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pose: Hepatocellular carcinomas (HCC) have an unpredictable clinical course, and molecular clas-
ion could provide better insights into prognosis and patient-directed therapy. We hypothesized that
C, certain microenvironmental regions exist with a characteristic gene expression related to chronic
ia which would induce aggressive behavior.
erimental Design: We determined the gene expression pattern for human HepG2 liver cells under
ic hypoxia by microarray analysis. Differentially expressed genes were selected and their clinical va-
ere assessed. In our hypothesis-driven analysis, we included available independent microarray stud-
patients with HCC in one single analysis. Three microarray studies encompassing 272 patients were
s training sets to determine a minimal prognostic gene set, and one recent study of 91 patients was
or validation.
ults: Using computational methods, we identified seven genes (out of 3,592 differentially ex-
d under chronic hypoxia) that showed correlation with poor prognostic indicators in all three train-
ts (65/139/73 patients) and this was validated in a fourth data set (91 patients). Retrospectively, the
gene set was associated with poor survival (hazard ratio, 1.39; P = 0.007) and early recurrence (haz-
tio, 2.92; P = 0.007) in 135 patients. Moreover, using a hypoxia score based on this seven-gene set,
nd that patients with a score of >0.35 (n = 42) had a median survival of 307 days, whereas patients
score of ≤0.35 (n = 93) had a median survival of 1,602 days (P = 0.005).
with a

Conclusions: We identified a unique, liver-specific, seven-gene signature associated with chronic hyp-
oxia that correlates with poor prognosis in HCCs. Clin Cancer Res; 16(16); 4278–88. ©2010 AACR.
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atocellular carcinoma (HCC) is the sixth most com-
alignancy in the world and the third most common
of cancer-related deaths (1). Every year, 600,000
ases are diagnosed and almost just as many patients
nually of this disease. The most important risk factor
e development of HCC is cirrhosis, which is present

of patients.
C generally develops over many years and unless the
ts at risk are frequently screened, the disease is often
osed at a later stage (2). Only a small proportion of
ts are eligible for surgical resection or transplantation;
ajority have to rely on systemic chemotherapy, embo-
portive regimens (3). Patients with HCC
neous course of disease. Therefore, therapeu-
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isions for a specific patient would greatly benefit from
ble prognostic indicator considering the treatment
n, duration, expected success rate, and costs.
eral studies have tried to identify gene sets with prog-
or diagnostic relevance by using microarray analysis.
tudy resulted in its own classification with a specific
ation into groups (4). All these microarray studies
remarkably little overlap and it is difficult to find a
orrelation between themolecular classes and progno-
e results of these studies seem to be center-dependent
se of the different microarray techniques used, the
heterogeneous cohorts that were studied, and the
nt clinical variables used for the evaluations (5).
ough it has been recognized that the microenviron-
plays a role in tumor biology, it has never been used
tional concept to study HCC. One of the factors that
to affect cancer cell behavior and patient prognosis
oxia (6). Hypoxia is associated with poor prognosis
id tumors and with the development of resistance to
otherapeutic agents and radiation (7, 8). Although
is a hypervascular malignancy, there are regions with
ia (9). Hypoxic regions are already present in the ear-
e, when the vasculature is not sufficiently extended,

more advanced stages, when rapid cell proliferation

es hypoxia (10). Furthermore, the neovascularization
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Translational Relevance

Hepatocellular carcinoma (HCC) has an increasing
incidence and high mortality. Prognosis is difficult to
predict for individual patients. We started with an in vitro
model of chronic hypoxia and determined differential-
ly expressed genes. The clinical value of these chronic
hypoxia–related genes was assessed using bioinfor-
matics in four data sets with HCC patients. We identi-
fied a very small gene set with important prognostic
value in HCC patients. We developed a score based
on these seven genes which correlates with survival
and early recurrence. The score should make it feasible
to better predict prognosis for an individual patient.
This method requires the determination of only seven
genes in contrast with most of the previous microarray
studies that needed large cohorts for clustering and de-
termining relative gene expression. Furthermore,we sug-
gest that gene expression under chronic hypoxia might
lead to new therapeutic targets, and the hypothesis-
driven experimental methods we used could be applied
to other malignancies as well.

Seven-Gene Set with Prognostic Importance in HCC

www.a
rganized and the structural and functional defects
o both acute hypoxia and chronic hypoxia (11, 12).
ver, liver cancer usually develops in a cirrhotic envi-
ent in which the blood flow is already impaired.
hypothesized that in HCC, there are regions with
ned hypoxia which induces a characteristic gene ex-
on pattern. In addition, the extent of hypoxic gene
sion determines the aggressiveness, or in general,
ognosis.

rials and Methods

ic hypoxic gene expression
used the human hepatoblastoma cell line HepG2 as
vitro model. Cell culture experiments were done
6 months after the cell line was obtained from

can Type Culture Collection.
G2 cells were grown in a humidified incubator
o MCO-18M O2/CO2 incubator; 20% O2, 5%
t 37°C) in Williams medium E (WEM; InVitrogen)
emented with 10% FCS, 2 mmol/L of L-glutamine,
U/mL of insulin, 50 nmol/L of dexamethasone,
nits/mL of penicillin, 100 μg/mL of streptomycin,
g of fungizone, 50 μg/mL of gentamicin, and
g/mL of vancomycin (WEM-C).
amic behavior of hypoxia-related gene expression
udied over a period of 72 hours at different oxygen
ntrations using real-time PCR and immunohisto-
istry. From these results (Supplementary Figs. S1
2; Table 4), we concluded that 72 hours and 2%

represents a chronic hypoxia–like condition distinct
the acute situation during the first 24 hours.

chrom
sociat

acrjournals.org
ferentially expressed genes between HepG2 cells
ed for 72 hours at 2% O2 (hypoxia) and cells cul-
in parallel in 20% O2 (normoxic) were determined
microarray analysis. For the microarray analyses,
periments were executed in parallel. Cells were seed-
3 × 106 in 75 cm2 tissue culture flasks (n = 4) at 20%
d were grown until 70% confluence. After reaching
onfluence, two flasks were placed in a humidified incu-
under hypoxic conditions (2% O2, 5% CO2 at 37°C),
as the other flasks (n = 2) remained in normoxic
tions (20% O2). Cells were cultured for 72 hours in
different oxygen conditions, and after 3 days, cells
arvested. RNA samples were labeled and hybridized
al-color Agilent Human Whole Genome Oligo
array (Agilent). The Agilent technology uses one glass
for the simultaneous hybridization of two popula-
of labeled, antisense cRNAs obtained from two sam-
hypoxic and normoxic control) leading to a ratio for
sion. Probeswith correctedP values of <0.01 anda fold
e of >2 were defined as highly significant and designat-
he in vitro hypoxia gene set (Supplementary Table S2).

al data sets and patient characteristics
determine the clinical relevance of in vitro gene ex-
on, we compared our findings in the largest micro-
data sets with corresponding clinical information
s available in public databases. We used four pub-
vailable HCC studies, which are summarized in
1 (13–17). By testing only the differentially ex-
d genes in the four data sets, the reliability of
e-wide research can be increased because the num-

f genes tested is in proportion with the number of
ts studied (18).

opment of a prognostic gene set
used the first three data sets as training sets to opti-
our in vitro hypoxia gene set and to investigate the
ostic correlation. The fourth data set (Chiang
, was subsequently used to independently validate
gnature. In the first step to defining a robust score
the different data sets, we used a global test (19) to
igate whether the hypoxia genes were associated
rognosis under a Q2-null hypothesis (20). This ap-
h should be advantageous in that it is less dependent
e array platform used in different laboratories (Affy-
, Agilent, Stanford, etc.). Moreover, by starting from
ll subset of in vitro–determined hypoxia genes, this
d provides more insight into the degree of relation-
etween the different genes found to be upregulated
wnregulated. This enrichment-based method was
sed to investigate whether our hypoxia set separates
od and poor prognostic characteristics in the three
ets individually. Because in all four data sets, another
ostic factor was reported, we also had to use a differ-
ognostic factor in every data set. From Boyault et al.
the FAL index was used (21), which is a measure for

osomal instability and a high score (>0.128) was as-
ed with poor prognosis. In Wurmbach et al. (16),

Clin Cancer Res; 16(16) August 15, 2010 4279
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lar invasion was used (22, 23). Lee et al. (14, 15)
the different prognostic clusters that correlate with
al (cluster A with poor prognosis and cluster B with
prognosis), and Chiang et al. (17) used the Barcelo-
ging Classification (BCLC; ref. 24). Finally, based on
cores, we determined which genes in our hypoxia set

ost influential in differentiating between good and cantly

each
Goem
enrich
sets (
P = 0.
Nex

a z sc
Lee et
Wurm
altere
obser
were a
the h
betwe
Of

upreg
ble 2)
genes
a uni
tissue
our se
prognosis (19).

lts

ic hypoxia gene signature
started with a cell culture model and determined the
ntially expressed genes in HepG2 cells that were cul-
for 72 hours at either 20% oxygen or in hypoxic con-
s at 2% oxygen. We used Agilent technology with
flip on two independent experiments in duplicate,
ing in eight ratio values. A total of 37,707 spots
d a representative signal, of which 3,592 (8%; repre-
g 3,259 genes) had a fold change of >2 and a P value
.05 (1,879 upregulated and 1,713 downregulated).
ntrol the false discovery rate, multiple testing correc-
were done and probes with a corrected P value of
and a fold change of >2 were selected (25). This re-
in a list of 265 highly significant genes (207 upre-
d and 58 downregulated; Supplementary Table S2),
ated as the in vitro hypoxic gene set (the microarray

has been deposited at the National Center for
hnology Information under no. GSE 15366).

such
(GSE3

ancer Res; 16(16) August 15, 2010
al prognostic gene set
used presently available published data sets to inves-
the prognostic correlation with our in vitro–derived
ia gene set and to develop an optimized, reduced
ostic gene list (Fig. 1). To test whether the overall ex-
on pattern of these 265 hypoxia genes was signifi-
related to the prognostic factor considered for

of the three training data sets, the global test of
an et al. was used (19). This resulted in a significant
ment of the hypoxia gene set for all three training
P = 0.03595 for Boyault, P < 0.00001 for Lee, and
0064 for Wurmbach).
t, when keeping only the significant genes with
ore of >1, 130 genes remained for the data set of
al., 43 genes for Boyault et al., and 58 genes for
bach et al. Finally, genes for which the direction of
d expression did not correspond to the direction
ved in vivo were removed. With this approach, we
ble to downsize our hypoxia gene set to seven genes,
ypoxia signature of which was found to overlap
en the three training data sets (Fig. 1).
the genes in our hypoxia signature, four genes were
ulated and three downregulated under hypoxia (Ta-
. When we compared the expression of these seven
in different normal tissues, we found that they have
que expression pattern in liver not found in other
s (Supplementary Fig. S3). Furthermore, we tested
ven-gene set related to HCC in other malignancies,
Fig
pro
sta
ide
exp
Afte
cou
with
trai
was
ind
as colon carcinoma and colo
294, GSE 2630, and GSE69

Clini
Selection of the seven-gene
stic hypoxia gene set. We
with 265 genes that were
d from the microarray
ents with HepG2 cells.
veral selection steps, we
dentify a seven-gene set
ognostic value in our three
sets. The prognostic value
bsequently validated in the
rectal liver metastasis
88). The seven-gene

cal Cancer Research
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ic hypoxia as a prognostic marker
seven genes were used to define the hypoxia score:

ia score¼mean ðexpression ratio UP regulated genes in
log base 2Þ� mean ðexpression ratio DOWN
regulated genes in log base 2Þ:
dotted line; AUC, 71.5%).

acrjournals.org
the in vivo upregulated genes (n = 4), and DOWN,
vivo downregulated genes (n = 3; Table 2).
s hypoxia score was used to classify patients in the
training sets and to calculate the area under the
curve (AUC), to assess the predictive performance
data sets. The hypoxia score based on these seven
could significantly divide patients into those with
Seven-gene hypoxia score
to patients with HCC.
-curves for the three
sets. The AUC for
ach (vascular invasion) =
the AUC for Boyault
dex) = 72.8% and the AUC
(Clusters) = 84.9%. B, ROC
for the validation set
) after application of the
ene prognostic signature.
on was made between
tage O/A/B versus C
ne; AUC, 91.0%), division
n BCLC stage O/A versus
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), and with cluster A and cluster B gene expression
AUC, 84.9%; Fig. 2A). To independently test the

ellite nodules were defined differently in Boyault and Wurmbach
mance of our hypoxia score, we used the Chiang
et as validation set, with the BCLC classification

91%)
Fig. 2

ancer Res; 16(16) August 15, 2010
gnostic characteristic. The seven genes significantly
ate the BCLC group 0/A/B from group C (AUC,
1. Overview of published data sets that were used in this study
as well as
B).
the group 0/A from B

Clinical C
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is on 135 patients of the study by Lee et al. (Med-
oftware, version 11.0.1). The patient data is sum-
ed in Table 3. We first determined the Cox
rtional hazards ratio for survival because our hyp-
core is a continuous variable. Indeed, the hypoxia
significantly increased the risk of death (hazard ra-
.39; 95% confidence interval, 1.09-1.76; P =
). If we used a cutoff value of 0.35 for the hypoxia
(log rank test; P = 0.0018), we were able to show
icant differences in survival in 135 patients with a
n-Meier survival curve (Fig. 3A). The median sur-
for patients with a hypoxia score of >0.35 (n =
as 307 days, whereas the median survival for pa-
with a hypoxia score of ≤0.35 (n = 93) was 1,602
P = 0.002). For recurrence in HCC patients, it has
suggested to make a differentiation between early
ence (<2 years) and late recurrence (>2 years; refs.
7). Early recurrence is the result of dissemination
primary tumor and tumor characteristics deter-

the risk of recurrence. On the other hand, recur-
after 2 years is usually a second primary tumor
rises in a cirrhotic liver and has no relation with
rst tumor. Because our hypoxia score is determined
e tumor tissue itself, we tested if it could predict
recurrence. We calculated a significant Cox propor-
hazard ratio of 2.92 (95% confidence interval,
.39; P = 0.007), which means that with an eleva-
f the hypoxia score with 0.1 point, the risk of de-
ing a recurrence is 29.2% higher. Again, when we
cutoff of 0.35 for the hypoxia score, the Kaplan-
curve shows a significant difference in early recur-
(P = 0.005; Fig. 3B).
also conducted a multivariate statistical analysis to
ine the performance of the hypoxia score compared
ther variables, such as AFP level (≤300 versus >300),
r size (≤5 versus >5 cm), and differentiation grade (1-
us 3-4; Table 4). For the 135 samples, it was already
that the clustering (A versus B and hepatocyte ver-
Survival and early recurrence. A, Kaplan-Meier survival curve for
tients (14). The hypoxia score was used in a dichotomous manner
versus ≤0.35). Patients with a score of >0.35 had a significantly
survival. B, Kaplan-Meier curve for early recurrence (<2 y) in 135
. Again, the hypoxia score was used in a dichotomous manner
patoblast) has a very strong correlation with survival
ecurrence (both P < 0.001; ref. 15). Multivariate
2. List of the seven hypoxia-related prognostic genes in HCC
Respo

Upreg
Upreg
Upreg
Upreg

Clin Cancer Res; 16(16
in the hy
me
 nse to hypoxia
2
 G2
 ulation

e homologue 1 (C. elegans)
 ulation

lasmic reticulum oxidoreductin-1 L
 ulation
5L
 5-like
 ulation

last growth factor 21
 egulation
21 Fibrob Downr

1A Methionine adenosyltransferase Iα Downregulation
1 RNA terminal phosphate cyclase-like 1 Downregulation

E: CCNG2, EGLN3, ERO1L, and WDR45L will be upregulated under hypoxia in HCC, and FGF21, MAT1A, and RCL1 will be
) August 15, 2010 4283
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is with Cox proportional hazards regression, includ-
e hypoxia score, again showed that clustering based
B/hepatoblast is the only significant predictor of
poor survival and early recurrence (P = 0.009 and
001). However, the differentiation between A and B
d on 406 genes and the differentiation between a he-
last or hepatocyte phenotype is based on 941 genes.
ermore, different samples are needed to perform
ring based on these genes. In contrast, our hypoxia
is based on seven genes and can be calculated for
ividual patient. We therefore explored the perfor-
of the hypoxia score without integration of cluster-

he hypoxia score is the only significant variable for
urvival (P = 0.02) and early recurrence (P = 0.008);
rrelation was, however, not as strong as that found
e original clustering (A/B/hepatoblast), but required
h larger set of genes and is only valid in that single

ular classification
h in the study of Boyault et al. as well as in the study
iang et al., the authors divided their patients into dif-
molecular subgroups. Using their classifications, we
that the hypoxia score corresponded with the
ups that had a poor prognosis (Fig. 4A and B). This
oup is associated with proliferation and mTOR
ing and chromosomal instability and is seen more
ntly in patients with advanced HCC.

ssion

diagnosis for HCC is currently based on a combina-
f imaging techniques, serum markers, and histology
9); and for a reliable diagnosis, a multidisciplinary

ach is required. There are, however, no clear criteria
ble that could accurately predict the prognosis and

tional
selecti

ancer Res; 16(16) August 15, 2010
al approaches have been attempted to develop
al criteria. Great progress has been made developing
ally relevant cancer signatures especially for breast
r (30, 31) and, to a lesser extent, for colon cancer
3). For patients with HCC, a similar method has
een developed until now. Recently, several studies
ried to identify gene sets with prognostic or diagnos-
evance by microarray analysis (34–36). Prognosis is
factor in the selection of a therapy and therefore mo-
r classification has become increasingly important
e development of targeted therapy such as the multi-
inhibitor sorafenib (37). Although a lot of progress
en made in the molecular classification of HCC over
years, it is difficult to transpose the results from one
to another study or patients.
rationale behind this study was to start from the hy-
sis that during the development of a solid tumor
s HCC, there is a chronic hypoxic condition which
erent from acute hypoxia. Hypoxia is a well-known
teristic of solid tumors and has an effect on the ag-
veness of tumors, induces neoangiogenesis, anaero-
etabolism, and promotes invasiveness.
tral to this study is the working hypothesis that
ic exposure to hypoxia leads to an adaptive gene ex-
on profile which influences the aggressive behavior
tumor cells. To test our hypothesis independently

tient selection and variability, we decided to start
cell cultures. Here, we did not want a concomitant
or mutations in the p53 gene or liver cell lines that
s fragments of hepatitis B or C (38). Therefore, we
d the human HepG2 cell line, although it has he-
lastoma characteristics (39). The second selection
ade to study hypoxia at 2% O2, which is well below
xygen tension found in normal livers (40). Addi-

experimen
on of 2%
ts at different oxygen tens
O2 for 72 hours in vitro

Clinical C
Total H
 ia score <0.35 Hy
 ia score >0.35
patients
 135
 93
 42

) ± SD
 6 ± 14
 56 ± 14
 56 ± 12

/F)
 98/37
 67/26
 31/11

y HBV/HCV/(N)ASH/crypto/other/unknown 55
 13/14/17/22
 1/11/12/14/16
 6/3/2/2/3/6

sis (no/yes/NA)
 7/67/1
 45/47/1
 22/20/0

size (<5 cm/≥5 cm/NA)
 5/79/1
 41/51/1
 14/28/0

gic grade (1/2/3/4)
 55/72/6
 2/43/43/5
 0/12/29/1

lar invasion (no/yes/NA)
 /48/60
 24/37/32
 3/11/28
cu 27

level (<300/≥300/NA) 70/54/11 52/24/7 18/20/4
group (B/A/HB) 74/38/23 67/21/5 7/17/18

E: Baseline characteristics of the 135 patients and per subgroup based on the hypoxia score. Histologic grades were based on
Edmondson and Steiner classification and AFP levels were measured in ng/mL.
reviations: HBV, hepatitis B virus; HCV, hepatitis C virus; (N)ASH, (non)alcoholic steatohepatitis; crypto, cryptogenic; NA, not
ions support the
(Supplementary
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1 and S2; Table 4). Subsequently, the gene expres-
n this model was compared with gene expression
ined by microarrays in different groups of HCC
ts to identify the genes relevant for HCC and not
for hepatoblastoma.
ontrast with some of the previous studies onHCC, we
t limit the number of genes we wanted to investigate
riori selection, and used the Agilent 44 K microarray,
covers all the known genes. Although the dynamics
e expression indicate that after an adaptation period
hours, the gene expression is not as strongly altered as
the first 24 hours, we still found that 8% of the genes
ignificantly changed at 72 hours.
ting with the group of 265 highly significant genes
ted from the microarray study of HepG2 cells, we
ed a sequence of analytic steps and developed a very
t seven-gene prognostic signature using the method
eman et al. (19). This seven gene prognostic set was
d to four data sets of HCC patients. It could signif-
divide patients with different known risk factors in-
three studies (training sets) used to develop the

-gene prognostic signature. Furthermore, in the
study (17), this set could significantly separate
LC group 0/A/B from C or BCLC group 0/A from
ore importantly, the hypoxia score that can be ob-

from the seven-gene set significantly correlates with
al and early recurrence.

hypo
neces

ypoxia score and molecular classification. A, hypoxia score applied to the cluster
(G1-3, including proliferation; G4-6, including Wnt signaling). CTNNB: catenin (c

acrjournals.org
other important microarray studies on HCC with
ostic value have also been reported (34, 41). These
s, however, concentrated on the surrounding liver
and showed a correlation with inflammatory path-
and tumor recurrence, whereas our seven-gene set is
able on the tumor tissue itself. Indirect evidence sug-
hat our seven-gene set is liver-specific. First of all, the
n of gene expression in the liver of these seven genes
ifferent compared with other tissues (Appendix: Fig.
cond, the hypoxia score based on our seven-gene set
poor performance in data sets from other malignan-
hird, if we repeat the same experimental sequence
astrointestinal cancer cell lines, such as from colon
ancreas, we identified other sets of differently ex-
d genes (Supplementary Fig. S4).
seven genes are, to a certain extent, related to either
ia, proliferation, or metabolism (see Supplementary
ials, Functions and interactions of the seven genes in
n to hypoxia). CCNG2 is a regulator of the cell cycle
upregulated in response to DNA damage (42). Also
5L and RCL1 play a role in proliferation and RNA
ocessing, although the exact function of these two
are unknown (43). EGLN3 and ERO1L are both up-
ted in response to hypoxia. EGLN3 has been de-
d as the main actor in the response to chronic

xia and the regulation of Hif1α (44). ERO1L is
sary in the proper protein folding under hypoxic
s used by Chiang. B, hypoxia score applied to the clusters used by
adherin-associated protein), β1, 88 kDa (Homo sapiens).
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tions (45). FGF21 and MAT1A are downregulated in
se to hypoxia and are involved in metabolic pro-
. FGF21 is involved in energy homeostasis, it has
docrine function regulating glucose uptake in adipo-
46). MAT1A is unbearable in normal liver function
se it regulates most methylation processes (47).
clinical tool, the hypoxia score seems promising. It
good correlation with survival as well as early recur-
in patients. It is a good alternative for the classifica-
y Lee et al. (14, 15), with the advantage of requiring
ch smaller gene set. In multivariate analyses, our
ia score had a better performance than, for example,
size and differentiation grade—two variables that

rrently used to estimate the aggressiveness of tumors.
entification of these seven genes is the next step
dicting prognosis, and although preliminary, it
influence therapeutic decision-making in the fu-
esides, it can be used in randomized trials for risk
ication.
r findings might also have important implications
e use of antiangiogenic therapies. Nowadays, both
oembolization and the anti–vascular endothelial
h factor receptor kinase sorafenib are standard treat-
for patients with intermediate or advanced HCC. It
een previously noted that resistance emerges after
giogenic therapies, leading to untreatable aggressive
rs (48). Our findings on the role of hypoxia lead
reconsideration of treatment strategies, but more

rtantly, our gene set could help in the search for
herapeutic targets.
the last few years, the molecular classification of

has attracted a lot of attention. Based on gene
ssion, patients could be classified into several

ancer Res; 16(16) August 15, 2010
oups such as the β-catenin subgroup, the prolifera-
ubgroup, and the inflammation subgroup. The ex-
rognostic and therapeutic implications of this
rization are still unclear. We analyzed our hypoxia
ure in the studies of Chiang and Boyault, and there
clear correlation with the proliferation cluster. This
r consists of genes related to the mTOR pathway
everal cell cycle genes, such as cyclins. In the prolif-
n cluster defined by Chiang, there was a significant
se in pRPS6 staining, indicating aberrant mTOR sig-
g. The mTOR signaling pathway regulates cell
h, cell proliferation, protein transcription, and sur-
by orchestrating several upstream signals. Recently,
portant role for the mTOR pathway in HCC was
(49, 50). Also, several studies have shown an in-

on between mTOR and hypoxia (or HIF1A). There
dence for an oxygen-independent induction of
by mTOR signaling and upregulation of targets

s vascular endothelial growth factor (51, 52). These
warrant further examinations of the hypoxia score
mbination with targeting the mTOR pathway in
n studies.
onclusion, we have identified a seven-gene set that
ates with prognosis in HCC patients. We were able to
t this very small gene set by combining four available
array data and because we had identified in advance
vitro gene set.

r findings have potential implications in several areas:
Because our prognostic signature relies on a limited
number of genes, its application should be broadly
4. Multivariate analysis of the 135 patients
possible using generally available techniques su
as real time PCR. However, it will be necessary
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ariate analysis in 135 patients

Hazard ratio (95% confidence interval)* P
subgroup 2.24 (1.23-4.06) 0.009

bgroup
 0.58 (0.34-1.00)
 0.05
alysis without subgroups

oxia score >0.35
 2.57 (1.14-5.76)
 0.02
subgroup
 5.07 (2.06-12.48)

alysis without subgroups
an

ge >65 y 2.16 (0.99-4.74) 0.06
ypoxia score >0.35 2.90 (1.32-6.36) 0.008

E: We present only the (nearly) significant variables.
reviations: OS, overall survival; ER, early recurrence; HB, hepatoblastoma.
hazard ratios for overall survival and early recurrence for patients with or without a hepatoblastoma genotype, with or without a

enotype, with a hypoxia score > or <0.35, and age > or <65 y. Because the subgroups published in Lee were determined on
e gene sets and patient clustering, we also studied the performance of our seven-gene set without the subgroups. Vascular
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