
Modelling the relationship between human perception and
Sound Quality parameters using LS-SVMs

T. Coen, N. Jans, P. Van de Ponseele, I. Goethals, J. De Baerdemaeker, B. De Moor
K.U.Leuven, Department of Electrotechnical Engineering,
Kasteelpark Arenberg, B-3001, Heverlee, Belgium
e-mail: tom.coen@agr.kuleuven.ac.be

Abstract
The increasing pressure on the design cycle of an automobile makes the classic solution of jury testing no
longer acceptable. A model of the human perception of engine sounds allows faster and more frequent
feedback.
In this paper the relationship between judge background and judge scores, as well as between car characte-
ristics and judge scores is examined.
Subsequently a model to classify cars on comfortability and sportiness based on the Sound Quality parame-
ters of their engine sound is developed. Finally a model to compare two cars on comfortability and sportiness
is drawn up.
Comfortability can be modelled accurately. Lack of a suitable Sound Quality parameter renders modelling
sportiness very hard.

1 Introduction

In recent years the relationship between automobile manufacturers and consumers has changed tremen-
dously. The design of a car has become more and more based upon the desires of the consumer. Since
consumer desires are subject to change over time, the design specifications of a car change as well. This
necessitates shorter design cycles in order to keep up with customer desires [1] [2].

In this paper the focus lies upon the engine sound and the perception of this sound by the potential consumer.
In order to obtain the opinion of the consumer, jury tests have to be organized. In such a test, a person is
asked to score each sound on a characteristic, for example comfortability.

There are several drawbacks to the classic practice of jury testing, which make it incompatible with the
current evolution of the automobile industry:

Disturbances: Variation of equipment, different interpretation of the questions, noise,. . . introduce a judge-
specific bias to the scores.

Composition of the jury: For a significant jury test a large and balanced (different background, age, . . . )
population is needed.

The above mentioned problems result in a considerable time span (about a month) that is needed to organize
and process a jury test [3] [4]. This is no longer deemed acceptable.
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Objective In this paper a model will be developed that predicts human perception of engine sounds based
upon Sound Quality (SQ) parameters of those sounds. Nine SQ parameters that are generally accepted as
relevant in the automobile industry are selected as input for the model.

LS-SVM was chosen as modelling technique.

The selected SQ parameters are A-weighted Sound Pressure Level (SPLA), B-weighted Sound Pressure
Level (SPLB), Zwicker Loudness, Articulation Index (AI), Modified or Open Articulation Index (AIM),
ANSI Speech Interference Level (ASIL), Preferred Speech Interference Level (PSIL), Sharpness and Rough-
ness.

Different outputs are defined. A model can pass a quantitative (for example a grade between 0 and 10) or
a qualitative (different classes of cars, for example good, normal and bad) judgement. A model can also
compare two cars. In this paper a model for qualitative judgement of cars (Section 4) and for comparison of
two cars (Section 5) will be presented.

2 Data acquisition and exploration

2.1 Experiments

Run-ups of 30 significantly different cars were recorded doing road tests [5]. The sound was recorded to the
left and right of the head support of the driver. In this way the recorded sound is the actual sound heard in
the car by the driver. This set-up implies that the engine sound as well as the effect of the isolation of the
interior of the car is taken into account. Note that the opinion of the driver is considered important here.

The recorded sounds are then used in a jury test. Two characteristics of engine sounds will be examined:
comfortability and sportiness. The participants fill out a form with some background information (age,
driving habits,‘car perception’,. . . ) and grade each sound twice. The sound is played and the participants then
give a grade between 0 and 10 on both characteristics. Each sound is graded twice to check the consistency of
the judge. If those two grades are too far apart on too many cars on either one of the questions (comfortability
or sportiness), the scores of this judge are removed from the dataset.

The jury test consists of 104 judges. The dataset used here is based on the average score given by the 79
judges that are consistent on both characteristics.

2.2 SQ parameters

2.2.1 Definition

The different SQ parameters can be divided in three groups.

A first group of parameters, namely SPLA, SPLB and Zwicker Loudness, is correlated with the Sound
Pressure Level of the sound. SPLA and SPLB are Sound Pressure Levels with respective weighing functions
A and B [6]. Zwicker Loudness is the human perception of sound, and is calculated from SPL levels by
using a conversion table [7].

The second group, namely AI, AIM, ASIL and PSIL [8], describes how comprehensible a conversation
would be with the sound as background. AI and AIM are based on a special weighing of the SPL levels.
Frequencies that are more important for the understanding of speech receive a higher weighing factor. The
results are normalized. 100% means that a conversation is perfectly comprehensible. 70% or less means that
conversation becomes difficult.
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Figure 1: Normalized absolute mutual correlation for each of the SQ parameters

ASIL and PSIL are the average of the SPL levels over the frequency bands that are important for speech.
Thus, the lower the value of this parameter, the more comprehensible a conversation is.

It is clear from the definition that there is a negative correlation between the AI, AIM and ASIL, PSIL.

A third group of parameters consists of Sharpness and Roughness [8]. Sharpness is based on the Loudness
algorithm with higher weighting factors for the higher frequencies. Roughness is a measure of the degree of
modulation weighted per third octave of the sound.

It is clear that not all these parameters are independent. Within the first and second group there is a strong
correlation between the defined parameters. In a later stage of the modelling the most appropriate parameters
will be selected.

In Figure 1 the normalized absolute correlation between each of the SQ parameters for all the measured cars
is shown. The correlation within the first and second group of parameters is illustrated.

2.2.2 Relevance

In this section the relevance of the different parameters for the prediction of the human perception of a sound
is examined. This can be done in two ways.

Correlation with scores The normalized correlation with the scores (averaged over all judges) of each of
the parameters is shown in Table 1.

It is clear from these results that sportiness scores will be far more difficult to predict (based on these SQ
parameters) than comfortability scores. For comfortability scores especially the parameters from the first and
second group are significantly correlated with the scores. The above mentioned negative correlation between
AI, AIM and ASIL, PSIL is also visible in these results.
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comfortability sportiness
SPLA -0.95167 0.39788
SPLB -0.91952 0.30018
Zwicker -0.94031 0.34893
Sharpness -0.15915 0.17922
AI 0.78781 -0.40565
AIM 0.78017 -0.40505
ASIL -0.81080 0.41977
PSIL -0.81891 0.40840
Roughness -0.33459 0.34147

Table 1: Normalized correlation between SQ parameters and comfortability scores or sportiness scores

Figure 2: Evolution of the normalized SQ parameters over the comfortability ranking

Ranking Based on the grades given by the judges, a ranking of the cars for comfortability and sportiness
can be established. In Figure 2 the nine SQ parameters are plotted in function of the position of the car in
the ranking. The scores of the cars decrease from left to right in the plot.

For comfortability there is a clear trend. All parameters that are correlated with the sound level in the car
(SPLA, SPLB, Zwicker Loudness) are at a minimum for the most comfortable car. As indicated by the
correlation between SQ parameters and comfortability scores (see above), the SQ parameters of the first and
second group exhibit the clearest relationship with the ranking. There is no correlation between the ranking
and the parameters of the third group (Sharpness, Roughness).

For sportiness there is no clear trend visible. This is mostly due to lack of a good parameter for sportiness.
This sportiness parameter is still the topic of ongoing research [9]. Often a mechanical parameter, namely
rpm, is used to get a parameter for sportiness [4].

Automatic Relevance Determination ARD [10] is used to determine which SQ parameters are the most
important for predicting human perception of an engine sound. ARD is a special form of Least Squares
Support Vector Machines (LS-SVMs) with Radial Basis Function (RBF) kernel (see Section 3.1) which
enables weighing the different inputs. The weight assigned to an input is proportional to its importance. For
comfortability Zwicker Loudness, ASIL, AIM and SPLB are the most important parameters. For sportiness
the algorithm confirms the lack of a good parameter. All parameters are equally (un)important.
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Figure 3: Normalized scores of the 30 cars on comfortability (left) and sportiness (right)

2.3 Scores

2.3.1 Normalization

The judges have given scores on comfortability and sportiness between 0 and 10. These scores are normali-
zed to zero mean and unit standard deviation and then averaged over all the judges. This is done because the
judges are no car experts, and thus the variation and mean of their scores (over all the cars) is not significant.
A judge with a high variation would have a greater impact on the final score of a car (relative to the other
cars).

The normalized scores for comfortability and sportiness are shown in Figure 3. Notice the clusters in the
scores. A possible definition of classes is indicated by vertical lines. These are the thresholds used for the
classifiers of Section 4. There are not enough datapoints to determine whether the visible structure is real or
coincidal. This structure will however influence the performance of models.

2.3.2 Background of the judge

It has been reported that jury tests performed by experts (sound engineers of car manufacturers, . . . ), show a
significant influence of the background of a judge (age, education, . . . ) on the scores accorded by the judge
[11].

For the significant population of the here described jury test however, no relationship between background
and accorded scores could be found. This was examined for different characteristics of judges such as: age,
gender, perception of a car, driving experience, education, . . .

The comfortability and sportiness scores of all 79 consistent judges are plotted for several cars and labelled
with the judge characteristic. If there is some relation between the judge characteristics and the accorded
scores, clusters should be visible for at least some of the cars. This is not the case for any of the cars in the
test.

The averages of each group of judges is also plotted. These averages are always close together for the
different groups. An example of these plots is given in Figure 4 for different ‘car perceptions’. This also
illustrates the enormous variation over the different judges.

Based on these jury tests, it can be concluded that for a general population, there is no (clear) relationship
between judge background and judge scores.
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Figure 4: Labelling of comfortability (on Y) vs sportiness scores (on X) plot with ‘car perception’ by a judge,
for two different cars (‘x’ = A way to get from point A to B, ‘◦’ = An easy and comfortable way to travel,
‘�’ = An extension of your personality, large symbol indicates the average of the group)

Figure 5: Comfort scores (on Y) and sportiness scores (on X) for all cars labelled with the car characteristics
(‘x’ = sedan / ‘+’ = break / ‘�’ = SUV / ‘♦’ = transporter / ‘∗’ = small car / ‘O’ = monovolume)

2.3.3 Car characteristics

The relationship between the type of car (break, sedan, transporter, . . . ) and the score on comfortability and
sportiness was also examined. In Figure 5 the comfortability and sportiness scores of all 30 cars are shown
labelled with the type of car.

There is no clear pattern visible. Only the transporters are clearly recognized by the judges. This is to be
expected since the engine of these cars is hardly isolated.

3 Modelling

For each of the 30 cars there are three datavectors available:

• SQ vector: the values of the nine calculated SQ parameters
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• comfortability scores: the normalized scores on comfortability (zero mean and unit standard deviation)
of the 79 consistent judges

• sportiness scores: the normalized scores on sportiness (zero mean and unit standard deviation) of the
79 consistent judges

Separate models will be defined for the prediction of comfortability and sportiness using the SQ vector as
input for the models.

3.1 Modelling technique

Least Squares Support Vector Machines (LS-SVMs) is selected as modelling technique. This is a neural net-
works technique that can be used for classification as well as for function estimation. LS-SVM for function
estimation can be derived from classification with minor adjustments.

As an illustration, a classification problem with two classes is assumed. Classes are labelled with -1 and
1. LS-SVMs for other classification problems or for function estimation are very analogous. For more
information see [10].

LS-SVM defines a hyperplane with a weight vectorw and a biasb. Given a datasetxk, yk with k = 1..N ,
xk being an input vector andyk being the class to which this vector belongs, this hyperplane has to satisfy
following border conditions:

yk[wT xk + b] = 1− ek, k = 1..N, (1)

ek = classification error on pointk.

To obtain a good classifier, the number of misclassifications needs to be minimized. This leads to the follow-
ing optimization problem:

min
w,b

J(w, b, e),

with

J(w, b, e) =
1
2
wT w + γ

1
2

N∑
k=1

e2
k,

yk[wT xk + b] = 1− ek, k = 1, . . . , N. (2)

wT w is a regularization term to avoid overfitting andγ is the regularization constant. The dividing hyper-
plane then iswT x + b = 0. The hyperplane is defined in such a way that as many points as possible of class
1 lie on the straight linewT x + b = 1 and of class -1 onwT x + b = −1.

The above model is linear. Using the Mercer condition [12] this theory can be extended to non-linear models.
The input data is then transformed by a transformationϕ to an higher dimensional input space (possibly even
infinitely dimensional) where the classes are linearly separable. This extension leads to a new set of border
conditions, namely:

yk[wT ϕ(xk) + b] = 1− ek, k = 1..N. (3)

With the method of Lagrange multipliers this can be transformed into an optimization problem without
constraints:

max
α

min
w,b,e

L(w, b, e;α),
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linear kernel xT
k x (Lin)

polynomial kernel (xT
k x + 1)d (Polyd)

RBF kernel e
−‖x−xk‖

2
2

σ2 (RBF)

Table 2: The different kernel functions and their abbreviation in this paper

with

L(w, b, e;α) = J(w, b, e)−
N∑

k=1

αk{yk[wT ϕ(xk) + b]− 1 + ek}. (4)

This leads to a system of linear equations. An explicit construction of the above used transformation is not
needed, and the value of the kernelK(xk, xl) = ϕ(xk)T ϕ(xl) suffices.

The expression for the classifier now is:

y(x) = sign[
N∑

k=1

αkK(x, xk) + b]. (5)

The weighing factorαk is called the support value of datapointk. There are several possibilities for the
kernel functionK. In this paper the linear, polynomial and RBF kernel will be used (see Table 2).

3.2 Model design decisions

A number of parameters have to be chosen for a classification model. There are the number of classes and
the threshold between the different classes.

A kernel function has to be selected. The parameters of this kernel is automatically determined (by means of
a non-convex optimization).

A final important parameter is the encoding used for the target classes. LS-SVMLab offers several encodings
such as MOC (Minimum Output Encoding), OnevsOne (OO) and OnevsAll (OA) [13]. Instead of such
an encoding, function estimation (FE) can be used as modelling technique followed by a discretization in
classes. Both approaches were used.

3.3 Repeatability

Training of LS-SVMs given regularization constantγ and kernelparameters, is a convex problem with a
unique solution. This solution however is dependent on the used dataset. Since the available data is divided
in a trainingset (which is used for modelling) and a testset (which is used to estimate the performance of a
model), the composition of the trainingset has to be randomized. For each experiment 10 runs with different
randomly generated composition are performed. In this paper the trainingset always consists of 75% of the
cars.

In each run the regularization constant (γ) and the kernel parameters are determined through a non-convex
optimization. This optimization is based on a crossvalidation procedure.

The median of the correct classification percentages (on the testset) over the 10 runs gives the best indication
of the model performance (because it is less sensitive to outliers than for example the mean). The median
will be used in the rest of this paper to compare model performance.
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MOC MOC4 OA OA4 FE FE4
Lin 71.4% 78.6% 92.9% 78.6% 85.7% 92.9%
RBF 85.7% 92.9% 50% 42.9% 100% 100%
Poly2 64.3% 78.6% 0% 7.1% 85.7% 92.9%
Poly3 57.1% 71.4% 0% 0% 71.4% 85.7%

Table 3: Median for different kernels and encodings, two classes comfortability

Figure 6: Boxplot for classification comfortability scores in two classes with FE , RBF kernel and nine inputs
(left) or four inputs (right). Both models appear to be equivalent.

4 Qualitative judgement

4.1 Comfortability judgement

4.1.1 Classification in two classes

Two classes are defined as score larger than and smaller than 0. The number of datapoints for each class is:

s < 0 s > 0
Number 14 16

The medians for the performed experiments are shown in Table 3. The best results are obtained with RBF
kernel and FE. The linear kernel with OA encoding also leads to very good results.

Using the results obtained with ARD (see Section 2.2.2), this classifier can be modelled based on the four
most important inputs (which are Zwicker Loudness, SPLB, AIM and ASIL). These results are also shown
in Table 3 (marked with 4 in the heading). Reducing the input space results in a significant improvement
of the results for FE. The best results are obtained with FE and RBF kernel, but also linear and polynomial
kernel (order 2) perform well.

The boxplots for FE and RBF kernel with nine respectively four inputs are shown in Figure 6. They are quasi
identical for both experiments. Notice the small interquartile range and large first quartile (85.7%) which
indicates a good model performance.
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MOC OO OOb OA OAb FE
Lin 42.9% 28.6% 57.1% 42.9% 57.1% 71.4%
RBF 42.9% 0% 57.1% 21.4% 42.9% 71.4%
Poly2 28.6% 0% 0% 42.9%
Poly3 21.4% 0% 28.6% 57.1%

Table 4: Median for different kernels and encodings, three classes comfortability

Lin Lin RBF RBF
MOC FE MOC FE

4 inputs 57.1% 71.4% 50% 85.7%
9 inputs 42.9% 71.4% 42.9% 71.4%

Table 5: Comparing the medians for nine and four inputs, three classes comfortability

4.1.2 Classification in three classes

Three classes are defined as followed: scores clearly larger than 0 (larger than 0.25), scores clearly smaller
than 0 (smaller than -0.25) and scores around 0 (between -0.25 and 0.25). The number of datapoints in each
class is:

s < −0.25 −0.25 < s < 0.25 s > 0.25
Number 8 13 9

Experiments with different kernels and encodings are performed. The medians of the experiments are shown
in Table 4.

Only FE with linear kernel and RBF kernel gives acceptable results. The bad results come from the lack of
robustness of the OO and OA encodings. If one bit goes wrong during the prediction, there are two equivalent
possibilities for the decoder. Instead of choosing one, the decoder returns infinity. The results improve by
adapting the Hamming decoder to take one of the possibilities. These experiments are marked with ab (OOb
andOAb).

Reducing the dimension of the input space to four by only including SPLB, Zwicker, ASIL and AIM in the
input vector, leads to better results. The medians of these experiments are shown in Table 5.

FE with RBF kernel now reaches a median of 85.7%. The boxplots for FE with RBF kernel with nine and
four inputs are compared in Figure 7. The interquartile range is analogous for both experiments. The first
quartile is however significantly larger for the model with four inputs.

4.1.3 Classification in four classes

Four classes are defined: scores greater than 0.5, scores between 0 and 0.5, scores between -0.5 and 0 and
scores less than -0.5. The number of datavectors in each class is:

s < −0.5 −0.5 ≤ s < 0 0 ≤ s < 0.5 s ≥ 0.5
Number 5 11 10 4

Experiments with linear kernel and RBF kernel are performed. The medians for the different kernels and
encodings are shown in Table 6.
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Figure 7: Boxplot for classifying comfortability scores in three classes with FE, RBF kernel and nine inputs
(left) or four inputs (SPLB, Zwicker, ASIL and AIM) (right) The interquartile range does not change, the
first quartile is however significantly larger with four inputs.

MOC OO FE FE4
Lin 35.7% 50% 78.6% 85.7%
RBF 28.6% 28.6% 85.7% 92.9%

Table 6: Median for different kernels and encodings, four classes comfortability

FE gives clearly the best results. FE is also used with only the four most important inputs (FE4). The results
improve significantly.

As mentioned in Section 2.3.1, there are clusters visible in the comfortability scores of Figure 3. These
clusters coincide with the four classes defined here. This explains the improved performance of the classifier
with four classes relative to the classifier with three classes.

The boxplots for FE with four inputs and respectively linear and RBF kernel are shown in Figure 8. The
median is larger for the RBF kernel case than for the linear kernel case. The interquartile range is smaller for
the RBF kernel as well.

4.2 Sportiness judgement

4.2.1 Classification in two classes

Two classes are defined. Scores larger than 0 and scores smaller than 0. The number of datapoints in each
class is:

s < 0 s > 0
Number 10 20

Experiments are performed with linear, RBF and polynomial kernel combined with MOC encoding, OA
encoding and FE. The medians are shown in Table 7. The best results are now obtained with RBF kernel
and MOC encoding. FE gives poor results because of the increased complexity of the relationship between
sportiness and SQ parameters.

The boxplots for linear and RBF kernel with MOC encoding are shown in Figure 9. The median of the
linear kernel coincides with the first quartile, whilst the first quartile of the RBF kernel is much smaller
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Figure 8: Boxplot for classifying comfortability scores in four classes with FE, four inputs and linear kernel
(left) or RBF kernel (right). With RBF kernel the mediaan is larger and the interquartile range is smaller.

MOC OA FE
Lin 71.4% 42.9% 50%
RBF 76.6% 57.1% 64.3%
Poly2 42.9% 0% 57.1%
Poly3 42.9% 0% 42.9%

Table 7: Median for different kernels and encodings, two classes sportiness

than the median. Despite the slightly larger median of the RBF kernel, the linear model has a better overall
performance.

4.2.2 Classification in three classes

Three classes are defined as in Figure 3. Scores larger than 0.3, scores between -0.3 and 0.3 and scores
smaller than -0.3. The number of datapoints in each class is:

s < −0.3 −0.3 ≤ s < 0.3 s ≥ 0.3
Number 8 13 9

The medians obtained for different kernels and encodings are shown in Table 8. The special version of the
Hamming function was used everywhere.

It is clear that the results are poor everywhere. Because of the higher complexity of the relationship between
SQ parameters and sportiness, not even FE can provide help here.

5 Comparing two cars

The SQ vectors of two cars are used as input for the model. The output is a relative judgement of the
sportiness or comfortability of both cars. This kind of model can be used to establish a ranking of cars, and
to fit a new car into an existing ranking.
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Figure 9: Boxplot for classifying sportiness scores in two classes with MOC encoding and linear kernel (left)
or RBF kernel (right) The first quartile of the linear kernel coincides with the median, which makes the linear
kernel the best option

MOC OO OA FE
Lin 28.6% 28.6% 28.6% 35.7%
RBF 21.4% 42.9% 28.6% 35.7%
Poly2 28.6% 42.9% 14.3% 28.6%
Poly3 28.6% 35.7% 28.6% 21.4%

Table 8: Median for different kernels and encodings, three classes sportiness

The dataset was divided in two groups for every run: a trainingset of 23 cars and a testset of 7 cars. Within
each group every car is compared to all other cars in order to compile the actual dataset. The trainingset thus
contains(22+1)22

2 = 253 datavectors, the testset contains(6+1)6
2 = 21 datavectors.

Models are trained with two different input configurations: two SQ vectors as input (dimension 18) and the
difference of both SQ vectors as input (dimension 9) (indicated by∆).

5.1 Comparing two cars on comfortability

Experiments are performed with RBF and linear kernel, combined with MOC encoding and FE (followed by
discretization). The medians of the here discussed experiments are shown in Table 9.

The results improve significantly by applying the difference of both SQ vectors to the input. There are two
reasons for this:

• The dimension of the input space is halved from eighteen to nine.

• The composition of the input is more obvious. In the case with eighteen inputs the corresponding SQ
parameters of both the cars have to be mapped to one an other. This adds complexity to the modelling
task.

Since the difference of SQ vectors is a good input, the change in scores must be quasi linear with the change
in SQ parameters.
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MOC FE ∆MOC ∆FE
Lin 82.1% 82.1% 85.7% 89.3%
RBF 82.1% 67.9% 85.7% 89.3%

Table 9: Median for comparing cars on comfortability

MOC FE ∆MOC ∆FE
Lin 60.7% 60.7% 71.4% 71.4%
RBF 53.6% 64.3% 64.3% 64.3%

Table 10: Median for comparing cars on sportiness

5.2 Comparing two cars on sportiness

The results are shown in Table 10.

The results are clearly less good here than in the comfortability case. This is because of the higher complexity
of the relation between SQ parameters and sportiness scores. An extra SQ parameter with a better correlation
to sportiness scores would improve the model significantly.

The difference of SQ vectors as input gives again slightly better results. This implies that sportiness scores
are quite linear with SQ parameters as well.

In Figure 10 the ROC-curves are shown for comparing cars on comfortability and sportiness, both modelled
with linear kernel and∆MOC. The area under the ROC-curve is clearly larger for the comfortability case.
This illustrates again the enormous difference in performance of both models.

6 Conclusion

The examined judge characteristics have no clear influence on the scoring of judges for a general population.
There is no correlation found between car characteristics and judge scores (except for a transporter).

Using LS-SVM to classify and compare cars on comfortability gives good results. Lack of a suitable SQ
parameter complicates the modelling of sportiness. Comparing of cars on sportiness however, delivers rea-
sonable results.

The visible structure of the judge data (Figure 3) helps to choose the right thresholds for the classes. This is
illustrated by the better performance of the 4 classes case relative to the 3 classes case for comfortability.

Comparing cars enables the ranking of cars. This approach is also more robust. Comparing cars on sportiness
gives better results than classifying cars on sportiness.

It is obvious that a new SQ parameter with a high correlation with sportiness is needed. An example of such
a parameter is rpm extraction of engine sound [9].

The models can be made more robust by using more data.
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Figure 10: ROC curve for comparing cars on comfortability (left) and sportiness scores (right) with∆MOC
and linear kernel. The area under the curve shows that the comfortability model is clearly better.
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