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Abstract Motivation: Knowledge about the molecular mechanisms involved in spo-
radic and hereditary ovarian tumorigenesis is lacking. Dueto the hypothesis that
BRCA related ovarian cancer follows distinct pathways in their carcinogenesis, ar-
ray comparative genomic hybridization (array CGH) was performed in 8 sporadic
and 5 BRCA1 mutated ovarian cancer patients to identify copynumber variations.
Results: Chromosomal regions characterizing each group of sporadicand BRCA1
related ovarian cancer were gathered using recurrent hidden Markov Models (HMM).
The differential regions were reduced to a subset of features for classification by
integrating different univariate feature selection methods. Least Squares Support
Vector Machines (LS-SVM), a supervised classification method, resulted in a leave-
one-out accuracy of 84.6%, sensitivity of 100% and specificity of 75%.
Conclusion: The combination of recurrent HMMs for the detection of copy num-
ber alterations with LS-SVM classifiers offers a novel methodological approach for
classification based on copy number alterations. Additionally, this approach limits
the chromosomal regions that are necessary to distinguish sporadic from hereditary
ovarian cancer.

9.1 Introduction

In cancers, many gains and losses of chromosomes and chromosomal segments have
been described. These aberrations defined as regions of increased or decreased DNA
copy number can be detected at high resolution using an arraycomparative genomic
hybridization (array CGH) technology. This technique measures variations in DNA
copy number within the entire genome of a disease sample compared to a normal
sample [1]. This makes array CGH ideally suitable for a genome-wide identification
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and localization of genetic alterations involved in human diseases. An overview of
algorithms for array CGH data analysis is given in [2]. Segmentation approaches
identify chromosomal regions of adjacent clones with the same mean log ratio. Dis-
advantages of these methods are that the segments that are gained or lost need to
be determined in a further analysis and that results become unsatisfactory with high
noise levels in the data. Therefore, segmentation and identification should be per-
formed simultaneously because these two tasks can improve each other’s perfor-
mance. A popular method for combining them is the hidden Markov Model (HMM)
with states defined as loss, neutral, one-gain and multiple-gain. Recently, this tradi-
tional procedure has been extended to a recurrent HMM in which a class of samples
instead of individual samples is modeled by sharing information on copy number
variations across multiple samples [4]. Here, we present a method to identify copy
number alterations with the recurrent HMM which goes beyondthe exploratory
phase by using these alterations as features in a supervisedclassification setting and
by validating these features biologically.

Because the exclusion of redundant and non-discriminatoryfeatures might avoid
overfitting and identifies a smaller set of features able to distinguish good from bad,
feature selection should be performed. To get rid of some of the arbitrariness with
which a univariate feature selection method is chosen, different univariate test statis-
tics were combined to suppress the false positive error rate[5]. For classification,
we used the class of kernel methods which is powerful for pattern analysis. In recent
years, these methods have become a standard tool in data analysis, computational
statistics, and machine learning applications [6], [7]. Their rapid uptake in bioinfor-
matics [8] is due to their reliability, accuracy and computational efficiency, which
has been demonstrated in countless applications [9]. More specifically, as supervised
classification algorithm we made use of the Least Squares Support Vector Machine
(LS-SVM) which is an extension of the standard SVM and has been developed in
our research group by Suykenset al. (1999), (2002) [10]-[11]. On high dimensional
data, the LS-SVM is easier and faster to solve because the quadratic programming
problem of the SVM is reduced to a set of linear equations.

We applied our method on ovarian cancer which is the fourth most common cause
of cancer death and ranks as the most frequent cause of death from gynaecological
malignancies among women in western countries [12]. In a total of 5-10% of epithe-
lial ovarian carcinomas, a family history of breast and ovarian cancer is noted with
germline mutations in the tumour suppressor genes BRCA1 or BRCA2 in most of
them. A mutation of the BRCA1 gene cumulates the risk for ovarian carcinoma with
26-85% while a BRCA2 mutation increases the cumulative riskwith 10% [14]. The
knowledge of different copy number variations between bothsporadic and hered-
itary groups may help to better understand tumorigenesis ofthese cancers. When
applied to larger study groups, this method could result in abetter comprehension
of the different clinical behaviour of both groups, probably necessitating different
treatment strategies.

The outline of this chapter is as follows. In section 9.2, we describe the data set
and the array CGH technology used for the analysis as well as the recurrent HMM,
the classifier and the feature selection method applied. In addition, the workflow of
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our proposed methodology is given in detail together with the functional annotation
analysis to validate agreement of the selected chromosomalregions with biology.
We determine the gene sets from the Molecular Signatures Database (MSigDB) [13]
that are enriched in the identified regions of copy number alteration. We describe our
results on ovarian cancer in Section 9.3 and conclude in Section 9.4.

9.2 Materials and Methods

9.2.1 Patients and Data

The data for this study were collected from patients treatedfor ovarian cancer at
the University Hospital of Leuven, Belgium. A distinction could be made between
patients with a sporadic tumour and carriers of a mutation inthe tumour suppressor
genes BRCA1 or BRCA2. Both genes are involved in DNA damage repair and tran-
scriptional regulation [15]. All tumour samples were collected at the time of primary
surgery. Only patients with similar clinical characteristics were retained: eight spo-
radic and five BRCA1 mutated ovarian cancer patients. One patient with BRCA2
was excluded and none of the patients out of the sporadic group had a positive fam-
ily history of breast and/or ovarian cancer. Array comparative genomic hybridiza-
tion was performed using a 1Mb array CGH platform, version CGH-SANGER 3K
7 developed by the Flanders Institute for Biotechnology (VIB), Department of Mi-
croarray Facility, Leuven, Belgium.

9.2.2 Array Comparative Genomic Hybridization

Array comparative genomic hybridization (array CGH) is a high-throughput tech-
nique for measuring DNA copy number variations (CNV) withinthe entire genome
of a disease sample relative to a normal sample [1]. In an array CGH experiment,
total genomic DNA from tumour and normal reference cell populations are isolated
and subsequently labeled with different fluorescent dyes before being hybridized to
several thousands of probes on a glass slide. This allows to calculate the log ratios
of the fluorescence intensities of the tumour to that of the normal reference DNA.
Because the reference cell population is normal, an increase or decrease in the log
intensity ratio indicates a DNA copy number variation in thegenome of the tumour
cells such that negative log ratios correspond to deletions(losses), positive log ratios
to gains or amplifications and zero log ratios to neutral regions in which no change
occurred.
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9.2.3 Recurrent HMM

As was stated in the introduction, we will use a recurrent hidden Markov Model
(HMM) proposed by Shahet al. (2007) for the identification of extended chromo-
somal regions of altered copy numbers labeled as gain or loss[4]. The goal of this
model is to construct features that distinguish the sporadic from the BRCA1 re-
lated group and subsequently to use them in a classifier (see Section 9.2.4). Because
of the sensitivity of traditional HMMs to outliers being measurement noise, misla-
beling and copy number polymorphisms in the normal human population, a robust
HMM was first proposed by Shahet al. (2006) which handles outliers and integrates
prior knowledge about copy number polymorphisms into the analysis [16]. To fur-
ther reduce the influence of various sources of noise on the detection of recurrent
copy number alterations, Shahet al. (2007) extended the robust HMM to a multiple
sample version in which array CGH experiments from a cohort of individuals are
used to borrow statistical strength across samples insteadof modeling each sample
individually [4]. This makes even copy number alterations in a small number of
adjacent clones reliable when shared across many samples.

In this study, a recurrent HMM is constructed on a chromosomal basis sepa-
rately for the group of sporadic and the group of BRCA1 mutated ovarian cancer.
Both HMMs result in chromosomal regions with genetic alterations characterizing
sporadic samples and samples with a BRCA1 mutation, respectively. A differential
region is defined as a chromosomal region which is gained/lost in one group while
not being gained/lost in the other group.

9.2.4 Kernel Methods and Least Squares Support Vector Machines

The differential regions that result from the recurrent HMMare used as features in
a classifier for which we chose kernel methods. These methodsare a group of al-
gorithms that do not depend on the nature of the data because they represent data
entities through a set of pairwise comparisons called the kernel matrix [17]. This
matrix can be geometrically expressed as a transformation of each data pointx to
a high dimensional feature space with the mapping functionΦ(x). By defining a
kernel functionk(xk,xl) as the inner product〈Φ(xk),Φ(xl)〉 of two data pointsxk

andxl , an explicit representation ofΦ(x) in the feature space is not needed any-
more. Any symmetric, positive semidefinite function is a valid kernel function, re-
sulting in many possible kernels, e.g. linear, polynomial and diffusion kernels. In
this manuscript, a linear kernel function was used.

An example of a kernel algorithm for supervised classification is the Support Vec-
tor Machine (SVM) developed by Vapnik [18] and others. Contrary to most other
classification methods and due to the way data is representedthrough kernels, SVMs
can tackle high dimensional data (e.g. microarray data). The SVM forms a linear dis-
criminant boundary in feature space with maximum distance between samples of the
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two considered classes. This corresponds to a non-linear discriminant function in the
original input space. This kernel method also contains regularization which allows
tackling the problem of overfitting. It has been shown that regularization seems to be
very important when applying classification methods on highdimensional data [9].
A modified version of SVM, the Least Squares Support Vector Machine (LS-SVM),
was developed by Suykenset al. (1999), (2002) [10]-[11]. On high dimensional data
sets, this modified version is much faster for classificationbecause a linear system
instead of a quadratic programming problem needs to be solved.

9.2.5 Feature Selection

The choice of a feature selection technique is a widely discussed topic [19]. Laiet al.
(2006) found that univariate gene selection, computationally simple and fast for high
dimensional data, leads to good and stable performances across many cancer types
and yields in many cases consistently better results than multivariate approaches
[20]. Therefore, we will use a univariate method. Because nocomparison of uni-
variate gene selection techniques has been made across a sufficiently wide range of
benchmark data sets and due to the dependency of the best performing technique
on the data set used, Yanget al. (2005) proposed a method in which some of the
arbitrariness with which univariate methods are chosen forhigh dimensional data
is vanished [5]. This technique, called DEDS (DifferentialExpression via Distance
Synthesis) is based on the integration of different test statistics via a distance synthe-
sis scheme because features highly ranked simultaneously by multiple measures are
more likely to be differential expressed than features highly ranked by a single mea-
sure. The statistical tests which were combined are ordinary fold changes, ordinary
t-statistics, SAM-statistics and moderated t-statistics. The performance of DEDS is
favorably comparable with the best individual statistic which is in practice often un-
known and which depends on the data set used. Additionally, DEDS is not adversely
affected by the worst performing statistic and achieves robustness properties which
are lacked by the individual statistics. DEDS is available as a BioConductor package
in R.

9.2.6 Proposed Methodology

Due to the limited number of samples, a leave-one-out (LOO) cross-validation strat-
egy is applied. The 4 different steps that have to be accomplished in each LOO iter-
ation are shown in Figure 9.1. After leaving out one sample, arecurrent HMM (see
Sect. 9.2.3) is constructed in step 1 for both groups of sporadic and BRCA1 mutated
ovarian cancer to determine the chromosomal regions with genetic alterations that
characterize each group. Combining these regions results in the chromosomal re-
gions that are differential between the remaining n-1 sporadic and BRCA1 mutated
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Fig. 9.1 Methodology consisting of 4 steps: step 1 - recurrent HMM; step 2 - conversion of clones
to differential regions and normalization per sample; step3 - feature selection using DEDS; step 4 -
LS-SVM training and validation on left out sample (CR = Chromosomal Region; DR = Differential
Region; NORM = Normalization; DEDS = Differential Expression via Distance Synthesis; NF =
Number of Features)

samples. Because multiple clones can be located within eachdifferential region, the
clones need to be combined. This is done per sample in the second step by taking the
median of the log ratios of the clones in each region. Afterwards, a standardization
is performed per sample (i.e. meanshifting to 0 and autoscaling to 1) because the
raw log ratios cannot be compared in absolute values betweenthe samples. In step
3, DEDS determines which preprocessed log ratios, called features, best discrimi-
nate the n-1 samples (see Sect. 9.2.5). The number of included features is iteratively
increased according to the obtained feature ranking without including more features
than the number of samples on which the optimal number of features is determined
[21]. This subset of features forms the input for classification in the last step (see
Sect. 9.2.4). The LS-SVM contains a regularization parameter γ which, together
with the number of features needs to be optimized. For all possible combinations
of γ and number of features, an LS-SVM is built on the training setand validated
on the left out sample. This is repeated n times such that eachsample has been left
out once. For the LS-SVM, a linear kernel functionk(xk,xl) = xT

k xl was chosen. An
RBF kernel resulted in similar performances (data not shown).
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9.2.7 Functional Annotation Analysis

To validate the selected chromosomal regions, gene set enrichment was performed
as an indication for agreement with “known” biology. Two groups of gene sets as
defined in the Molecular Signatures Database (MSigDB) were used: curated gene
sets (i.e. sets of co-regulated genes from online pathway databases, publications in
PubMed and knowledge of domain experts) and Gene Ontology (GO) gene sets (i.e.
genes annotated by the same GO term) [13]. Using the HUGO genenomenclature1

[22], genes within the differential chromosomal regions were divided into 9 gene
signatures, depending on the group (BRCA1 versus sporadic versus both) and CNV
type (gain versus loss versus both). For each signature, theoverlap was calculated
between all gene sets and the signature and 5000 equally-sized signatures containing
genes randomly selected from the genome. The corrected method of Northet al.
(2002) was used to calculate the empirical p-value for each gene set as(r +1)/(n+
1) with n the number of random signatures (i.e. 5000) andr the number of them
with an equal or higher overlap with the gene set than obtained with the actual
signature [23]. Only gene sets withr smaller than 10 (p-value< 0.002) were further
investigated.

9.3 Results

Eight sporadic and five BRCA1 mutated ovarian cancer patients were included in
this study and profiled using array CGH technology. Figure 9.2 gives an impression
of array CGH data with which chromosomal regions that are different between 2
classes of samples can be identified. This figure shows an example of a recurrent
amplification in BRCA1 patients which is not present in sporadic patients.

When applying the proposed methodology on this data set, CNVs in 11 chromo-
somal regions were sufficient to correctly classify 11 out of13 samples. The LS-
SVM had a LOO accuracy of 84.6%, a sensitivity of 100% (5/5) and a specificity of
75% (6/8).

Table 9.1 and Figure 9.3 show information on the 11 differential regions. Five
regions are gained and 3 lost in BRCA1 mutated samples while the sporadic ovar-
ian cancer patients are characterized by loss of 3 regions. Acomparison of the 11
regions found in each of the 13 LOO iterations shows a limitedvariability in the
selected regions. Table 9.1 also shows the number of LOO iterations in which each
feature resulting from the complete data set is chosen whichindicates stability of
the 11 regions. The top 5 of features with the lowest p-value according to DEDS ap-
peared in 8 to 11 of the 13 LOO iterations. Three less significantly features appeared
in 4 LOO iterations.

Because we hypothesize that genes in the 11 chromosomal regions participate
in processes that distinguish sporadic from hereditary ovarian cancer, a gene set

1 http://www.genenames.org
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Fig. 9.2 Array CGH profile of chromosome 10 for 3 sporadic (top) and 2 BRCA1 mutated samples
(bottom). The horizontal lines indicate the 0 log ratios forall samples. Both groups have a different
profile within the first 3x107 base pairs and an amplification indicated with the vertical box occurs
within the BRCA1 mutated samples around 5x107 base pairs.

Table 9.1 Chromosomal information on the 11 differential regions with the number of LOO iter-
ations in which each of these regions was selected

Feature Chromosome Group CNV type Startbase Stopbase nb genes nb LOO iter

1 13 BRCA1 loss 55423625 55550461 0 8
2 23 BRCA1 gain 3273880 7085387 5 11µ

3 12 BRCA1 gain 101502349 101656438 0 9
4 4 BRCA1 gain 10384154 19905375 22 11ς

5 4 sporadic loss 4932958 8382645 24 10
6 3 BRCA1 gain 24167220 35751756 32 5
7 10 BRCA1 loss 4290650 17074128 66 7ς

8 16 sporadic loss 56587489 67418517 81 4
9 19 BRCA1 loss 12159479 13216789 39 4
10 6 BRCA1 gain 24267702 29367215 86 4ς

11 16 sporadic loss 70089429 75199166 36 6
µ Approximate correlation with LOO: region 10-50% smaller in2 LOO runs
ς Approximate correlation with LOO: region 10-40% smaller in1 LOO run

enrichment-based approach was followed (see Sect. 9.2.7).The most important gene
sets enriched in the signatures are summarized below.

One of the components of the human SWI/SNF complex, regulating gene ex-
pression by remodeling nucleosomal structure in an ATP-dependent manner, is the
gene BAF57 (a BRG1-associated factor). This gene mediates interaction with tran-
scriptional activators or repressors and mutation of this gene has been found to be
associated with a wide variety of tumours [24]. It is known that there is a direct
interaction between BRG1- and hBRM-associated factors andthe BRCA1 tumour
suppressor protein. The human SWI/SNF complex affects cellgrowth and prolif-
eration by interacting with tumour suppressor pathways andprobably controlling
them. Recent studies have shown the importance of complexescontaining BAF57



9 A Genome-Wide Computational Study of Copy Number Variations 113

Fig. 9.3 BRCA1 - five gained regions (shown at the left of the chromosomes) and three lost regions
(shown at the right in gray); sporadic - three lost regions (shown at the right indicated with the
symbol *).

in transcriptional repression of tumour suppressor genes among which BRCA1.
Wang and colleagues found 410 up-regulated and 469 down-regulated genes in cells
with BAF57 re-expressed. Ten of the down-regulated genes (i.e. MED28, SUSD5,
NCAPG, SLC4A7, MXRA5, MRS2, BST1, QDPR, LAP3, HS3ST1; p-value <
2x10−4) were found in four of the five regions gained in the BRCA1 mutated sam-
ples.

Another gene set consisting of 96 genes down-regulated at any time point (1-
24 hours) following treatment of mammary carcinoma cells with exogenous hu-
man growth hormone (hGH) [25] was significantly overrepresented in the regions
gained in BRCA1 ovarian cancer with an overlap of 7 genes (GPLD1, HIST1H2BK,
HS3ST1, SLC4A7, SLC17A1; p-value = 8x10−4).

Many HOX genes, a subset of the homeobox genes, were recentlyfound to be
aberrantly expressed in a variety of cancers among which breast, kidney and skin
suggesting that these HOX genes contribute to the progression of tumours. The
homeobox HOXA5 encodes a transcriptional factor with an important role in em-
bryogenesis, hematopoiesis and tumorigenesis. In human, it has been shown that
HOXA5 mRNA levels are markedly reduced or even lost in more than 60% of breast
cancer cell lines and primary breast carcinoma cells. This suggests that HOXA5 may
act as a tumour suppressor gene in breast cells which makes loss of expression of
this gene an important step in tumorigenesis [26]. Six genes, normally up-regulated
in HOXA5-induced cells (with HOXA5 being a positive regulator), were found to
be lost in BRCA1 ovarian cancer (ZNF44, DCLRE1C, ZNF136, KIN, JUNB, IER2;
p-value = 8x10−4).
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Tumour necrosis factor alpha (TNFα) is a proinflammatory cytokine with im-
portant roles in control of immune and inflammatory responses as well as cell cycle
proliferation and apoptosis [27]. Of the genes up-regulated in TNFα-induced HeLa
cells, four were found in 2 regions lost in BRCA1 ovarian cancer (IER2, PRDX2,
JUNB, GDI2; p-value = 1.4x10−3).

Three highly related Myb transcription factors (i.e. A-Myb, B-Myb and c-Myb)
are expressed in vertebrates. The c-Myb gene, the proto-oncogene progenitor of the
v-myb oncogene, is highly expressed in a.o. pancreatic, colon and breast tumours
and his expression correlates with proliferation. A functional c-Myb protein is re-
quired for normal hematopoiesis. The A-Myb gene is expressed in a subset of the
cells that expresses c-Myb [28]. Sporadic ovarian cancer ischaracterized by a loss of
9 genes activated by A-Myb or c-Myb genes (ATP6V0D1, MMP15, RRAD, S100P,
E2F4, CTCF, PSMD7, CDH1, NFATC3; p-value = 6x10−4).

9.4 Conclusion

In this manuscript, a new methodology is proposed in which copy number variations
resulting from array CGH are transformed into features for classification purpose.
This general method which is independent of cancer site allows to find a small set of
chromosomal regions for distinguishing two classes of patients and to biologically
validating them. It can also result in clinically relevant models based on a limited
set of features. As increasing amounts of array CGH data become available, there
is a need for algorithms to identify recurrent gains and losses based on statistically
sound methods and to use them for classification. A large number of approaches
for the analysis of array CGH data have already been proposedrecently, ranging
from mixture models and HMMs to wavelets and genetic algorithms [2]. However,
most cancer studies that gather array CGH data only apply methods for exploratory
analysis. Often a fixed threshold is used for defining gains and losses making these
studies less robust against systematic changes in the baseline copy number measure-
ments between samples [29]. A HMM on the contrary is a probabilistic method that
can handle the uncertainty in the data in a formal way compared to deterministic al-
gorithms. This makes the HMM more robust against outliers such as measurement
noise and wrong recordings of locations of clones. Moreover, we used a special
variant of HMM able to capture recurrent copy number alterations by coupling the
HMMs of individual samples. This makes weak copy number alterations but shared
across many samples reliable features. In our setup we used this property by first
modeling the copy number variations in the group of sporadicand BRCA1 mutated
patients separately. Subsequently, the alterations that were different between these
two groups were used as features in an LS-SVM for classification. In our opinion
this is one step further compared to many other studies that only perform an ex-
ploratory analysis.

The stability of the regions selected in each of the LOO iterations strengthens our
confidence that the chromosomal regions found with our methodology are robust.
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Two of the regions lacking genes with an annotated HUGO symbol seem uninterest-
ing at first sight. However, recent research findings on 1% of the genome indicated
that 93% of the bases are transcribed, increasing the importance of non-protein-
coding RNA [30]. The remaining 9 regions were validated biologically using a gene
set enrichment-based approach. Keep in mind that, because the number of features
is minimized, one can expect that biological validation using pathways may fail
because not all genes belonging to a certain pathway may be needed in a classifi-
cation setting. In our subset the genes BAF57 and HOXA5 seemed to be correlated
with hereditary ovarian cancer, whereas loss of the v-myb oncogene seemed more
characteristic for the sporadic group.
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