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Abstract— Currently, the clinical management of cancer is
based on empirical data from the literature (clinical studies)
or based on the expertise of the clinician. Recently microarray
technology emerged and it has the potential to revolutionize the
clinical management of cancer and other diseases. A microarray
allows to measure the expression levels of thousands of genes
simultaneously which may reflect diagnostic or prognostic
categories and sensitivity to treatment. The objective of this
paper is to investigate whether clinical data, which is the basis of
day-to-day clinical decision support, can be efficiently combined
with microarray data, which has yet to prove its potential to
deliver patient tailored therapy, using Least Squares Support
Vector Machines.

I. INTRODUCTION

Since the rise of microarray technology approximately one

decade ago, few microarray models have reached the clinic.

Decisions concerning diagnosis, prognosis or treatment of

cancer are still based on clinical data, such as patient

history, laboratory analysis or ultrasound parameters. But,

since cancer is thought to be caused by genetic aberrations,

microarray technology has the potential to revolutionize the

clinical management of cancer. This technology however has

its disadvantages. Microarray data is noisy and high dimen-

sional and publicly available microarray data sets suffer from

small sample sizes. When considered together with clinical

data however, possibly complementary data sources can be

combined in one model.

In this paper we will investigate whether clinical data and

microarray data from breast cancer patients can be efficiently

combined. In most microarray studies on cancer the focus

is on the microarray analysis while the clinical data is not

modeled in the same manner. When integrating both hetero-

geneous data sources, we can take advantage of the strengths

of both data sources. Previously we have investigated the

use of Bayesian networks to integrate these data sources.

However, this model is not tuned for classification. Therefore

we investigate in this paper the use of kernel methods, more

specifically Support Vector Machines (SVMs).

SVMs, introduced by Vapnik in [15], are popular for

classification because, contrary to most other classification

methods, they can handle high dimensional data such as mi-

croarray data. An SVM maps data into a vector space where

it determines a linear discriminant boundary with maximum

distance between members of the positive and the negative

class. This corresponds to a non-linear separation hyperplane

in the space of the original data. A modified version of
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the Vapnik SVM classifier formulation was introduced by

Suykens et al. in [10] as the Least Squares Support Vector

Machine (LS-SVM) which is much faster on microarray

data than SVM. We will use LS-SVMs in combination with

a publicly available breast cancer data set containing both

clinical and microarray data. The developed models will be

evaluated using prediction accuracy, sensitivity, specificity

and Receiver Operator Characteristics (ROC) curves. The

best model will also be compared to conventional prognostic

markers.

II. METHOD

A. Materials

The data set used in this study consists of 295 breast

cancer patients from the Netherlands Cancer Institute [14].

This group of patients can be divided into 2 classes according

to the appearance of distant subclinical metastases based

on the primary tumour: 88 patients with and 207 patients

without distant metastases. All patients were younger than 53

years old at diagnosis. The tumours, all smaller than 5 cm,

were primary invasive breast carcinoma. The microarray data

set contained 24188 gene expression values and was already

normalized and background corrected. Missing values were

estimated using K-nearest neighbours with K=15 [13].

The clinical data contained the following 13 variables

[2][14]: diameter, T (≤2cm or >2cm), N (pN0, 1-3, ≥4),

number of positive lymph nodes, mastectomy (yes or no),

estrogen receptor (positive or negative), grade (poorly diffe-

rentiated, intermediate or well differentiated), age, chemothe-

rapy (yes or no), hormonal therapy (yes or no), St. Gallen

criteria (chemotherapy or no chemotherapy), National Insti-

tutes of Health (NIH) consensus criteria (chemotherapy or

no chemotherapy) and NIH risk (low, intermediate or high).

These variables were all known for the 295 patients.

The complete data set (clinical and microarray data)

was divided into a training set (44 with and 104 without

distant metastases) to develop the models and an independent

validation set (44 with and 103 without distant metastases)

to assess the performance of the models on data not used for

training.

B. Kernel methods and LS-SVMs

Kernel methods are a group of algorithms that, instead

of representing data entities by their properties, represent

data entities through a set of pairwise comparisons called the

kernel matrix. In this manner the representation of the data

is independent of the nature of the data allowing integration

of heterogeneous data in a uniform way. Moreover the size

of the matrix is determined only by the number of data
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entities that are modeled. For example a set of 100 patients

each characterized by 24188 gene expression values is still

represented by a 100 x 100 matrix [9]. This kernel matrix

can be geometrically expressed as a mapping into a high

dimensional feature space. However, there is no need to have

an explicit representation of the mapping function Φ(x) in

the feature space for each data point x. The transformation of

two data points xk and xl is defined implicitly by their inner

product, 〈Φ(xk), Φ(xl)〉 via a kernel function K(xk, xl).
Any symmetric, positive semidefinite function is a valid

kernel function, resulting in many possible kernels, e.g.

linear, polynomial and diffusion kernels. They all correspond

to a different transformation of the data, meaning that they

extract a specific type of information from the data set.

Therefore, the kernel representation can be applied to many

different types of data and is not limited to vectorial form.

A supervised classification algorithm belonging to the

kernel methods is the Support Vector Machine (SVM) de-

veloped by Vapnik and others [15]. The SVM forms a

linear discriminant boundary in feature space with maximum

distance between samples of the two considered classes.

This corresponds to a non-linear discriminant function in the

original input space. A modified version of SVM, the Least

Squares Support Vector Machine (LS-SVM), was developed

by Suykens et al. [10][11]. For classification this modifica-

tion leads to solving a linear system instead of a quadratic

programming problem, which makes LS-SVM much faster

than SVM on microarray data sets. The optimization problem

in the LS-SVM formulation with the corresponding dual

problem are described in [5]. In the next section we describe

the use of LS-SVMs with a normalized linear kernel to

predict the prognosis of breast cancer patients based on

clinical and microarray data.

C. Data fusion

Three ways exist to learn simultaneously from multiple

data sources with kernel methods: early integration, inter-

mediate integration and late integration [7]. Fig. 1 gives an

overview of these three methods.

- Early integration: the clinical and microarray data set

are considered as one big data set. An LS-SVM is

trained directly on the single kernel computed for the

concatenated data set.

- Intermediate integration: A kernel is computed for each

data set separately. An LS-SVM is trained on the expli-

citly heterogeneous kernel function (as the (weighted)

sum of the separate kernels).

- Late integration: For each data set separately, a kernel

is computed and an LS-SVM is trained. The outcomes

of the multiple models are combined with a decision

function to become a single outcome.

In this paper, the combination of both the clinical and

microarray data is done with intermediate integration because

this type of data fusion seemed to perform better than early

and late integration [7]. Intermediate integration has the

advantage that the nature of each data set is taken into

account when compared to early integration. The separate
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Fig. 1. Three methods to learn from multiple data sources. In early
integration, an LS-SVM is trained on the kernel matrix, computed from
the concatenated data set. In intermediate integration, a kernel matrix is
computed for both data sets and an LS-SVM is trained on the sum of the
kernel matrices. In late integration, two LS-SVMs are trained separately
for each data set. A decision function results in a single outcome for each
patient.

kernel functions can be better adapted to each of the data

sets. The polynomial relations between inputs in the same

data sets (clinical parameters in the clinical data set, genes in

the microarray data set) can be modeled more accurately for

the construction of the decision boundary. A disadvantage

however is that polynomial relations between inputs from

different data sources are ignored when using intermediate

integration. On the other hand, when compared to late

integration, intermediate integration has the advantage that

a model is trained by weighing both data sources simulta-

neously through the use of kernels. This results into one

prediction for each patient and only one hypothesis has to

be formed instead of two independent hypotheses that have

to be combined afterwards.

D. Model building

Because each data set is represented by a kernel matrix,

data sources can be integrated in a straightforward way by

adding the multiple kernel matrices according to the interme-

diate integration explained previously. In this combination,

each of the matrices is given a specific weight µi. Positive

semidefiniteness of a linear combination of kernel functions

K =

m
∑

i=1

µiKi (1)

with m the number of data sources is guaranteed when the

weights µi are constrained to be non-negative.

In this paper, we studied the normalized linear kernel

function

K(xk, xl) = K(xk, xl)/
√

K(xk, xk)K(xl, xl) (2)

with K(xk, x) = xT

k
x instead of the linear kernel function

K(xk, xl) = xT

k
xl. The difference between both is that in a

normalized linear kernel the data points are projected onto

the unit sphere. With the normalized version, the values in
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the kernel matrix will be bounded, while these elements can

take very large values without normalization. Normalizing

is thus required when combining multiple data sources. In

this way, the kernel matrices of both data sets have the same

order of size and the weights with which the matrices are

combined can be interpreted as the relative importance of

the corresponding data set.

As shown in Fig. 2(a), a leave-one-out cross-validation

(LOO-CV) strategy is performed on the training data set to

optimize the weights µi and the regularization parameter γ.

In each LOO-CV iteration, the Wilcoxon rank sum test is

used to rank the genes. In this manner the microarray data set

is reduced to 1000 genes most significantly different between

the 2 considered classes.

On this reduced data set, two parameters (the weight µ
of the clinical data set and the regularization parameter γ
of the LS-SVM) have to be optimized. To accomplish this,

we defined a two-dimensional grid as shown in Fig. 2(a)

on which the parameters are optimized by maximizing a

criterion on the training set. The possible values for γ on this

grid range from 10−10 to 1010 on a logarithmic scale. The

weights for the kernels were optimized with a linesearch at

each possible γ by increasing the weight of one kernel from

0 to 1 in steps of 0.02 and decreasing the weight of the other

kernel equally.

The different models with the instantiated parameters

are evaluated on the left out sample of the training set

by maximizing the sensitivity with an as high as possible

specificity.

This whole procedure is repeated for all samples in the

training data set. The result is a fully specified classifier

with as parameters the combination that has globally the

highest sensitivity with an as high as possible specificity on

the training data set.

Fig. 2(b) shows how the best fully specified LS-SVM

is trained on the training set after selecting the 1000 most

significant genes. This final LS-SVM is subsequently tested

on the independent validation set.

III. RESULTS

We evaluated our methodology as described in section II-D

on a publicly available breast cancer data set [14]. This data

set was split up into a training set (n=148) and a validation

set (n=147), similarly as in [14]. The model, where each

data source was represented by a normalized linear kernel,

showed the highest sensitivity with an as high as possible

specificity on the training set for γ equal to 5.878, giving

a weight of 0.28 to the clinical data set and 0.72 to the

microarray data set. From now on, we refer to this model

as CMKIM (Clinical and Microarray Kernel Integration

Model). For comparison, we also developed a model build

only on the clinical data set, only on the microarray data

set and finally a model with equal weights for both the

clinical and microarray data. CMKIM is compared with the

performance of these three other models on the validation

set. Fig. 3 shows the ROC curves of these four models,

together with the area under the ROC curve (AUC) and the
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Fig. 2. Methodology for developing and validating a classifier. (a) The
initial data set is divided into a training set and a validation set. The weights
µi with which the kernel matrices are combined and the regularization
parameter γ are determined with a leave-one-out cross-validation strategy
on the training set. In each leave-one-out iteration, an LS-SVM model is
trained on the 1000 most significant genes for all possible combinations of
µcl and γ. This gives a globally best parameter combination (µcl, γ). (b)
With the optimal parameter combination (µcl, γ), an LS-SVM is trained on
the complete training set after selecting the 1000 most significant genes.
This model is subsequently evaluated on the independent validation set.

standard error. In table I the four models are compared on the

basis of prediction accuracy, sensitivity, specificity, positive

and negative predictive value and Kappa coefficient. CMKIM

had a weight of 0.28 for the clinical data and predicted the

presence of distant metastases correctly in 104 of the 147

patients (=70.75%) in the validation set. It identified 36.4%

of the patients who developed distant metastases while 85.4%

of the patients who did not develop metastases would have

been spared from exposure to some form of therapy.

Next we compared the classification of CMKIM with the

following conventional prognostic markers: the St Gallen

consensus [5], the National Institutes of Health (NIH) con-

sensus [3] and the Nottingham Prognostic Index (NPI) [4].

The St Gallen and the NIH prognostics were taken from

the clinical data set published in [2] as described in [5] and

[3], respectively. For the NPI we took the original formula

[4], although many authors have proposed changes to or

completion of the NPI using additional prognostic factors

[1]. We used the conventional threshold of 3.4 to distinguish

between good prognosis (below the threshold) and moderate

and poor prognosis (above the threshold) [12].

Table II shows the sensitivity, specificity, prediction accu-

racy and Kappa coefficient of CMKIM compared to the three

considered indices. The St Gallen and the NIH consensus

criteria have a very high sensitivity, but an untolerated low

specificity which would lead to an overuse of some form of

therapy. Their prediction accuracy is not better than random
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TABLE I

THE PERFORMANCE ON THE VALIDATION SET OF CMKIM. THIS PERFORMANCE IS COMPARED TO THE PREDICTION QUALITY WHEN USING BOTH

DATA SETS WITH EQUAL WEIGHT, WHEN ONLY USING THE CLINICAL DATA SET AND ONLY THE MICROARRAY DATA SET.

µcl µm TP FP FN TN Sens Spec PPV NPV Acc Kappa γ
CMKIM 0.28 0.72 16 15 28 88 0.3636 0.8544 0.5161 0.7586 104/147 (70.75%) 0.2382 5.878
Equal weight 0.5 0.5 15 17 29 86 0.3409 0.8349 0.4687 0.7478 101/147 (68.71%) 0.1908 5.878
Clinical data 1 0 10 11 34 92 0.2273 0.8932 0.4762 0.7302 102/147 (69.39%) 0.1417 62.35
Microarray data 0 1 13 15 31 88 0.2954 0.8544 0.4643 0.7395 101/147 (68.71%) 0.1672 5.878

µcl, weight for the kernel matrix computed on the clinical data set; µm, weight for the kernel matrix computed on the microarray data set; TP, true
positive; FP, false positive; FN, false negative; TN, true negative; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative
predictive value; Acc, predictive accuracy; Kappa, kappa coefficient; γ, regularization parameter.
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Fig. 3. ROC curves and area under the ROC curves (AUC) on the validation
set for CMKIM (blue), the model with equal influence of both data sets on
the outcome (red), the model build on the clinical data set (black) and the
model build on the microarray data set (green).

as shown by the Kappa coefficient. The NPI has a higher

specificity than the other two indices, but can only predict

distant metastases correctly in less than half of the patients

(47.62%). Thus integration of clinical and microarray data

outperforms the pure clinically indices (St Gallen, NIH and

NPI).

TABLE II

SENSITIVITY, SPECIFICITY, PREDICTION ACCURACY AND KAPPA

COEFFICIENT FOR CMKIM COMPARED TO THREE CLINICAL

PROGNOSTIC MARKERS ON THE VALIDATION SET.

TP FP FN TN Sens Spec Acc Kappa

◦ 16 15 28 88 0.3636 0.8544 70.75 0.2382
† 41 95 3 8 0.9318 0.0777 33.33 0.0059
♮ 44 100 0 3 1 0.0291 31.97 0.0176
♦ 36 69 8 34 0.8182 0.3301 47.62 0.1061

◦ CMKIM
† St Gallen: recommends chemotherapy when one of the following
criteria holds: ER negative, lymph node positive, pathological tumour
size > 2cm, grade poorly (3) or intermediate (2) differentiated or
age < 35.
♮ NIH: chemotherapy when lymph node positive or tumour size > 1cm.
♦ NPI: sum of 0.2 times the tumour size in cms, the tumour grade and
the lymph node stage.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have developed a framework for the integration of

multiple data sources in disease management (see Fig. 2).

We represent each data set with a kernel matrix, based

on a normalized linear kernel function. These matrices are

combined according to the intermediate integration method

suggested by [7] and illustrated in Fig. 1. An LS-SVM is

trained on the combined kernel matrix. This gives a step in

the right direction to improve predictions for an individual

patient about prognosis, metastatic phenotype and therapy

response.

In this paper, we evaluated our method on the breast cancer

data set in [14]. Patients included in this data set belonged to

two classes according to the presence of distant subclinical

metastases based on the primary tumour.

Because two parameters had to be optimized (weight for

the clinical data set and regularization parameter γ), all

possible combinations of these parameters were investigated

with a LOO-CV strategy, illustrated in Fig. 2. CMKIM with

the highest sensitivity and an as high as possible specificity

on the training set had a γ equal to 5.878, giving a weight of

0.28 to the clinical data set and 0.72 to the microarray data

set. This model correctly classifies 70.75% of the patients

in the validation set. Table I and Fig. 3 illustrate that

this performance accuracy is slightly but not significantly

better than each of the three other models we compared to.

However, the Kappa statistic takes into account the prediction

accuracy that is expected by chance. Comparing the Kappa

coefficient of CMKIM with the other three models indicates

that the prediction accuracy of CMKIM is more different

from the accuracy expected by chance than the other models.

CMKIM could identify three patients who developed distant

metastases which were missed by the model build only on

the microarray data, resulting in a higher sensitivity, PPV and

NPV. This indicates that it seems worth to include extra data

sources beside microarray data. When giving the clinical data

and microarray data an equal weight, the performance accu-

racy is the same as when only considering microarray data.

The weighing of the kernels can be specified beforehand, but,

since one data set can contain more information than another,

the weights can be learned from data. An advantage of this

optimization is that a redundant data source or a data source

with much noise will receive a weight close to zero and its
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influence on the outcome will be kept small [6]. Moreover the

weights of the kernel functions reflect the relative importance

of the different data sources.

We finally showed in Table II that integration of clinical

and microarray data outperforms the pure clinically indices

(St Gallen, NIH and NPI).

B. Future Work

In the future, this algorithm for data fusion in disease ma-

nagement will be tested on other publicly available data sets.

Moreover since our framework does not put any restrictions

on the number of data sources being integrated, it will be

expanded to data sets where more than two data sources are

available such as proteomics and metabolomics.
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