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ABSTRACT 
In this paper, we investigated the possibility of designing 
a system to control glycemia, i.e. the blood glucose 
concentration, in patients admitted in an Intensive Care 
Unit.  The system consists of a patient model and a 
controller. This paper describes the first results of data-
based patient modeling. System theoretically, the 
identification problem was considered to be open-loop. 
Two input-output models were discussed: an 
AutoRegressive with eXogeneous inputs (ARX) and a 
Prediction-Error-Model (PEM). Glycemia simulations 
applied to a training set resulted in an acceptable 
performance. ARX-models outperformed PEM-models. 
However, the use of these models on a validation set was 
clinically not yet feasible due to large glycemia errors. 
Future research is needed to develop a more accurate 
patient model. 
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1.  Introduction 
 
This paper considers a control system for the blood 
glucose concentration (i.e. glycemia) of patients who are 
admitted in an Intensive Care Unit (ICU). Recently a 
manuscript was published in The New England Journal of 
Medicine [1] in which the authors report the effects of 
intensive insulin therapy in critically ill patients requiring 
intensive care (including mechanical ventilation) mostly 
after major surgery. It is known that insulin resistance and 
associated hyperglycemia are common in such patients 
(even if they have not had diabetes before). In the past, 
this was ignored because it was believed that 
hyperglycemia was a beneficial reaction to stress. In that 

conventional insulin therapy, insulin was only infused if 
glycemia exceeded 215 mg per deciliter, after which 
maintenance of glycemia between 180 and 200 mg per 
deciliter was persued.  
 
In the clinical study mentioned above (with more than 
1500 patients), it is shown that normalization of glycemia 
(between 80 and 110 mg/dl = normoglycemia) results in a 
spectacular reduction in mortality and morbidity through 
a rigorous administration of insulin. As an example, the 
number of deaths in patients who required intensive care 
for more than five days was reduced from 20,2% to 
10,6%. 
 
In Figure 1 the manual control of a patient’s glycemia is 
shown. In this example glycemia was measured every 3 
minutes as described later in this paper. For the moment, 
the administration of insulin in intensive care patients is 
controlled by a labor intensive (considerable workload 
for the nurses) and empirical protocol (in which a certain 
degree of freedom, depending on the human experience, 
is still present).  
 
The protocol requires blood glucose levels to be measured 
every four hours (or more frequently, especially in the 
initial phase or after complications). The flow of the 
continuous insulin infusion is then adjusted using a 
certain schedule. The effectiveness of this protocol (i.e. 
obtaining and maintaining normoglycemia) is hindered by 
the following complicating factors: 

- Caloric intake (number of calories, class (proportion of 
carbohydrates, proteins and fat) and daily interruption of 
caloric intake) has a profound impact on the insulin 
requirements. 
- Switch from intravenous glucose infusion to total 
parenteral feeding (also given intravenously) and finally 
to enteral feeding can profoundly change the dynamics 



of the process inputs (e.g. administration of insulin) and 
output (e.g. glycemia). 
- Administration of drugs (e.g. glucocorticoids) can 
disturb blood glucose levels. 

Finally it is also known that the constitution or profile of 
the patient (e.g. Body Mass Index, medical history) can 
influence the reaction to insulin administration. 
 

Figure 1.   Example of glycemia data of a 
patient (who received intensive insulin therapy) 
as a function of time. Glycemia is measured 
every 3 minutes. This sampling frequency is not 
yet common. 

 
In this paper we considered the first results of the 
development of a control system that adapts the flow of 
the insulin infusion using the measurements of the blood 
glucose levels. This system could (continuously or 
discontinuously) advise the medical team (physicians or 
nurses) about the desired insulin administration rate or 
can, after further validation, apply a more automatic 
control. 
 

2.  General solution strategy  
 
Figure 2 gives a global overview of the system. Three main 
parts can be recognized: 
 
1. Sensor: Arterial glycemia is measured every 4 hours. 

However, this paper uses subcutaneous glycemia data 
measured every 3 minutes. The sensor used is one of 
A.Menarini Diagnostics and is being validated by K.U. 
Leuven. In case of frequent retrospective calibrations 
with arterial glycemias, these subcutaneous 
measurements may be used for this study.  

 
2. Control system: The control system consists of 2 

subparts. The first one is the patient model. This model 
represents a “mathematical” patient. It allows to predict 
glycemia of a specific patient, taking into account 
complicating factors such as the ones described above. 
The patient model consists of a number of model 
parameters that are very patient specific. The model 
structure and its parameters are determined by using 
input-output data that had been gathered before. The 

second subpart is the controller itself. It determines the 
rate of insulin a certain patient needs, taking into 
account the disturbance factors described above.  

 
3. Actuator: The actuator is the insulin pump that will 

administer the insulin to the patient. In a first phase this 
will be done semi-automatically, i.e. after confirmation 
of the advised insulin flow. In a second phase this 
process can be performed automatically. 

 

Figure 2.   Global overview of the system.  
 
This paper describes the first research results towards an 
accurate patient model. Some research has already been 
done in the field of glycemia control for (type I –) 
diabetics. The glycemia control aim within this latter 
patient group is comparable with that of ICU-patients, 
although there are some important differences. Most 
research activities in diabetic control are based on physical 
compartmental models [2,3,4,5]. However, these models 
are hardly clinically feasible due to high uncertainty rates 
[6]. This problem could be overcome by using data-based 
modeling. However, as is indicated in this paper, black-box 
modeling should further be improved.   
 

3.  Data description  
 
The development of the ICU – patient model is based on 
input-output-data of a randomized group of 14 patients. 
During the first 40 hours of their stay in ICU the 
subcutaneous glycemia (output) is measured every 3 
minutes. Besides these semi-continuous measurements 
arterial glycemia is measured every hour during the first 
day and every 4 hours during the second day in order to 
calibrate the subcutaneous measurements retrospectively.  
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In a first research phase, 10 different input variables that 
may influence glycemia, are taken into account [7]. The 
first and probably most important input is the insulin flow. 
This is the single input that can be regulated by the control 
system. The other inputs are known, but cannot be used to 
control glycemia. Nurses and doctors determine their rates 
or they are autonomous.  
 
The second main input is the group of the administered 
calories. It consists of 4 subinputs: the number of 
carbohydrate calories and the number of fat calories that 
are administered intravenously (parenteral infusion, PI), 
and the number of carbohydrate calories and the number of 
fat calories that are delivered by enteral infusion (EI). 
 
Administered drugs form the third main input. Again, there 
are 4 subinputs: the group of corticoids, noradrenalin, 
dobutamin and beta-blockers. Finally, body temperature is 
taken into account, as well, because of its relation with 
illness and, consequently, possibly with increased 
glycemia.  
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Figure 3.   Data of one patient. The upper part 
represents glycemia (output). The 6 plots below 
are the 10 input variables that may influence 
glycemia. 

In Figure 3 an example of all the input variables is shown 
for one patient. Clearly, glycemia fluctuates much more 
than the input variables do. The entropy of the output is 
much higher than the entropy of the inputs. This can 
probably be attributed to unknown or unmeasurable input 
variables that significantly influence glycemia. 

4.  Patient model 
 
The main part of the control system is the patient model. 
An accurate patient model is necessary for a well 
performing control system. Ideally, a general patient 
model that is accurate for all ICU-patients or for a 
subgroup of this population should be developed. In a first 
research phase we attempted to construct a patient model 
based on the clinically available data.  
 
The entire system was approximated to be open-loop.
However, in fact the system is closed-loop due to the 
influence of previous glycemia levels on future settings 
for the insulin flow, determined by nurses and doctors. In 
the near future, closed-loop modeling will be considered. 
Possibly, this will result in a more accurate patient model 
than the one that is constructed by applying the open-loop 
approximation [8]. 
 
The sampling frequency of the output (20 times per hour) 
is much higher than that of the different input variables (at 
most once per hour). Different open-loop model 
identification approaches have been investigated, 
although in this paper we emphasize only two of them: 
autoregressive models with exogeneous inputs (ARX) and 
Prediction-Error-Models (PEM). 
 
4.1  ARX 
 
The input-output correlation can be described by means of 
a linear difference equation: 
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where: 
- ky = glycemia (output) at time k, 
- ku = insulin rate between k and k+1, 
- j

kv = value of known factor j that may influence    
 the dynamic behavior of the patient at time k 

(e.g. administered glucocorticoids at time k, 
administered number of calories at time k), 

- j
iii c,b,a = model parameters, 

- Z = number of factors that are  
 considered in the model, 
- 1ke + = error, i.e. the difference between  
 predicted glycemia at k+1 and real  
 glycemia at k+1. 
 
Figure 4 and 5 show the results of a simulation applying 
an ARX-model on the same patient. Figure 4 considers 
glycemia simulations on the full dataset of the patient. 
The ARX-model parameters were first determined by 
using the same dataset. Consequently, the training set and 
the validation set are both the same. In the same figure, 



glycemia simulations based on general ARX-model 
parameters are shown as well. These general parameters 
were calculated based on the data of 14 different patients, 
including the patient whose data are shown. Both 
glycemia simulations (individual and general ARX-
model) have a comparable performance. 
 

Figure 4.   Simulation of glycemia applying 
ARX on the full dataset of a specific patient. 
The solid line represents real glycemia, the 
dashed line represents simulated glycemia 
based on an individual ARX-model (3th order) 
and the dotted line represents a simulation 
based on a general ARX-model (3th order) 
(constructed with a dataset of 14 patients). 

In Figure 5, glycemia simulations for the same patient as 
in Figure 4 are shown. In this case, however, the data of 
this patient were divided into two parts. The first two-
thirds of the dataset, i.e. the training set, were used to 
determine the model parameters. The last third is called 
the validation set and was used to ‘validate’ the model 
parameters derived from the training set. In Figure 5, only 
the validation set is visualized. 
 

Figure 5.   Simulation of glycemia using ARX 
on a validation set (last third of data) of the 
same patient as in Figure 4. The solid line 
represents real glycemia and the dashed line 
represents simulated glycemia based on the 
individual ARX-model that was constructed by 
using the first two-thirds of data of this patient 
(3th order). 

These validation results (Figure 5), however, indicate the 
use of simple ARX-models alone is not feasible in clinical 
practice. This was proven by applying a modified Bland-
Altman-analysis.

The Bland-Altman-analysis is a statistical method for 
assessing the agreement between two clinical values [9]. 
The difference between real and simulated glycemia (i.e. 
glycemia error) and the mean of those two values (both at 
each time step) are plotted. In this analysis, the 
measurements themselves (i.e. real and simulated 
glycemia) are not required to follow a normal distribution; 
however the differences are. Since the distribution of 
these differences turned out to be not ‘normal’, we 
applied a modified Bland-Altman-analysis (Figure 6). 
Hence, the 10 (P10) and 90 (P90) percentiles of glycemia 
errors were determined instead of the standard deviation 
of glycemia errors.  
 
In Figure 6 the P10 and P90-limits (prediction bounds) 
are also shown. The value of P10 and P90 indicate the 
clinical relevance. P10 and P90, respectively –5,5 and 
47,0 mg/dl, were calculated based on the validation data 
of the patient who was considered in Figure 5. The mean 
of glycemia errors for these data is 16,8 mg/dl. Especially 
the high P90-value is not acceptable to use this ARX-
model in clinical practice. 
 

Figure 6.   A modified Bland-Altman-analysis 
that considers the clinical relevance of the 
validation results shown in Figure 5. The P90-
value of glycemia errors (47,0 mg/dl) indicates 
the developed ARX-model is not feasible in 
clinical practice. 

 
The reason for the validation failure is that ARX models 
do not take into account any noise influences. Consider a 
certain amount of output noise wk that is added to a 
system without inputs. In this case, the resulting AR-
model (i.e. without exogeneous inputs) is then given by:      
 ∑ ++=+
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The underlined part of Equation (2) is the noise term that 
is not being modeled using AR. Model classes such as AR 
and ARX, are restrictive. A certain bias does exist. A 
general model, like a PEM-model, could give better 
results [10].  
 

4.2  PEM 
A PEM-model is the sum of a deterministic subsystem 
and a stochastic subsystem. It allows to model the noise 
term which could probably result in a model with higher 
performance. The general model structure is given by: 
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However, applying this model does not guarantee better 
results, as is shown in Figure 7 in which glycemia of the 
patient of the former example is simulated.  
 

Figure 7.   Simulation of glycemia applying 
PEM on the full dataset of a specific patient. 
The solid line represents real glycemia; the 
dashed line simulated glycemia based on an 
individual PEM –model (3th order). 

4.3  Model comparison 
Calculating the prediction error (PE) is a technique to 
validate different simulations. The use of the PE results in 
a comparison between different models. The PE can be 
calculated as follows: 

 ∑ 
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In Table 1 the PEs are shown for each patient. The mean 
PEs for ARX and PEM-simulations are 12,8 and 25,8 
respectively; the standard deviations 5,1 and 24,9. To 
compare the two sets of PEs, we applied the Wilcoxon 
signed rank test which resulted in a p-value of 1,22e-4. 
This value indicates that ARX-models result in a better 
performance than PEM. In case two outliers (patient 7 and 
10) are removed from the dataset, the resulting p-value 
remains small (4,88e-4). 
 
As described above, PEM-models are more complex than 
ARX-models. Since the number of parameters increases 
with the complexity degree of the model and the dataset is 
not enlarged, the variance on the model parameters 
increases as well. This could be the reason why the 
performance of PEM is worse despite the more complete 
model structure. 
 
Theoretically, the use of non-linear models could result in 
a more accurate glycemia simulation. However, the 
compexity degree of such models is even higher and the 
results will be even worse than with PEM-models. In the 
near future more data will be available and the use of 
these more complex models will be feasible. 
 

Table 1.   Prediction Errors of each patient 
applying ARX and PEM simulation on the full 
dataset. 

5.  Conclusion 
 
This paper discussed the results of two input-output 
models (ARX and PEM) used to model a patient in ICU. 
Both models showed fairly good results in case the 
simulation was executed on the training set of each 
patient seperately. As proven by calculating the prediction 
error, ARX-models outperformed PEM-models. The latter 

Patient ARX (3th order) 
(%) 

PEM (3th order)  
(%) 

1 14.5 17.3 
2 14.3 14.7 
3 10.0 15.2 
4 11.6 16.2 
5 10.1 15.7 
6 7.9 12.4 
7 9.6 91.0 
8 13.1 15.9 
9 10.1 14.2 

10 15.1 74.7 
11 27.6 32.9 
12 10.5 11.8 
13 16.9 18.9 
14 8.0 10.7 
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ones typically need more patient data to develop an 
accurate model.  
 
Simulations performed on a validation set, however, 
showed that ARX-models were not yet ready to be used in 
clinical practice. A possible reason for this failure could 
be the open-loop identification of what is essentially a 
closed-loop system. Future adaptations will take the 
control behavior of the nurse into account. When more 
patient data will be available, non-linear models will be 
developed as well.    
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