Chapter 9

A Genome-Wide Computational Study of Copy
Number Variations: an Example on Ovarian
Cancer

Anneleen Daemen, Olivier Gevaert, Karin Leunen, Vanessaauwen,
Genevieve Michils, Eric Legius, Ignace Vergote, and BagtNboor

Abstract Motivation: Knowledge about the molecular mechanisms involved in spo-
radic and hereditary ovarian tumorigenesis is lacking. Buthe hypothesis that
BRCA related ovarian cancer follows distinct pathways igititarcinogenesis, ar-
ray comparative genomic hybridization (array CGH) was @anked in 8 sporadic
and 5 BRCA1 mutated ovarian cancer patients to identify copyber variations.
Results: Chromosomal regions characterizing each group of sposaticBRCA1
related ovarian cancer were gathered using recurrenthiddekov Models (HMM).
The differential regions were reduced to a subset of featfoeclassification by
integrating different univariate feature selection mehoL.east Squares Support
Vector Machines (LS-SVM), a supervised classification radtiesulted in a leave-
one-out accuracy of 84.6%, sensitivity of 100% and spetjfif 75%.

Conclusion: The combination of recurrent HMMs for the detection of copym
ber alterations with LS-SVM classifiers offers a novel melitlogical approach for
classification based on copy number alterations. Additipntais approach limits
the chromosomal regions that are necessary to distingpafadic from hereditary
ovarian cancet.

9.1 Introduction

In cancers, many gains and losses of chromosomes and ctonrabsegments have
been described. These aberrations defined as regions edgezt or decreased DNA
copy number can be detected at high resolution using an eoraparative genomic
hybridization (array CGH) technology. This technique meas variations in DNA
copy number within the entire genome of a disease sample @@upo a normal
sample [1]. This makes array CGH ideally suitable for a gegavide identification
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and localization of genetic alterations involved in humésedses. An overview of
algorithms for array CGH data analysis is given in [2]. Segtagon approaches
identify chromosomal regions of adjacent clones with theesenean log ratio. Dis-
advantages of these methods are that the segments thatirred galost need to
be determined in a further analysis and that results becosetisfactory with high
noise levels in the data. Therefore, segmentation andifabation should be per-
formed simultaneously because these two tasks can impamte @her’s perfor-
mance. A popular method for combining them is the hidden iaModel (HMM)
with states defined as loss, neutral, one-gain and mulgaie- Recently, this tradi-
tional procedure has been extended to a recurrent HMM inlwdoidass of samples
instead of individual samples is modeled by sharing infaromaon copy number
variations across multiple samples [4]. Here, we presen¢thod to identify copy
number alterations with the recurrent HMM which goes beytrel exploratory
phase by using these alterations as features in a supecl@ssification setting and
by validating these features biologically.

Because the exclusion of redundant and non-discriminéatyres might avoid
overfitting and identifies a smaller set of features able strijuish good from bad,
feature selection should be performed. To get rid of soméeftrbitrariness with
which a univariate feature selection method is choseremifft univariate test statis-
tics were combined to suppress the false positive error[Bjté-or classification,
we used the class of kernel methods which is powerful foepatinalysis. In recent
years, these methods have become a standard tool in daysianabmputational
statistics, and machine learning applications [6], [7]eifiapid uptake in bioinfor-
matics [8] is due to their reliability, accuracy and compiataal efficiency, which
has been demonstrated in countless applications [9]. M@@fically, as supervised
classification algorithm we made use of the Least Squares@uyector Machine
(LS-SVM) which is an extension of the standard SVM and has lukeloped in
our research group by Suykeetsal. (1999), (2002) [10]-[11]. On high dimensional
data, the LS-SVM is easier and faster to solve because thdrafiaprogramming
problem of the SVM is reduced to a set of linear equations.

We applied our method on ovarian cancer which is the fourtstm@mmon cause
of cancer death and ranks as the most frequent cause of deatlyynaecological
malignancies among women in western countries [12]. Inad 6§t5-10% of epithe-
lial ovarian carcinomas, a family history of breast and @macancer is noted with
germline mutations in the tumour suppressor genes BRCAIREA? in most of
them. A mutation of the BRCAL gene cumulates the risk for mvecarcinoma with
26-85% while a BRCA2 mutation increases the cumulativewighk 10% [14]. The
knowledge of different copy number variations between lsmbradic and hered-
itary groups may help to better understand tumorigenesikaxfe cancers. When
applied to larger study groups, this method could resultlieter comprehension
of the different clinical behaviour of both groups, probabkcessitating different
treatment strategies.

The outline of this chapter is as follows. In section 9.2, wedtibe the data set
and the array CGH technology used for the analysis as welleageturrent HMM,
the classifier and the feature selection method appliediditian, the workflow of
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our proposed methodology is given in detail together withftinctional annotation
analysis to validate agreement of the selected chromos@gans with biology.
We determine the gene sets from the Molecular Signaturezb@ae (MSigDB) [13]
that are enriched in the identified regions of copy numberaition. We describe our
results on ovarian cancer in Section 9.3 and conclude indegt4.

9.2 Materialsand M ethods

9.2.1 Patientsand Data

The data for this study were collected from patients tre&dedvarian cancer at
the University Hospital of Leuven, Belgium. A distinctionudd be made between
patients with a sporadic tumour and carriers of a mutaticghértumour suppressor
genes BRCAL or BRCA2. Both genes are involved in DNA damapaireand tran-
scriptional regulation [15]. All tumour samples were cotld at the time of primary
surgery. Only patients with similar clinical charactddstwere retained: eight spo-
radic and five BRCA1 mutated ovarian cancer patients. Oniergavith BRCA2
was excluded and none of the patients out of the sporadipdrad a positive fam-
ily history of breast and/or ovarian cancer. Array compaeagenomic hybridiza-
tion was performed using a 1Mb array CGH platform, versiorH=8ANGER 3K

7 developed by the Flanders Institute for BiotechnologyB)V Department of Mi-
croarray Facility, Leuven, Belgium.

9.2.2 Array Comparative Genomic Hybridization

Array comparative genomic hybridization (array CGH) is gtithroughput tech-
nique for measuring DNA copy number variations (CNV) witttie entire genome
of a disease sample relative to a normal sample [1]. In ary &@H experiment,

total genomic DNA from tumour and normal reference cell dapons are isolated
and subsequently labeled with different fluorescent dyésredeing hybridized to

several thousands of probes on a glass slide. This allonaltalate the log ratios
of the fluorescence intensities of the tumour to that of thenab reference DNA.

Because the reference cell population is normal, an inereadecrease in the log
intensity ratio indicates a DNA copy number variation in §eome of the tumour
cells such that negative log ratios correspond to deleiosses), positive log ratios
to gains or amplifications and zero log ratios to neutralargin which no change
occurred.
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9.2.3 Recurrent HMM

As was stated in the introduction, we will use a recurrentaid Markov Model
(HMM) proposed by Shakt al. (2007) for the identification of extended chromo-
somal regions of altered copy numbers labeled as gain of4dsghe goal of this
model is to construct features that distinguish the spor&dim the BRCAL re-
lated group and subsequently to use them in a classifier 6d#®89.2.4). Because
of the sensitivity of traditional HMMs to outliers being neaement noise, misla-
beling and copy number polymorphisms in the normal humanfation, a robust
HMM was first proposed by Shaal. (2006) which handles outliers and integrates
prior knowledge about copy number polymorphisms into thedyasis [16]. To fur-
ther reduce the influence of various sources of noise on ttextifen of recurrent
copy number alterations, Shehal. (2007) extended the robust HMM to a multiple
sample version in which array CGH experiments from a cohbimdividuals are
used to borrow statistical strength across samples insteaddeling each sample
individually [4]. This makes even copy number alterationsai small number of
adjacent clones reliable when shared across many samples.

In this study, a recurrent HMM is constructed on a chromoddraais sepa-
rately for the group of sporadic and the group of BRCA1 mutatearian cancer.
Both HMMs result in chromosomal regions with genetic altierss characterizing
sporadic samples and samples with a BRCA1 mutation, raspictA differential
region is defined as a chromosomal region which is gainegdAiame group while
not being gained/lost in the other group.

9.2.4 Kernel Methods and Least Squares Support Vector Machines

The differential regions that result from the recurrent HNAké used as features in
a classifier for which we chose kernel methods. These methieda group of al-
gorithms that do not depend on the nature of the data bechegedpresent data
entities through a set of pairwise comparisons called thiedtenatrix [17]. This
matrix can be geometrically expressed as a transformafieach data poink to

a high dimensional feature space with the mapping functigr). By defining a
kernel functionk(x,X ) as the inner produgt®(x), ®(x )) of two data points¢
andx;, an explicit representation @p(x) in the feature space is not needed any-
more. Any symmetric, positive semidefinite function is aidvddernel function, re-
sulting in many possible kernels, e.g. linear, polynomia diffusion kernels. In
this manuscript, a linear kernel function was used.

An example of a kernel algorithm for supervised classifarais the Support Vec-
tor Machine (SVM) developed by Vapnik [18] and others. Cantrto most other
classification methods and due to the way data is represtmmteayh kernels, SVMs
can tackle high dimensional data (e.g. microarray datsg IV forms a linear dis-
criminant boundary in feature space with maximum distamt@®en samples of the
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two considered classes. This corresponds to a non-lingeniiinant function in the
original input space. This kernel method also containslegtation which allows
tackling the problem of overfitting. It has been shown thgtitarization seems to be
very important when applying classification methods on tigthensional data [9].
A modified version of SVM, the Least Squares Support Vectochitze (LS-SVM),
was developed by Suykessal. (1999), (2002) [10]-[11]. On high dimensional data
sets, this modified version is much faster for classificaienause a linear system
instead of a quadratic programming problem needs to bedolve

9.2.5 Feature Selection

The choice of a feature selection technique is a widely dised topic [19]. Lagt al.
(2006) found that univariate gene selection, computatipeenple and fast for high
dimensional data, leads to good and stable performancessacrany cancer types
and yields in many cases consistently better results thdtivariate approaches
[20]. Therefore, we will use a univariate method. Becauseamparison of uni-
variate gene selection techniques has been made acro$g@isthy wide range of
benchmark data sets and due to the dependency of the bestrnpieid technique
on the data set used, Yargal. (2005) proposed a method in which some of the
arbitrariness with which univariate methods are choserhiigh dimensional data
is vanished [5]. This technique, called DEDS (DifferenEajpression via Distance
Synthesis) is based on the integration of different te§issitzs via a distance synthe-
sis scheme because features highly ranked simultaneoustybiple measures are
more likely to be differential expressed than features lyiggdnked by a single mea-
sure. The statistical tests which were combined are ordiiodal changes, ordinary
t-statistics, SAM-statistics and moderated t-statisfitee performance of DEDS is
favorably comparable with the best individual statistideths in practice often un-
known and which depends on the data set used. Additionadid®is not adversely
affected by the worst performing statistic and achievesistiess properties which
are lacked by the individual statistics. DEDS is availalsla 8ioConductor package
inR.

9.2.6 Proposed Methodology

Due to the limited number of samples, a leave-one-out (LG9 validation strat-
egy is applied. The 4 different steps that have to be accehmdiin each LOO iter-
ation are shown in Figure 9.1. After leaving out one samptecarrent HVIM (see
Sect. 9.2.3) is constructed in step 1 for both groups of sppoemd BRCA1 mutated
ovarian cancer to determine the chromosomal regions witletiealterations that
characterize each group. Combining these regions resutteei chromosomal re-
gions that are differential between the remaining n-1 sfiorand BRCA1 mutated
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Fig. 9.1 Methodology consisting of 4 steps: step 1 - recurrent HMMps2 - conversion of clones
to differential regions and normalization per sample; &efeature selection using DEDS; step 4 -
LS-SVM training and validation on left out sample (CR = Chesomal Region; DR = Differential
Region; NORM = Normalization; DEDS = Differential Expressivia Distance Synthesis; NF =
Number of Features)

samples. Because multiple clones can be located withindieiehential region, the

clones need to be combined. This is done per sample in thedstep by taking the
median of the log ratios of the clones in each region. Aftedsaa standardization
is performed per sample (i.e. meanshifting to 0 and autogr#b 1) because the
raw log ratios cannot be compared in absolute values bettieesamples. In step
3, DEDS determines which preprocessed log ratios, calletlifes, best discrimi-
nate the n-1 samples (see Sect. 9.2.5). The number of irtfedeures is iteratively
increased according to the obtained feature ranking witimeluding more features
than the number of samples on which the optimal number ofifeatis determined
[21]. This subset of features forms the input for classifarain the last step (see
Sect. 9.2.4). The LS-SVM contains a regularization paramewhich, together

with the number of features needs to be optimized. For alsiptescombinations

of y and number of features, an LS-SVM is built on the trainingaset validated

on the left out sample. This is repeated n times such thatsa@uolple has been left
out once. For the LS-SVM, a linear kernel functie(xy, x ) = x{x. was chosen. An

RBF kernel resulted in similar performances (data not shown
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9.2.7 Functional Annotation Analysis

To validate the selected chromosomal regions, gene sethement was performed
as an indication for agreement with “known” biology. Two gps of gene sets as
defined in the Molecular Signatures Database (MSigDB) weeslucurated gene
sets (i.e. sets of co-regulated genes from online pathwiabdaes, publications in
PubMed and knowledge of domain experts) and Gene Ontolo@y (@ne sets (i.e.
genes annotated by the same GO term) [13]. Using the HUGOmmmenclature
[22], genes within the differential chromosomal regiongevdivided into 9 gene
signatures, depending on the group (BRCA1 versus sporadscis both) and CNV
type (gain versus loss versus both). For each signaturevésgap was calculated
between all gene sets and the signature and 5000 equatiy-sgnatures containing
genes randomly selected from the genome. The correctecochethNorthet al.
(2002) was used to calculate the empirical p-value for eacleget aér +1)/(n+

1) with n the number of random signatures (i.e. 5000) aritde number of them
with an equal or higher overlap with the gene set than obdaimiéh the actual
signature [23]. Only gene sets witlsmaller than 10 (p-value 0.002) were further
investigated.

9.3 Results

Eight sporadic and five BRCAL1 mutated ovarian cancer patiemtre included in
this study and profiled using array CGH technology. FiguBegdves an impression
of array CGH data with which chromosomal regions that arediht between 2
classes of samples can be identified. This figure shows anpa&arha recurrent
amplification in BRCAL patients which is not present in splicgatients.

When applying the proposed methodology on this data set,SONY1 chromo-
somal regions were sufficient to correctly classify 11 oul8fsamples. The LS-
SVM had a LOO accuracy of 84.6%, a sensitivity of 100% (5/%) arspecificity of
75% (6/8).

Table 9.1 and Figure 9.3 show information on the 11 diffaegémegions. Five
regions are gained and 3 lost in BRCAL1 mutated samples whglsporadic ovar-
ian cancer patients are characterized by loss of 3 regiom®mparison of the 11
regions found in each of the 13 LOO iterations shows a limitadability in the
selected regions. Table 9.1 also shows the number of LO&tiiv@ss in which each
feature resulting from the complete data set is chosen wihiticates stability of
the 11 regions. The top 5 of features with the lowest p-vatwerling to DEDS ap-
pearedin 8to 11 of the 13 LOO iterations. Three less sigmifigdeatures appeared
in 4 LOO iterations.

Because we hypothesize that genes in the 11 chromosomehseparticipate
in processes that distinguish sporadic from hereditaryianacancer, a gene set

1 http://www.genenames.org
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Fig. 9.2 Array CGH profile of chromosome 10 for 3 sporadic (top) and ZBR mutated samples

(bottom). The horizontal lines indicate the O log ratiosdtbisamples. Both groups have a different

profile within the first 3x10 base pairs and an amplification indicated with the vertioal dccurs
within the BRCA1 mutated samples around 5kbase pairs.

Table 9.1 Chromosomal information on the 11 differential regionshwitie number of LOO iter-
ations in which each of these regions was selected

Feature Chromosome Group CNVtype Startbase Stopbase gb génLOO iter

1 13 BRCA1 loss 55423625 55550461 0 8
2 23 BRCA1l gain 3273880 7085387 5 M1
3 12 BRCA1 gain 101502349 101656438 0 9
4 4 BRCA1 gain 10384154 19905375 22 €11
5 4 sporadic  loss 4932958 8382645 24 10
6 3 BRCA1 gain 24167220 35751756 32 5
7 10 BRCA1l loss 4290650 17074128 66 <7
8 16 sporadic  loss 56587489 67418517 81 4
9 19 BRCA1l loss 12159479 13216789 39 4
10 6 BRCA1 gain 24267702 29367215 86 ¢4
11 16 sporadic  loss 70089429 75199166 36 6

HApproximate correlation with LOO: region 10-50% smalle2ihOO runs
¢Approximate correlation with LOO: region 10-40% smalletibOO run

enrichment-based approach was followed (see Sect. 9TA&)most important gene
sets enriched in the signatures are summarized below.

One of the components of the human SWI/SNF complex, regglaiene ex-
pression by remodeling nucleosomal structure in an ATReddent manner, is the
gene BAF57 (a BRG1-associated factor). This gene mediateiaction with tran-
scriptional activators or repressors and mutation of teiseghas been found to be
associated with a wide variety of tumours [24]. It is knowattthere is a direct
interaction between BRG1- and hBRM-associated factorgtaam®@RCAL tumour
suppressor protein. The human SWI/SNF complex affectsgeeilith and prolif-
eration by interacting with tumour suppressor pathways @athably controlling
them. Recent studies have shown the importance of comptexgaining BAF57
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Fig. 9.3 BRCAL - five gained regions (shown at the left of the chromas®mand three lost regions
(shown at the right in gray); sporadic - three lost regio\ at the right indicated with the
symbol *).

in transcriptional repression of tumour suppressor genasng which BRCAL.
Wang and colleagues found 410 up-regulated and 469 downateg genes in cells
with BAF57 re-expressed. Ten of the down-regulated genesNIED28, SUSD5,
NCAPG, SLC4A7, MXRA5, MRS2, BST1, QDPR, LAP3, HS3ST1; puak
2x10-%) were found in four of the five regions gained in the BRCA1 ntedesam-
ples.

Another gene set consisting of 96 genes down-regulatedyatime point (1-
24 hours) following treatment of mammary carcinoma cellthvéixogenous hu-
man growth hormone (hGH) [25] was significantly overrepnésé in the regions
gained in BRCAL1 ovarian cancer with an overlap of 7 genes (GRHIST1H2BK,
HS3ST1, SLC4A7, SLC17A1; p-value = 8x1%).

Many HOX genes, a subset of the homeobox genes, were redeutiy to be
aberrantly expressed in a variety of cancers among whicishrkidney and skin
suggesting that these HOX genes contribute to the progresdi tumours. The
homeobox HOXAS encodes a transcriptional factor with anartgnt role in em-
bryogenesis, hematopoiesis and tumorigenesis. In hurhhasibeen shown that
HOXA5 mRNA levels are markedly reduced or even lost in moaat&0% of breast
cancer cell lines and primary breast carcinoma cells. Tuggssts that HOXA5 may
act as a tumour suppressor gene in breast cells which masesi@xpression of
this gene an important step in tumorigenesis [26]. Six gamasnally up-regulated
in HOXA5-induced cells (with HOXAS being a positive reguda, were found to
be lostin BRCA1 ovarian cancer (ZNF44, DCLRE1C, ZNF136, KINNB, IER2;
p-value = 8x104).
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Tumour necrosis factor alpha (T is a proinflammatory cytokine with im-
portant roles in control of immune and inflammatory respersewell as cell cycle
proliferation and apoptosis [27]. Of the genes up-regdlated NFa-induced HelLa
cells, four were found in 2 regions lost in BRCAL ovarian aan@ER2, PRDX2,
JUNB, GDI2; p-value = 1.4x10).

Three highly related Myb transcription factors (i.e. A-My»Myb and c-Myb)
are expressed in vertebrates. The c-Myb gene, the protogene progenitor of the
v-myb oncogene, is highly expressed in a.o. pancreationcahd breast tumours
and his expression correlates with proliferation. A fuotl c-Myb protein is re-
quired for normal hematopoiesis. The A-Myb gene is expisa subset of the
cells that expresses c-Myb [28]. Sporadic ovarian canadrasacterized by a loss of
9 genes activated by A-Myb or c-Myb genes (ATP6V0OD1, MMP1RAD, S100P,
E2F4, CTCF, PSMD7, CDH1, NFATC3; p-value = 6x19.

9.4 Conclusion

In this manuscript, a new methodology is proposed in whiglycumber variations
resulting from array CGH are transformed into features fassification purpose.
This general method which is independent of cancer sitvalto find a small set of
chromosomal regions for distinguishing two classes ofgpeii and to biologically
validating them. It can also result in clinically relevanbdels based on a limited
set of features. As increasing amounts of array CGH datarbe@vailable, there
is a need for algorithms to identify recurrent gains anddedsased on statistically
sound methods and to use them for classification. A large eumbapproaches
for the analysis of array CGH data have already been propeseahtly, ranging
from mixture models and HMMs to wavelets and genetic albarg [2]. However,
most cancer studies that gather array CGH data only applyadstfor exploratory
analysis. Often a fixed threshold is used for defining gainklasses making these
studies less robust against systematic changes in therteasepy number measure-
ments between samples [29]. A HMM on the contrary is a prdiséibimethod that
can handle the uncertainty in the data in a formal way contpi@rdeterministic al-
gorithms. This makes the HMM more robust against outliechsas measurement
noise and wrong recordings of locations of clones. Moreower used a special
variant of HMM able to capture recurrent copy number alterat by coupling the
HMMs of individual samples. This makes weak copy numberattens but shared
across many samples reliable features. In our setup we hisegdroperty by first
modeling the copy number variations in the group of sporaditBRCA1 mutated
patients separately. Subsequently, the alterations taeg different between these
two groups were used as features in an LS-SVM for classifinatn our opinion
this is one step further compared to many other studies thigtperform an ex-
ploratory analysis.

The stability of the regions selected in each of the LOO iiens strengthens our
confidence that the chromosomal regions found with our nustlogy are robust.
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Two of the regions lacking genes with an annotated HUGO sys#®m uninterest-
ing at first sight. However, recent research findings on 1% eftenome indicated
that 93% of the bases are transcribed, increasing the ianpmetof non-protein-
coding RNA [30]. The remaining 9 regions were validated @gitally using a gene
set enrichment-based approach. Keep in mind that, bechesaimber of features
is minimized, one can expect that biological validationngspathways may fail
because not all genes belonging to a certain pathway maydneden a classifi-
cation setting. In our subset the genes BAF57 and HOXAS sdémiee correlated
with hereditary ovarian cancer, whereas loss of the v-mydngane seemed more
characteristic for the sporadic group.
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