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Abstract. Airworthiness authorities require specific in-flight flutter testing be performed 
before flight certificates are granted to new aircraft. Flutter tests consist of flying the aircraft 
at different airspeeds to provide evidence that no unsafe aeroelastic phenomena show-up in 
the flight domain. Data collected through in-flight tests are then processed to extract 
eigenfrequencies and damping ratios in varying flight conditions to track the dynamical 
characteristics for different airspeed values. However, extracting modal parameters from in-
flight tests generates a variety of inherent problems. This encompasses measurement noise, 
missing or noised excitation signals, and low number of sensors generating spatial aliasing. 
Noisy data generate more spurious poles in stabilization diagrams; this in turn increases the 
difficulty to select stable poles (pole-picking) and to correctly identify mode shapes. 
A new technique is presented based on energy considerations and a ruled-based pole-picking 
tool is introduced to improve the pole selection process. They allow detecting and removing 
mathematical poles from the stabilization diagram and speeding up the pole selection process. 
Furthermore, the first technique, when coupled with other techniques such as cluster analysis 
or fuzzy logic, provides a ranking for the pole selection, paving the way to the 
implementation of a tool to automatically select only physically meaningful poles. 

1. INTRODUCTION 

System identification is a standard tool for the analysis of forcefully or ambient excited 
vibrating structures [14]. A linear model for such a structure is built from available 
observations, based on which modal parameters as resonance frequencies, damping ratio and 
modal shapes can be estimated. To reduce the bias on the estimates and allow the model to 
capture all relevant characteristics of the structure, the identification order is usually chosen 
quite high. However, the higher the model order is chosen, the higher number of estimated 
poles will be calculated. This results in the occurrence of so-called spurious poles.  

 



In this paper we will describe several mathematical methods that use a full state-space model 
that detect less relevant modes and remove them from the model, without reverting to a 
stabilization diagram (section 4).  
On the other hand, there is an intelligent rule-based technique that does analyse the 
stabilization diagram selecting only the physical poles (section 5). This technique is based on 
a knowledge acquisition process that is observing skilled engineers, and has the advantage 
that less experienced people have access to knowledge from expert engineers. Furthermore, 
the method does not depend on the parameter estimation method used to obtain the 
stabilization diagram. 
Although the techniques that are presented are generally heuristic by nature, we show by 
means of an example from the aerospace industry that in a practical case, a quick automated 
discrimination between spurious and physical modes can effectively be made. 
In section 2 we show the basic concepts of state space models and the theory of balanced 
model reduction from a practical point of view. Section 3 describes the stochastic subspace 
Balanced Realisation method. In section 6 we compare the different mode selection 
techniques by means of data obtained from an in-flight flutter test of an airplane. We show 
that the presented methods can effectively be applied to detect and remove spurious modes 
from a linear model, even in the presence of large amounts of measurement noise. Finally, in 
section 7, some conclusions are drawn. 

2. THE STATE SPACE FORMULATION AND BALANCING  

We will consider state space models of the form: 
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where E{·} denotes the expected value operator and δpq the Kronecker delta. It is assumed 
that:  
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The elements of the vectors yk∈Rl and uk∈Rm are given observations of the outputs and 
inputs of the system at the discrete time index k. The vector xk∈Rn is the unknown state 
vector at time k. The unobserved process and measurement noise wk∈Rn and vk∈Rl are 
assumed to be white, zero mean, gaussian with covariance matrices as given in (2). The 
system matrices A,B,C,D and the covariance matrices Q, S, and R have appropriate 
dimensions. 
The state-space representation (1) is not unique. Applying a basis transformation x Tx and a 
corresponding transformation of the state space matrices, (A, B, C, D) = (TAT 

→
-1, TB, CT -1,D), 

the model (1) can be written in a multitude of forms, which all describe the same input/output 
behaviour. A common representation in modal analysis is the so-called modal representation, 
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where the system matrix Λ is diagonal and mainly consists of pairs of complex conjugated 
eigenvalues λλ,  being the poles of the system. For this to be possible the original system 
matrix A needs to be diagonalizable which is in practical applications usually the case. The 
modal characteristics of the structure under study can then easily be obtained from (4) as 
follows: 
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with fi, di and vi the resonance frequency, damping and mode shapes corresponding to the ith 
pole Λ(i, i) = λi. Ts is the sampling rate. 
Another commonly used representation is the so-called Balanced Representation [11]. The 
idea of the Balanced Representation is to decompose the controllability and observability 
grammians of the model into principal components in order to evaluate the contributions of 
each mode to the overall input/output behaviour of the model. The controllability grammian P 
and observability grammian Q can easily be obtained as solutions to the following Lyapunov 
equations: 
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The key property of a balanced realization is that a state transformation xb = Tx and a 
corresponding similarity transformation (Ab, Bb, Cb, D) = (TAT 

-1, TB, CT 
-1, D) is selected 

such that the both grammians are equal to a diagonal matrix Σ . 
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The larger a diagonal entry of the grammians, the bigger the contribution of the corresponding 
entry of the state vector to the overall input/output behaviour of the model. The diagonal 
entries are therefore usually sorted on the diagonal in descending order. The so-called concept 
of Balanced model reduction is then nothing else than the removal of the last entries of the 
state. More concretely, if the balanced system matrices are partitioned as follows: 
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The reduced model would be . ),,,( 1111 DCBA bbb

3. BALANCED REALISATION OUTPUT/ONLY DATA METHOD 

The output/only time domain stochastic subspace Balanced Realisation (BR) is based on the 
following stochastic model derived from model (1) where the input signals were removed: 
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As measurement data, the response signals from a set of transducers are first processed into 
cross-correlations with respect to a pre-selected set of responses signals chosen as references. 
The key element of the method is the establishment and decomposition of the block Hankel 
matrix of these measured correlation functions. Let us define the empirical unbiased 
correlation matrix of the measured discrete output vector as: 
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where {yk} is the discrete output vector at time instant k = 0…N-1 and m is the time lag in 
terms of number of samples. Then the following block Hankel matrix can be defined and 
decomposed into its singular values: 
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where 
( ) 0, 2111 ≥≥= nndiagS σσσσσ LL    ( )npNn resp

diagS σσ L12 +=  with nn σσ 〉〉+1 , (12)  

 

 p is the so-called model order and it is a user defined parameter chosen so that p>2Nm, where 
Nm represents the number of physical modes; [S1] and [U1] contain respectively the n first 
singular values and the corresponding left singular vectors. From the stochastic realization 
theory, [Hp,p] can be factored out as [Hp,p] = [Op] [Cp], and hence an estimate of the 
observability matrix is given by [Op] =[U1][S1]½. Therefore, considering that along with the 
modal model (9), the observability matrix [Op] and the controllability matrix [Cp] of order p 
are defined: 
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where [G] = E [{xk+1}{yk}T ], the system matrices [A] and [C] are estimated up to similarity 
transformation, using the shift structure of [Op] [2] and using only the output measurements 
{yk}. This identification problem is also known as the stochastic realization problem [2], [5]. 
Once the matrices [A] and [C] are estimated, the modal parameters could be easily determined 
by means of an eigenvalue decomposition [A] = [Φ][Λ][Φ]-1. Complex eigenvectors and 
eigenvalues in the previous equation always appear in complex conjugate pairs. The discrete 
eigenvalues λr on the diagonal of [Λ] can be transformed into continuous eigenvalues or 
system poles µr by using the following equation: 
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The mode shape [Ψ]r of the r-th mode at the sensor locations are the observed parts of the 
system eigenvectors {Φ}r of the [Φ], given by the expression {Ψ}r = [C] {Φ}r. Note that the 
extracted mode shapes cannot be mass-normalized, as this requires the measurement of the 

 



input force. A full review of stochastic system identification methods for experimental modal 
analysis is presented in [12] and [13]. 

4. STATE SPACE BASED MATHEMATICAL POLE SELECTION METHODS 

Introduction. In this section we will describe some mode selection techniques to remove 
spurious modes from a model of the form (1). We will thereby make extensive use of the 
modal and balanced representations of a system, introduced in section 2. 
 
H2 and H∞ modal truncation. A first naïve approach would be to write the model in its 
modal form, as given in (4), remove a certain mode, and assess the “damage” done to the 
model in H2 and H∞ norm. Hence, if the full order model is called Hfull, and Hreduced is the 
lower order model formed by removing the complex conjugated poles iλ and iλ from (4), the 
following expressions are evaluated: 
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The expressions in (15) can be calculated as: 
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where Pi is the controllability matrix of the second order model (16), and can be obtained by 
solving Lyapunov equations as in (6). Numerical procedures are widely available for the 
calculation of the infinity norm [3]. After repeatedly calculating (17), once for each mode, the 
distance measures obtained are divided by their maximum value, this is, the maximum 
distance that can be obtained by removing 1 mode. The result is a number between 0 and 1 for 
each mode and each criterion (H2 and H∞) that was used as a significance parameter 
describing the importance of the mode.  
In general it seems reasonable to assume that the more important a mode is, the bigger will be 
the influence of its removal from the model, and hence its significance parameter. 
Furthermore it is shown in [8] that for nearly undamped structures, the grammians of the 
modal form are almost diagonal, meaning that the modal and the balanced form are ‘close’ to 
each other in some sense. Hence, for such structures, modal truncation makes perfect sense 
since it leads to similar results as balanced model reduction. In many practical cases, 
however, the structure under study is not nearly undamped, and modal truncation may lead to 
an inadequate rejection of spurious mode due to phenomena as mode coupling, which make it 
very hard to assess the importance of a mode by examining a single second order subsystem. 
This will also be shown in the examples in section 4. In order to draw better conclusions for 
complicated structures, we will have a look into the connection between the balanced and the 
modal representation of the identified model. 
 

 



Connection between the balanced and the modal form. Since the balanced and the modal 
form are both representations of the same model, there is always a similarity transformation T 
linking one form to the other: 
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From Λ=TAbT 

-1 it follows that the diagonal elements of Λ  can be written as a linear 
combination of the entries of Ab, where we know that the entries of Ab that are most relevant 
for the input/output behaviour of the model are situated in its upper left part. A formal way to 
exploit this fact in a mode selection context is to replace Ab with a significance matrix S of the 
same dimensions, where the elements of S give a measure of the importance of the 
corresponding entries in Ab, e.g. 
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and inspect the diagonal elements of 1−⋅⋅ TST , with T  the element wise absolute value of 
T, to obtain a measure for the significance of the corresponding pole in Λ. Again, the 
significance parameters are rescaled so as to lie between 0 and 1. 
 
Continuous extension to balanced truncation. Closely related to the former technique is the 
concept of a continuous extension to balanced truncation. Instead of truncating the model and 
completely removing the last entries of the state, one might opt to change the balanced system 
matrix, 
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and introduce a small parameter ε to continuously remove the last entries of the state, e.g. as 
follows: 
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While ε is continuously decreased, starting from one, the influence on the system poles can be 
assessed, e.g. by using the Euclidean distance measure in the complex plane. Again it is 
assumed that modes that are mainly related to the least important elements of Ab will be 
influenced more and can hence be classified as spurious.  
 
Pole/zero cancellations. Pole/zero cancellations means that a zero of a rational entry in the 
transfer function matrix is almost or completely equal to a system pole. This renders a mode 
nearly uncontrollable or unobservable with respect to some or all of the inputs and outputs. 
Pole/zero cancellations are not uncommon in models identified from vibrating structures, 
especially when a high model order is used. Next to this, they are often an indication that the 

 



cancelled pole is spurious. It is however seldom a good idea to take the distance between a 
pole and some nearby transfer function zeros as the basis of mode selection techniques. 
Lowly damped, weakly excited modes may well be accompanied by a nearby zero, even if the 
mode is quite important for the physical characteristics of the structure as a whole. 
In [16], it was therefore proposed to take into account extra statistical information, such as the 
variance of a pole, when examining pole/zero cancellations. One of the techniques described 
in this work is to construct a confidence region around every pole and count the number of 
transfer function zeros within this region. Such confidence regions are not available if the 
model is obtained using subspace identification. It is however reasonably acceptable that if we 
started moving a pole in our model, the influence on the model as a whole would be inversely 
proportional to the variance on the pole position. 
As a mode selection rule, similar to the one presented in [16] we therefore propose to move 
each pole to its  closest transfer function zeros and assess the influence on the model as 
a whole in each of the  cases, e.g. by calculating the sum of the 2- or infinity-norms of 
the differences between the adjusted and the original models. As usual, a significance 
parameter is obtained by dividing the determined distances by their maximum, resulting in a 
value between 0 and 1. 

lm ×
lm ×

 
Cross correlations with SISO models. An obvious criterion, proposed in [16], is to check to 
what extent poles of the full MIMO model (1) can be retrieved from smaller models obtained 
from individual or groups of input and output sequences. For our example in section 4, we 
constructed l MISO models from the available observations, one for each output, and 
compared the obtained poles with the ones from the full MIMO model using the standard 
Euclidean distance measure in the complex plain. To speed up the procedure, the individual 
models can for instance be obtained using a fast ARX modelling procedure.  

5. RULE-BASED TECHNIQUE FOR AUTOMATIC POLE SELECTION 

Introduction. This section describes a rule-based intelligence approach to separate the 
spurious modes from the physical ones in stabilization diagrams [10] according to [9]. This 
has lead to the development of a tool (AASD), which will be used in the evaluation, section 6. 
 
Rule-based intelligence. The automatic assessment of stabilization diagrams is modelled on 
the knowledge of a human engineer. Engineers normally assess stabilization diagrams, 
obtained by applying BR, LSCE [4], or other parameter estimation methods [6], [7], by 
visually inspecting them on screen, hereby using knowledge and experience. The visual 
information that is present to the engineer consists of the symbols in the stabilization 
diagrams, which are based on similarity in frequency, damping ratio and/or mode vectors 
between poles belonging to subsequent model orders [10]. Based on these sources of 
information, the engineer selects a number of poles by hand. In a later step, this handpick 
could be checked with validation tools such as the Modal Assurance Criterion (MAC) [1]. 
Knowledge acquisition was done by observing engineers performing this task. The next step 
was transforming these observations into a deterministic set of rules to ensure that the same 
stabilization diagram is always assessed in exactly the same way. In general, the observations 
lead to the conclusion that an engineer first selects a vertical column of poles. Then, the 
subsequent poles in that column are assessed based on the variance in frequency and damping 
ratio. Based on that, a certain pole will be selected, or the column will be disregarded. 
 

 



Column selection. To select a vertical column, we used a double set of histograms, one 
shifted by half a bin-width. The width of the histograms bins was left as a parameter to be set, 
as this can change according to the density of the stabilization diagram under assessment. In 
practise though, a bin-width between 0.5% and 1.0% of the maximum frequency is sufficient.  
On each of these bins a number of rules will be applied, called Euclidian distance, Stable 
poles, and Neighbouring bins, resulting in a score for each bin. 
 
Euclidian distance. This procedure calculates a weight for every bin. It first calculates the 
Euclidian distance Ed of the frequencies of every pole in that bin with respect to the centre 
frequency of that bin. Then a comparison is made with the Euclidian distances of all the other 
bins. Based on this comparison, a weight is calculated for each bin, which stands for how well 
that column of poles is aligned. Thus, this step tries to mimic what the human engineer is 
doing visually by looking at a monitor. Furthermore, it not only accepts or rejects a bin as the 
engineer would do, but also gives a score as to how well aligned that bin actually is. 
 
Stable poles. When engineers assess stabilization diagrams, they are especially looking for s-
type poles. In LMS software such as Cada-X and its successor Test.Lab, an s-type pole 
denotes a pole that is stable in frequency (default 1%), damping ratio (default 5%) and mode 
vector (default 2%) with respect to a pole at the previous model order [10].  
The Stable poles step gives a weight to a bin based on the occurrence of these s-type poles, 
based on a logarithmic function of the number of stable poles in a bin. Although also left to be 
set as a parameter a default value of 3 stable poles is used, meaning that the appearance of 
more poles is not greatly rewarded, but that the absence of poles is punished. 
 
Neighbouring bins. The weights resulting from the Euclidian distance and Stable poles 
procedures are multiplied by the histogram values of the bins. But, because every pole exists 
in two bins – the normal one and the shifted one – a choice still has to be made. For that, a 
procedure called Neighbouring bins was introduced, which decides locally for every normal 
bin whether it will choose that one, or its shifted left or right neighbour. Bins that have a score 
below 1/3 of the model order (this threshold is a user-defined parameter) are disregarded 
altogether. This enables for all bins a local decision as to how good they are. 
 
Pole-picking. Now, a number of bins have been selected. Each of these bins is considered 
centred around the frequency of a physical pole. Thus, from each bin, the best pole has to be 
picked. First of all, it was decided that such a pole should always be an s-type pole. Bins 
without s-type poles are therefore discarded. When observing an engineer doing this pole-
picking by hand, he will look for a sequence of s-type poles and choose one of them if their 
damping ratios are sufficiently constant. The pole-picking procedure was introduced here to 
capture this human skill. It consists of a clustering part that clusters the poles in each bin 
according to their damping ratios. Then the best cluster is picked, and from that cluster, the 
best pole is determined. This pole is considered as the pole that the human expert engineer 
would pick by hand, comparing damping ratios, and using expert knowledge. 
 
Double Poles. Based on the procedure described so far, it would not be possible to detect 
double poles. By a double pole is meant the existence of two poles at almost exactly the same 
frequency, at the same model order, with sometimes the same damping ratio, but in any case 
with a different mode vector. 
For the detection of double poles it was therefore decided to introduce mode vector 
information just after the creation of the histograms. This approach turns the two-dimensional 
problem (frequency, damping) into a three-dimensional one (frequency, damping, mode 

 



vector) by means of which new features of the data might be detected. For that, all the s-type 
poles in one bin are clustered according to their MAC-value. If multiple clusters occur within 
one bin, it is considered to contain a double pole and is further assessed in a way similar to the 
pole-picking procedure, hereby using damping ratio and a score for the number of s-type 
poles in each cluster. If this is above a threshold of 1/3 of the model order, it is considered a 
double pole. The rest is discarded as being non-physical phenomena. 
 

 
 Figure 1: AASD tool screenshot 
 
AASD Tool. The above procedure was processed into a software tool called AASD 
(Automatic Assessment of Stabilization Diagrams), of which a screenshot can be viewed in 
figure 1. As already noted, a number of parameters were introduced with default values. All 
of these default values can be changed according to need.  

6. EVALUATION 

Introduction. In order to evaluate the techniques outlined in sections 5 and 6, we will apply 
them to a dataset, consisting of observation data acquired from an in-flight flutter test of an 
aircraft. It can be analysed as input/output data when considering the input as being white 
noise introduced in the flight control system, in the 0–60 Hz frequency range. On the other 
hand, it can also be analysed as output/only data disregarding the input, since, in many cases, 
it is not available in an in-flight dataset due to measurement difficulties. In the latter case the 
rule-based technique will be applied on the BR stabilization diagram so as to assess its 
performances when compared with the state space method, applied here on input/output data, 
coupled with the same rule-based pole-picking technique. 
 
In-Flight flutter testing of an aircraft. The dataset consists of 67 seconds of measurement 
data, sampled at 256 Hz, obtained during in-flight flutter tests of a fly-by-wire airplane 
equipped with 13 sensors, one of which is the input, injected as white noise in the electronics 
of the plane. This dataset was analysed with two different parameter estimation methods. First 
considering the input signal, the data were analysed using a robust N4SID subspace 
algorithm, described in [15]. Then, assuming an output/only dataset, the Cada-X BR 

 



operational algorithm was used. Figure 2 and 3 show the stabilization diagrams obtained with 
the N4SID and BR parameter estimation method. 
 

 
Figure 2: N4SID Stabilization diagram Figure 3: BR Stabilization diagram 

Table 1 shows the results calculated by using the two different estimation methods and pole-
picking techniques. The first column presents the results obtained by the input/output state 
space based pole-picking methods (sections 2 and 4). Seven modes were found to be 
significantly more relevant in a sorted list of poles. In practice, determining this number of 
relevant modes often requires some human judgement as it is not always clear where the 
relevance threshold should be set. The empty row in column 1 does not mean that no mode 
has been found at that frequency, but only that the relevance score indicated that the mode is 
relatively less important, and thus marked as spurious (score 0.421 at 3.9 Hz). 
 

N4SID/State space N4SID/Rule-based BR/Rule-based 
Freq Damp Freq Damp Freq Damp 

2.609 Hz 2.53% 2.609 Hz 2.52% 2.602 Hz 3.04% 
3.006 Hz 3.05% 3.004 Hz 3.17% 2.981 Hz 2.68% 
3.296 Hz 4.92% 3.296 Hz 4.83% 3.275 Hz 5.67% 
3.439 Hz 2.75% 3.440 Hz 2.65% 3.444 Hz 2.30% 

x x 3.903 Hz 4.22% 3.924 Hz 1.17% 
5.179 Hz 2.73% 5.173 Hz 2.89% 5.173 Hz 3.14% 
5.590 Hz 2.77% 5.578 Hz 3.06% 5.569 Hz 1.15% 
5.901 Hz 4.09% 5.881 Hz 3.56% 5.944 Hz 2.63% 
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Table 1: Selected modes
cted modes based on the rule-based pole-picking method 
m of the N4SID method (sections 2 and 5). The third 
s they were detected using the stochastic subspace based 
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abilized in figure 2, but was not accepted as such by our 
g methods (sections 2 and 4). However, since it is clearly 
as detected by the AASD tool. Also note that some of the 

n differ from those in the first and second column; in 



general, the missing input information turns into a more difficult parameter estimation process 
as is clearly recognizable by comparing the stabilization diagrams of figures 2 and 3.  
Finally, the dataset was also analysed by experts of the aircraft’s manufacturer. They 
confirmed the results presented in table 1. 

7. CONCLUSIONS 

When analysing the results obtained by the state space approach, it was observed that the H2 
and H∞ criterion of section 4 for the modes at 2.6 and 3 Hz indicated weak excitation. This 
also shows that simple modal truncation is not suited for the analysis of complicated 
structures. On the other hand, the algorithm based on the connection between the modal form 
and the balanced form performed quite well and is, together with the cross correlation, 
probably the best method to use for mode selection by the state space approach; this despite 
the fact that not all physical modes were detected.  
The rule-based technique (section 5) proved very useful for stabilization diagrams obtained by 
the N4SID method. It found proof for the selection of one more mode (at 3.9 Hz), which was 
already pointed out as a tricky one by the airplane manufacturer’s experts. It is also clearly 
visible in the stabilization diagram of figures 2 and 3. 
From this it can be stated that the combination of N4SID and the rule-based intelligence is 
very promising. Together they performed a modal analysis and succeeded with presenting a 
well-fit model from very noisy in-flight data of a complicated structure such as the aircraft 
under examination. 
 
Next, the rule-based technique was applied on a lower quality stabilization diagram, obtained 
with output/only data. Despite the lack of input-information, we still succeeded in obtaining 
an acceptable set of modes. A good modal model can still be defined which is consistent with 
the results obtained with the input/output N4SID method.  
It can thus be concluded that the rule-based technique is a flexible tool that performs quite 
well when applied to any parameter estimation method that results in a stabilization diagram. 
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