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Abstract. Motivation: Although studies have shown that genetic alte-
rations are causally involved in numerous human diseases, still not much
is known about the molecular mechanisms involved in sporadic and here-
ditary ovarian tumorigenesis.

Methods: Array comparative genomic hybridization (array CGH) was
performed in 8 sporadic and 5 BRCA1 related ovarian cancer patients.

Results: Chromosomal regions characterizing each group of sporadic and
BRCA1 related ovarian cancer were gathered using multiple sample hid-
den Markov Models (HMM). The differential regions were used as fea-
tures for classification. Least Squares Support Vector Machines (LS-
SVM), a supervised classification method, resulted in a leave-one-out
accuracy of 84.6%, sensitivity of 100% and specificity of 75%.

Conclusion: The combination of multiple sample HMMs for the detec-
tion of copy number alterations with LS-SVM classifiers offers an im-
proved methodological approach for classification based on copy number
alterations. Additionally, this approach limits the chromosomal regions
necessary to distinguish sporadic from hereditary ovarian cancer.

1 Introduction

Many defects in human development leading to e.g. cancer and mental retar-
dation are due to gains and losses of chromosomes and chromosomal segments.
These aberrations defined as regions of increased or decreased DNA copy num-
ber can be detected using an array comparative genomic hybridization (array
CGH) technology. This technique measures variations in DNA copy number
within the entire genome of a disease sample compared to a normal sample [1].
This makes array CGH ideally suitable for a genome-wide identification and
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localization of genetic alterations involved in human diseases. An overview of
algorithms for array CGH data analysis is given in [2]. Segmentation approaches
identify adjacent clones with a same mean log ratio. These methods have as
disadvantages that a further analysis is needed to determine the segments that
are gained or lost and that results become unsatisfactory with high noise le-
vels in the data. Therefore, segmentation and classification should be performed
simultaneously because these two tasks can improve each other’s performance.
A popular method to combine them is the hidden Markov Model (HMM) with
states defined as loss, neutral, one-gain and multiple-gain. Recently, this tradi-
tional procedure has been exploited to a multiple sample HMM in which a class
of samples instead of individual samples is modeled by sharing information on
copy number variations across multiple samples [3]. Here, we present a method
to identify copy number alterations with the multiple sample HMM and that
goes beyond the exploratory phase by using these alterations as features in a
supervised classification setting.

For classification, we used the class of kernel methods which is powerful for
pattern analysis. In recent years, these methods have become a standard tool
in data analysis, computational statistics, and machine learning applications [4].
Their rapid uptake in bioinformatics is due to their reliability, accuracy and com-
putational efficiency, which has been demonstrated in countless applications [5].
More specifically, as supervised classification algorithm we made use of the Least
Squares Support Vector Machine (LS-SVM) which is an extension of the more
regular SVM and has been developed in our research group by Suykens et al [6].
On high dimensional data, the LS-SVM is easier and faster compared to the SVM.

We applied our method on ovarian cancer which is the fourth most common
cause of cancer death and ranks as the most frequent cause of death from gy-
naecological malignancies among women in western countries [7]. In a total of
5-10% of epithelial ovarian carcinomas, a family history of breast and ovarian can-
cer is noted with germline mutations in the tumour suppressor genes BRCA1 or
BRCA2. A mutation of the BRCA1 gene cumulates the risk for ovarian carcinoma
with 26-85% while a BRCA2 mutation increases the cumulative risk with 10% [8].

The outline of this article is as follows. In section 2, we describe the data
set and the array CGH technology used for the analysis as well as the multiple
sample HMM, the classifier and the feature selection method applied. In addition,
the workflow of our proposed methodology is given in detail. In Section 3, we
describe our results on ovarian cancer and finally, conclusions and future research
directions are given in Section 4.

2 Materials and Methods

2.1 Patients and Data

Data from patients treated for ovarian cancer at the University Hospital of Leu-
ven, Belgium were collected for participation at this study. All tumour samples
were collected at the time of primary surgery. Only patients with similar clinical
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characteristics were retained: eight sporadic and five BRCA1 related ovarian can-
cer patients. One patient with BRCA2 was excluded and none of the patients out
of the sporadic group had a positive family history of breast and/or ovarian can-
cer. Array comparative genomic hybridization was performed using a 1Mb array
CGH platform, version CGH-SANGER 3K 7 developed by the Flanders Institute
for Biotechnology (VIB), Department of Microarray Facility, Leuven, Belgium.

2.2 Array Comparative Genomic Hybridization

Array comparative genomic hybridization (array CGH) is a high-throughput tech-
nique for measuring variations in DNA copy number within the entire genome of
a disease sample relative to a normal sample [1]. In an array CGH experiment, to-
tal genomic DNA from tumour and normal reference cell populations are isolated,
different fluorescently labeled and hybridized to several thousands of probes on a
glass slide. This allows to calculate the log ratios of the fluorescence intensities of
the tumour to that of the normal reference DNA. Because the reference cell popu-
lation is normal, an increase or decrease in the log intensity ratio indicates a DNA
copy number variation in the genome of the tumour cells such that negative log
ratios correspond to deletions (losses), positive log ratios to gains or amplifications
and zero log ratios to neutral regions in which no change occurred.

2.3 Multiple Sample HMM

As was stated in the introduction, we will use a multiple sample hidden Markov
Model (HMM) proposed by Shah et al [3] for the identification of chromosomal
aberrations and to detect extended chromosomal regions of altered copy num-
bers labeled as gain or loss. The goal of this model is to construct features that
distinguish the sporadic from the BRCA1 related group and subsequently to use
them in a classifier (see Section 2.4). Because of the sensitivity of traditional
HMMs to outliers being measurement noise, mislabeling and copy number poly-
morphisms in the normal human population, a robust HMM was first proposed
by Shah et al [9] which handles outliers and integrates prior knowledge about
copy number polymorphisms into the analysis. To further reduce the influence of
various sources of noise on the detection of recurrent copy number alterations,
Shah et al extended the robust HMM to a multiple sample version in which
array CGH experiments from a cohort of individuals are used to borrow statis-
tical strength across samples instead of modeling each sample individually [3].
This makes even copy number alterations in a small number of adjacent clones
reliable when shared across many samples.

In this study, a multiple sample HMM is constructed on a chromosomal
basis separately for the group of sporadic and the group of BRCA1 related ova-
rian cancer. Both HMMs result in chromosomal regions with genetic alterations
characterizing sporadic and BRCA1 related samples, respectively. A differential
region is defined as a chromosomal region which is gained/lost in one group while
not being gained/lost in the other group.



168 A. Daemen et al.

2.4 Kernel Methods and Least Squares Support Vector Machines

The differential regions we just constructed are used as features in a classifier for
which we chose kernel methods. These methods are a group of algorithms that
do not depend on the nature of the data because they represent data entities
through a set of pairwise comparisons called the kernel matrix [10]. This matrix
can be geometrically expressed as a transformation of each data point x to a
high dimensional feature space with the mapping function Φ(x). By defining a
kernel function k(xk, xl) as the inner product 〈Φ(xk), Φ(xl)〉 of two data points
xk and xl, an explicit representation of Φ(x) in the feature space is not needed
anymore. Any symmetric, positive semidefinite function is a valid kernel function,
resulting in many possible kernels, e.g. linear, polynomial and diffusion kernels.
In this manuscript, a linear kernel function was used.

An example of a kernel algorithm for supervised classification is the Support
Vector Machine (SVM) developed by Vapnik [11] and others. Contrary to most
other classification methods and due to the way data is represented through ker-
nels, SVMs can tackle high dimensional data (e.g. microarray data). The SVM
forms a linear discriminant boundary in feature space with maximum distance
between samples of the two considered classes. This corresponds to a non-linear
discriminant function in the original input space. This kernel method also con-
tains regularization which allows tackling the problem of overfitting. We have
shown that regularization seems to be very important when applying classifi-
cation methods on high dimensional data [5]. A modified version of SVM, the
Least Squares Support Vector Machine (LS-SVM), was developed by Suykens
et al [6]. On high dimensional data sets, this modified version is much faster
for classification because a linear system instead of a quadratic programming
problem needs to be solved.

2.5 Feature Selection

Because it has been shown in [13] that univariate gene selection methods lead to
good and stable performances across many cancer types and yield in many cases
consistently better results than multivariate approaches, we used the method
DEDS (Differential Expression via Distance Synthesis) [14]. This technique is
based on the integration of different test statistics via a distance synthesis scheme
because features highly ranked simultaneously by multiple measures are more
likely to be differential expressed than features highly ranked by a single measure.
The statistical tests which were combined are ordinary fold changes, ordinary
t-statistics, SAM-statistics and moderated t-statistics. DEDS is available as a
BioConductor package in R.

2.6 Proposed Methodology

Due to the limited number of samples, a leave-one-out (LOO) cross-validation
strategy is applied. The 4 different steps that have to be accomplished in each
LOO iteration are shown in Figure 1. After leaving out one sample, a multiple
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Fig. 1. Methodology consisting of 4 steps: step 1 - multiple sample HMM; step 2 - con-
version of clones to differential regions and normalization per sample; step 3 - feature se-
lection using DEDS; step 4 - LS-SVM training and validation on left out sample (CR =
Chromosomal Region; DR = Differential Region; NORM = Normalization; DEDS =
Differential Expression via Distance Synthesis; NF = Number of Features)

sample HMM (see Sect. 2.3) is constructed in step 1 for both groups of spo-
radic and BRCA1 related ovarian cancer to determine the chromosomal regions
with genetic alterations that characterize each group. Combining these regions
results in the chromosomal regions that are differential between the remaining
n-1 sporadic and BRCA1 related samples. Because multiple clones can be lo-
cated within each differential region, the clones need to be combined. This is
done per sample in the second step by taking the median of the log ratios of
the clones in each region. Afterwards, a standardization is performed per sample
(i.e. meanshifting to 0 and autoscaling to 1) because the raw log ratios cannot
be compared in absolute values between the samples. In step 3, DEDS deter-
mines which preprocessed log ratios, called features, best discriminate the n-1
samples (see Sect. 2.5). The number of included features is iteratively increased
according to the obtained feature ranking without including more features than
the number of samples on which the optimal number of features is determined
[15]. This subset of features forms the input for classification in the last step (see
Sect. 2.4). The LS-SVM contains a regularization parameter γ which, together
with the number of features needs to be optimized. For all possible combinations
of γ and number of features, an LS-SVM is built on the training set and validated
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on the left out sample. This is repeated n times such that each sample has been
left out once. For the LS-SVM, a linear kernel function k(xk, xl) = xT

k xl was
chosen. An RBF kernel resulted in similar performances (data not shown).

3 Results

Our data set contains 8 sporadic and 5 BRCA1 related ovarian cancer patients.
The array CGH data of chromosome 10 is shown in Figure 2 for 3 sporadic
and 2 BRCA1 related samples. Both groups have a different profile within the
first 3x107 base pairs and an amplification occurs within the BRCA1 related
samples around 5x107 base pairs. When applying the proposed methodology on
this data set, 11 out of 13 samples could be classified correctly using measured
copy number changes in only 11 differential regions. The LS-SVM had a LOO
accuracy of 84.6%, a sensitivity of 100% (5/5) and a specificity of 75% (6/8).

A comparison of the 11 differential regions found in each of the 13 LOO
iterations shows a limited variability in the selected regions. Table 1 shows the
number of LOO iterations in which the same features were chosen as the ones
most differentially between all 13 samples. The top 5 of features with the lowest
p-value according to DEDS appeared in 8 to 11 of the 13 LOO iterations. Three
less significantly features appeared in 4 LOO iterations. These results strengthen
our confidence that the chromosomal regions found with our methodology are
robust and we hypothesize that genes in these regions participate in processes
that distinguish sporadic from hereditary ovarian cancer.

Fig. 2. Array CGH profile of chromosome 10 for 3 sporadic (top) and 2 BRCA1 related
samples (bottom). The horizontal lines indicate the 0 log ratios for all samples. The
vertical box indicates the amplification for the 2 BRCA1 related samples.

Table 1. Number of LOO iterations in which each of the 11 chromosomal regions was
selected

Feature 1 2 3 4 5 6 7 8 9 10 11
Nb LOO iterations 8 11 9 11 10 5 7 4 4 4 6
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4 Conclusion and Future Work

In this manuscript, a new methodology is proposed in which copy number vari-
ations resulting from array CGH are transformed into features for classification
purpose. This general method which is applicable to all types of cancer allows
to find a small set of chromosomal regions for distinguishing two classes of pa-
tients and may further improve biological validation. It can also result in clinical
relevant models for a simpler prediction based on a limited set of features. As
increasing amounts of array CGH data become available, there is a need for algo-
rithms to identify gains and losses statistically, rather than merely detect trends
in the data. A large number of approaches for the analysis of array CGH data
has already been proposed recently, ranging from mixture models and HMMs
to wavelets and genetic algorithms [2]. However, most studies of cancer with
gathered array CGH data apply less sophisticated methods for an exploratory
analysis. Such studies apply a fixed threshold for defining gains and losses. A
HMM on the contrary is a more intelligent way to detect copy number alte-
rations in the genome of each sample by exploiting the spatial correlation be-
tween clones within an aberrated region. This makes the HMM also more robust
against outliers such as measurement noise and wrongly recordings of locations
of clones. Secondly, a robust HMM improves the reliability of the found chromo-
somal regions by taking into account copy number polymorphisms occurring in
the normal human population. Thirdly, the multiple sample HMM improves the
ability of detecting aberrations common for one group by borrowing strength
across samples instead of modeling each sample individually. This makes also
copy number alterations in a small number of adjacent clones reliable when
shared across many samples and may prevent the loss of these possibly impor-
tant biological features. Subsequently, the aberrations that are different between
the group of sporadic and BRCA1 related samples are considered as features
characterizing these samples. Finally, classification is performed to determine
a small set of chromosomal regions that can distinguish sporadic from BRCA1
related ovarian cancer.

In the near future, an extensive study of the 11 differential regions may result
in an increased knowledge on genes and pathways involved in sporadic versus
hereditary ovarian cancer. Furthermore, we will analyze new patients with an in-
house developed array CGH technology with a higher resolution to strengthen
our hypotheses and to refine the found regions of genetic alterations possibly
involved in ovarian cancer.
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