed. For obvious reasons the actual values for the frequency and damping coefficient are not displayed. Yet, an
increase in frequency and damping over the slice are clearly observed in the Figure. To accurately track modes which are not
dominant in the dataset (due to weak excitations or an unfortunate placement of the measurement sensors), the window length
will have to be increased beyond the 24 seconds. Again, in this case one while have to rely on fault-detection techniques.
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Figure 2: Comparisson of Extracted damping coefficients from a simulated dataset using a recursive algorithm ’.’ and the
classical stochastic realization ’x’. True values are depicted with a dashed line. Note that both identification algorithms

generate about the same results

6 CONCLUSIONS

We have proposed a recursive algorithm for the online output-only identification of the vibro-acoustic behavior of airplanes, based
on the classical stochastic realization algorithm and the IV-PAST subspace tracking algorithm. The proposed algorithm was seen
to be able to provide accurate tracking of damping coefficients and frequencies, in simulations as well as on reallife datasets.
The algorithm can furthermore conveniently be used to generate nominal models for use in online fault detection techniques to
detect the onset of flutter.
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Figure 3: Extracted frequencies and damping coefficients from a simulated dataset containing three modes. True values
are depicted with a dashed line. Estimated values with a ’*’. The time-window in which the estimates are derived is
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Figure 4: Tracking of a dominant mode in a reallife flight-test dataset


	MAIN MENU
	FRONT MATTER
	TABLE OF CONTENTS
	AUTHOR INDEX
	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

