
Enforcing Hard State-Dependent Action Bounds
on Deep Reinforcement Learning Policies

Bram De Cooman1(B)[0000−0003−4843−3342], Johan
Suykens1[0000−0002−8846−6352], and Andreas Ortseifen2[0000−0002−2555−4515]

1 KU Leuven, ESAT - STADIUS, Leuven, Belgium
{bram.decooman,johan.suykens}@esat.kuleuven.be

2 Ford Research & Innovation Center, Aachen, Germany
aortseif@ford.com

Abstract. Imposing hard constraints on deep reinforcement learning
policies trained with model-free methods is a challenging task. In this
paper we specifically focus on constraining the policy’s actions, by im-
posing state-dependent action bounds. Such bounds allow the designer to
incorporate prior domain knowledge into the model-free learning frame-
work and can be used to improve the stability or safety of the learned
policies. The approach is applied to two benchmark environments and a
more complicated autonomous driving problem. When correctly applied,
the state-dependent action bounds can provide strong safety guarantees,
as well as improve the convergence speed.

Keywords: Reinforcement Learning · Hard Constraints · Action Bounds
· Safe Control · Autonomous Driving.

1 Introduction

An advantage of model-free reinforcement learning (RL) is that no model knowl-
edge is required and policies can be trained purely through interactions with an
unknown environment. This, however, comes with a cost, as the lack of a model
makes these methods less sample efficient than their model-based counterparts.
Moreover, it is harder to constrain policies to certain (safe) regions in state-
action space without the guidance of a model. In this paper we propose a novel
way to embed prior domain knowledge into the model-free learning scheme using
state-dependent bounds on the agent’s actions. When correctly applied, these
bounds can improve sample efficiency as well as provide strong safety guarantees,
while keeping the benefits of the model-free learning setting.

1.1 Motivation

The potential benefits of state-dependent action bounds can be illustrated by
a virtual driver example in which the agent needs to learn a highway-driving
policy — this setup is also analyzed in more depth in Section 4. Obviously, if
the agent starts with zero domain knowledge, many collisions will occur early on

2 B. De Cooman et al.

in the training process. Incorporating domain knowledge by providing common
rules of traffic to the agent helps preventing obvious mistakes (Figure 1.a). As
the resulting state-dependent action bounds are effectively hard constraints, it
might improve the trust of the general public in the learned policies. Beside the
safety aspect, these bounds also speed up training, by constraining the agent
to only explore the relevant, safe regions of state-action space. Finally, such
bounds can also be used to ensure compliance with traffic regulations required
for vehicle homologation in certain markets, such as keeping a minimum safety
distance during automated lane changes (Figure 1.b).

(a) (b)

Fig. 1. Schematic overview of two situations on a highway. On the left a situation where
an unconstrained virtual driver (yellow) might decide to move towards the occupied
left lane. State-dependent action bounds can prevent the virtual driver from executing
such hazardous manoeuvres. On the right a minimum safety distance for an automated
lane change is visualized, which can be ensured by state-dependent action bounds.

1.2 Main Contributions and Related Work

Safe reinforcement learning is an active field of research for which an extensive
overview is given by Garcia et al. [13]. Some approaches consider the setting in
which safety must be learned through environmental interactions, which means
safety constraints may be violated during training [7, 25]. Other methods try
to incorporate the safety constraints throughout the learning phase, ensuring
exploration itself is also safe [3, 19, 27]. In this paper we follow the latter approach
and enforce the state-dependent bounds both during training and deployment.

Closely related to the safe RL domain are methods solving Constrained
Markov Decision Processes (CMDP), which beside optimizing for performance
(long-term accumulated reward) also take an arbitrary amount of policy con-
straints into account [1, 7, 25]. Our approach could be considered a special case
under this CMDP framework, as we specifically focus on state-dependent ac-
tion bounds, i.e. upper and lower bound constraints on actions only. One benefit
of restricting us to this specific subclass of problems is that we can guarantee
hard constraint satisfaction, while the methods solving the more general (and
difficult) CMDP problem typically only have near-constraint satisfaction.

For discrete action spaces a commonly used approach is to prune the available
action set, such that unsafe actions are excluded. The Deep Constrained Q-
learning method [16] can be used to learn such policies. The pruning can either

Enforcing state-dependent action bounds on reinforcement learning policies 3

be done in a preprocessing step, by providing the agent with a safe set of actions
to choose from; or in a postprocessing step, after the agent has already made a
decision [2]. In the latter case, the agent assigns a list of priorities to each discrete
action from which the safe action with highest priority is chosen in the pruning
step [15, 21]. While our approach is only applicable to continuous action spaces,
it could be classified as preemptive shielding : the agent is only allowed to select
safe actions that lie within the predefined range of state-dependent bounds.

Postposed shielding approaches for continuous action spaces are provided by
Dalal et al. [8] and Cheng et al. [6]. In both setups the control pipeline is extended
with a “safety controller”, which maps potentially unsafe actions selected by the
agent to the closest safe actions. This requires an optimization problem to be
solved at each timestep, which may not be feasible if computing resources are
limited. To alleviate this, Dalal et al. [8] suggest solving the optimization problem
analytically, under the extra assumption that only a single constraint is active
at the same time.

Chandak et al. [5] study the setting where the action space is stochastic.
Such a setting is more generic than ours, as the range of available actions (de-
fined through the state-dependent bounds) is considered to be deterministic and
defined before learning starts. Finally, it should be mentioned that many en-
vironments make use of static action bounds, for example to model actuator
saturation. Most standard RL methods are able to deal with that, for instance
through using bounded activation functions in the last layer of the actor net-
work. However, such bounds are constant for all states. Hence, to the best of our
knowledge, our work is the first to apply state-dependent action bounds.

Enforcing such hard, state-dependent bounds on policy actions is the central
contribution of this work. These bounds not only prevent exploration and op-
eration in irrelevant parts of the state-action space, but also allow the designer
to embed prior domain knowledge in the model-free learning setting; ultimately
leading to policies with an improved performance, sample efficiency and safety.

1.3 Organization

This paper is organized as follows. The necessary reinforcement learning essen-
tials are first described in Section 2, followed by an in-depth introduction of
state-dependent action bounds in Section 3. Our approach is then evaluated on
an autonomous driving problem in the experiments of Section 4. Extra back-
ground information and additional experiments can be found in the appendices.

2 Reinforcement Learning

Formally, the Reinforcement Learning (RL) problem can be described by a
Markov Decision Process (MDP), written down as the tuple (S,A, ι, τ, r, γ) with
S ⊂ RS denoting the state space, A ⊂ RA the action space, ι(s0) : S → [0 ; 1] the
initial-state distribution, τ(st+1|st,at) : S × S ×A → [0 ; 1] the state transition

4 B. De Cooman et al.

model, r(st,at, st+1) : S ×A×S → R the reward model and γ ∈ [0 ; 1) the dis-
count factor. The state transition model τ(st+1|st,at) describes the probability
of going to state st+1 in the next time step, when selecting action at in state
st at the current time step. The reward model r(st,at, st+1) provides the agent
with a scalar reward for transitioning towards state st+1 when selecting action
at in state st. It is this reward signal that provides the agent with feedback,
which can be used to improve its policy π(a|s) : A × S → [0 ; 1]. This policy
describes the probability of taking action a when the agent perceives state s.
For deterministic policies we will also use the notation a = π(s).

The goal of the agent is to maximize the future discounted return, given by

Rt =

∞∑
k=0

γkr(st+k,at+k, st+k+1),

for all possible initial states and subsequent visited state-action pairs by following
its policy π. The optimal policy π∗ is thus found as

π∗ = argmax
π

Eπ,τ,ι[R0], (1)

where the expectation Eπ,τ,ι is taken over the probability distribution of actions
at ∼ π(·|st), induced by the policy, and over the probability distribution of
states s0 ∼ ι(·) and st+1 ∼ τ(·|st,at), induced by the environment.

Instead of working directly with the objective (1), it is often useful to consider
the state-value function Vπ(s) = Eπ,τ [Rt | st = s] and action-value function
Qπ(s,a) = Eπ,τ [Rt | st = s,at = a]. Both of these value functions can also be
defined recursively through a relationship known as the Bellman equation

Vπ(s) = Eπ,τ [r(st,at, st+1) + γVπ(st+1) | st = s],

Qπ(s,a) = Eπ,τ [r(st,at, st+1) + γQπ(st+1,at+1) | st = s,at = a].

More background information regarding the fundamentals of reinforcement learn-
ing can be found in the book by Sutton & Barto [24].

There are many different RL algorithms to find an estimate of the optimal
policy or value function for the previously described MDP (see [28] for a taxon-
omy of different approaches). Enforcing state-dependent action bounds on the
policies, requires the usage of RL methods with explicit actor networks (policy-
based or actor-critic), supporting both continuous state and action spaces. In
this work, we specifically focus on two model-free, off-policy, actor-critic meth-
ods, which are briefly introduced in the following two subsections. Being actor-
critic methods, both an actor network µ(s;θµ), modelling the policy, and a
critic network Q(s,a;θQ), estimating the optimal state-action value function,
are jointly trained. Extra target networks (denoted by primes on the weight vec-
tors θ′

i) are also introduced to improve the stability of the learning process and
are updated using Polyak averaging. As the environment dynamics ι, τ remain
unknown to the agent in the model-free setting, the agent is required to explore
the state-action space during training. The behavioural policy β(a|s) is used for

Enforcing state-dependent action bounds on reinforcement learning policies 5

this exploration, collecting experience tuples (st,at, rt, st+1) which are stored in
a replay buffer B. The actor and critic networks are then trained using batches
of experience tuples from this replay buffer.

2.1 Deterministic Methods

Two popular deterministic, actor-critic methods are ‘Deep Deterministic Policy
Gradient’ (DDPG) [20] and ‘Twin Delayed DDPG’ (TD3) [12]. In these methods,
the actor network represents the deterministic policy a = µ(s;θµ). To ensure
sufficient exploration of the state-action space, an external source of stochasticity
is necessary during training, as a deterministic policy would always take the same
actions in the same states. Hence, the behavioural policy β(s) = µ(s;θµ)+ϵ with
exploration noise ϵ ∼ N (0,σexplI) is used to collect experience during training.

The critic network is updated by minimizing a squared temporal difference
error

LQ(θQ) = E(st,at,rt,st+1)∼B

[
(Q(st,at;θQ)− yt)

2
]
,

yt = rt + γQ(st+1, µ(st+1;θ
′
µ);θ

′
Q).

The actor network is updated by minimizing Lµ(θµ) = −Est∼B[Q(st, µ(st;θµ);
θQ)], resulting in an approximation of the deterministic policy gradient [23]

∇θµ
Lµ ≈ Est∼B

[
∇θµ

µ(s;θµ)|s=st
∇aQ(s,a;θQ)|s=st,a=µ(st;θµ)

]
.

2.2 Stochastic Methods

The ‘Soft Actor-Critic’ (SAC) [14] method is an example of a stochastic, actor-
critic algorithm. In this method, the actor network provides the parameters for
the probability distribution used to model the stochastic policy π(at|st;θµ).
Typically a Gaussian distribution is used, taking at ∼ N (µt,diag[σt]) with[
µt; σt

]
= µ(st;θµ). To ensure a sufficient exploration of the state-action space,

this method does not only optimize for long-term reward accumulation, but also
tries to maximize the policy’s entropy π∗ = argmaxπ Eπ,τ,ι[R0 + αH0], with
Ht =

∑∞
k=0 γ

kH[π(·|st+k)] the future discounted entropy. The critic network
estimates the optimal soft Q-function, which takes this extra entropy term into
account. The resulting critic loss can then be written down as the soft Bellman
residual

LQ(θQ) = E(st,at,rt,st+1)∼B

[
(Q(st,at;θQ)− yt)

2
]
,

yt = rt + γEat+1∼π[Q(st+1,at+1;θ
′
Q)− α log[π(at+1|st+1;θµ)]].

To improve the policy, the Kullback-Leibler divergence between the policy and
the exponential of the soft Q-function is minimized, leading to the actor loss

Lµ(θµ) = Est∼B

{
Eat∼π

[
α log[π(at|st;θµ)]−Q(st,at;θQ)

]}
. (2)

Finally, the temperature parameter α can be tuned either manually or automat-
ically adapted throughout training, see Haarnoja et al. [14] for further details.

6 B. De Cooman et al.

3 Proposed Methodology

Two modifications to the usual reinforcement learning (RL) control pipeline are
necessary to enforce state-dependent bounds on policy actions, as shown in Fig-
ure 2. First of all, the behavioural policy β and learned policy π are constrained
such that their sampled normalized actions ã always lie within a predetermined,
fixed interval. In a second step, these normalized actions are rescaled using a
chosen mapping σ and the state-dependent action bounds al(s) and au(s) —
encoding the prior domain knowledge to be embedded. The resulting rescaled
actions a are then executed in the environment, leading to a next state in the
following timestep.

𝛽 ෤𝑎 𝑠

Agent Environment

Bound extraction

𝑠 ෤𝑎
Rescaling

𝑎U 𝑠

𝑎L(𝑠)

𝑎

Fig. 2. Schematic overview of the reinforcement learning control pipeline with enforced
state-dependent action bounds.

The chosen reinforcement learning algorithm is applied using the normalized
actions ã instead of the rescaled actions a, i.e. ã is stored in the replay buffer B
and used for the calculation of the actor (and critic) losses. As a result, from the
agent’s perspective, the rescaling operation is part of the environment. In case
the mapping σ is differentiable with respect to the normalized action inputs,
it would be possible to work directly with the rescaled actions, making the
rescaling operation part of the agent instead. To simplify the comparison of
different (possibly non-differentiable) rescaling functions, we do not investigate
such a setup in this paper and leave this for future work.

3.1 Normalized Actions

The specific implementation of policies with bounded normalized actions de-
pends on the chosen RL method used for policy optimization. In essence, it con-
sists of the following two steps. First, squash the outputs of the actor network
representing the mean actions µ to the fixed interval [ãl ; ãu] using a bounded
activation function, such as tanh, in the last layer of the network. Secondly,
to make sure no actions outside this fixed interval are sampled, use a bounded

Enforcing state-dependent action bounds on reinforcement learning policies 7

probability distribution, such as the truncated Gaussian distribution N ãu

ãl
(µ, σI)

with finite support [ãl ; ãu] [4].
Below, two implementations are presented for a state-of-the-art deterministic

and stochastic actor-critic method respectively. Note that while we stick to the
tanh activation function with bounds ãl = −1, ãu = 1 in this paper, any other
bounded and differentiable activation function can be used instead.

TD3 (Deterministic) In deterministic actor-critic methods, such as TD3, the
output of the actor network corresponds to the deterministic action to be taken
for a given state at = µ(st;θµ). To properly explore the state-action space
during training, an external source of stochasticity is used, typically a spherical
Gaussian with mean at and a decaying variance σ: aϵ

t ∼ N (µ(st;θµ), σI).
Bounding the mean action outputs on the actor network, thus corresponds

to using tanh activation in the last layer of the network, resulting in normalized
action outputs ãt. To ensure satisfaction of the bounds during exploration, the
truncated Gaussian distribution is used.

π : ãt = µ(st;θµ)

β : ãϵ
t ∼ N 1

−1(µ(st;θµ), σI)

SAC (Stochastic) In stochastic actor-critic methods, such as SAC, the output
of the actor network corresponds to the parameters of the distribution from which
stochastic actions can be sampled. Using a Gaussian distribution for example,
we have

[
µt; σt

]
= µ(st;θµ) and at ∼ N (µt,diag[σt]).

In this case it suffices to use a tanh activation in the last layer of the µ-head
of the actor network, leading to normalized mean action outputs µ̃t. Once again,
the truncated Gaussian distribution is used to ensure satisfaction of the bounds
for all sampled actions. During evaluation, the mode of the learned stochastic
policy β is used to retrieve a deterministic policy π.

π : ãt = µ̃t

β : ãϵ
t ∼ N 1

−1(µ̃t,diag[σt])

[
µ̃t

σt

]
= µ(st;θµ)

The SAC method requires the calculation of differentiable log probabilities for
the sampled actions (2). For the standard Gaussian distribution, such gradients
can be calculated straightforwardly using the reparametrization trick [18]. Such a
reparametrization trick can not be applied, however, when using the truncated
Gaussian distribution. Fortunately, differentiable log probabilities can still be
calculated using implicit reparametrization gradients [11].

Note that in Appendix C of the soft-actor critic paper [14] an alternative
way of bounding the actor network’s outputs is described. The “tanh trick” uses
samples from the regular Gaussian distribution which are afterwards passed
through the tanh function, squashing each sample to the bounded interval [−1 ;
1]. While this is also a viable approach, we work with the truncated Gaussian
distribution in this paper for consistency with the deterministic methods.

8 B. De Cooman et al.

3.2 State-Dependent Rescaling

The sampled normalized actions are afterwards rescaled to the interval [al(s) ;
au(s)] determined by the predefined, state-dependent action bounds al and au.
Different rescaling functions σ(ã; s) : [ãl ; ãu] × S → [al(s) ; au(s)] can be used
for that purpose. We specifically focus on rescaling functions that are monoton-
ically increasing bijections, to guarantee the structure of the underlying Markov
Decision Process (MDP) is not modified (see Subsection 3.3). In this subsection
we introduce three such mappings. For simplicity, we assume scalar (normalized)
actions, but this can be easily generalized to vectors by applying the σ functions
elementwise.

The most straightforward way to rescale a variable is using the linear function

σlin(ã; s) = al(s) +
au(s)− al(s)

ãu − ãl
(ã− ãl).

The benefit of this mapping is its generality, as it is able to handle any range of
bounds [al(s) ; au(s)]. A drawback is that there is no fixed anchor point within
the bounds, more precisely there is no ã0 ∈ [ãl ; ãu] that is mapped to a fixed
a0. For some control problems such a fixed anchor point can be useful or provide
extra (stability) guarantees.3 The following piecewise linear rescaling function
allows to specify such an anchor point

σpwl(ã; s) =


a0 +

al(s)− a0
ãl − ã0

(ã− ã0) ã < ã0

a0 +
au(s)− a0
ãu − ã0

(ã− ã0) ã ≥ ã0

.

Remark that a0 is fixed and hence al(s) ≤ a0 ≤ au(s) should be satisfied for
all s, making this mapping slightly more restrictive than the previous one. A
drawback of this rescaling function is that it is not differentiable at ã = ã0.
Hence, a smoother variant is given by the hyperbolic interpolation function

σhyp(ã; s) = a0 +
p(s)(ã− ã0)

q(s)(ã− ã0) + r(s)
,

p(s) = (al(s)− a0)(au(s)− a0)(ãu − ãl),

q(s) = (al(s)− a0)(ãu − ã0)− (au(s)− a0)(ãl − ã0),

r(s) = (ãl − ã0)(ãu − ã0)(au(s)− al(s)).

Figure 3 shows the different rescaling functions for ãl = −1, ã0 = 0, ãu = 1,
al = −2, a0 = 0 and au = 5. The inverse mapping σ−1(·; s), from actions a to
normalized actions ã, can be easily calculated for any of the presented rescaling
functions by swapping the normalized bounds and anchor ãl, ã0, ãu with the
rescaled bounds and anchor al, a0, au. A proof for this property is provided in
Appendix A.

3 For example, if actions in a local neighbourhood of a0 stabilize the system around
an equilibrium point s∗ it might be desirable to map ã0 = E[π(·|s∗)] to a0.

Enforcing state-dependent action bounds on reinforcement learning policies 9

෤𝑎

𝑎

Fig. 3. Comparison of the different rescaling functions used throughout this paper. In
this plot the bounds were set to ãl = −1, ã0 = 0, ãu = 1, al = −2, a0 = 0 and au = 5.

3.3 Preservation of MDP

The environment dynamics and underlying MDP are fully preserved when using
the state-dependent action bounds procedure outlined above. Indeed, as the
rescaling operation is a bijection, every original action is mapped to a unique
normalized action (and vice versa). By constraining the policy to only support
normalized actions within a fixed interval [ãl ; ãu], actions outside the range
[al(s) ; au(s)] can however no longer be selected, leading to a pruned MDP from
the agent’s perspective.

Original MDP Rescaled MDP

Used bounds:
𝑙 𝑠0 = 0.2 ; 𝑢 𝑠0 = 1
𝑙 𝑠1 = 0.4 ; 𝑢 𝑠1 = 0.8

Pruned MDP

𝑠0

𝑠1

𝑠𝑇

0; 0.4

0.2; 1

0; 0.4
0.2; 1 𝑠0

𝑠1

𝑠𝑇

−1.5;−0.5

−1; 1

−3;−1
−2; 2Rescale 𝑠0

𝑠1

𝑠𝑇

−1;−0.5

−1; 1

−1; 1Prune

ℳ ෩ℳ ෩ℳ𝑝

0.2

0.4

−1

−1

1

0.8

1

1

Fig. 4. Effect of the rescaling operation and imposed bounds on the actor network on
the MDP of an example environment. The used rescaling function is σlin with bounds
al(s0) = 0.2, au(s0) = 1, al(s1) = 0.4, au(s1) = 0.8.

To give some more intuition, let us consider the effect of state-dependent
action bounds on a simple MDP as shown in Figure 4. The original MDP M
consists of three states s0, s1 and sT . In every non-terminal state, the agent can
select a continuous action a in the range [0 ; 1]. Each arrow between two states
denotes a transition potentially triggered by a certain range of actions. If an
action can lead to multiple transitions, each such transition is equally likely.

10 B. De Cooman et al.

Using the σlin rescaling function with bounds al(s0) = 0.2, au(s0) = 1,
al(s1) = 0.4, au(s1) = 0.8, a rescaled MDP M̃ can be constructed with nor-
malized actions instead of the original actions. Because σ is a bijection, this
normalized MDP is completely equivalent to the original one. By constraining
the search for optimal policies to the set of policies with outputs in the interval
[−1 ; 1], not every transition is still applicable. Hence, the normalized MDP can
be further pruned to the final MDP M̃p by removing all transitions correspond-
ing to normalized actions outside the interval [−1 ; 1]. This last pruning step is
however not enforced on the environment itself but rather on the policies. In
fact, all original transitions are still there, but some can no longer be selected
by the constrained policies.

More formally we have the original MDP M = (S,A, ι, τ, r, γ), from which
the rescaled MDP M̃ is constructed — by introducing the rescaling function
σ in the environment — as (S, Ã, ι, τ̃ , r̃, γ) with Ã = {ã | ∃s ∈ S,∃a ∈ A :
σ(ã; s) = a}, τ̃(st+1|st, ãt) : S × S × Ã → [0 ; 1] = τ(st+1|st, σ(ãt; st)) and
r̃(st, ãt, st+1) : S × Ã × S → R = r(st, σ(ãt; st), st+1). The usage of bounded
probability distributions and bounded activation functions in the actor network
constrains the set of normalized policies as Π̃C = {π̃ | ∀s ∈ S,∀ã ∈ Ã : ãl ≤
ã ≤ ãu ∨ π̃(ã|s) = 0}. Hence, applying the chosen RL method to the experience
tuples (st, ãt, r̃t, st+1) boils down to finding an optimal normalized policy as the
solution of the constrained MDP

π̃∗ = argmax
π̃∈Π̃C

Eπ̃,τ̃ ,ι

[∞∑
k=0

γkr̃(sk, ãk, sk+1)

]
. (M̃+ Π̃C)

This optimal normalized policy defines a corresponding optimal policy π∗ in the
original MDP M with added policy constraints ΠC = {π | ∀s ∈ S,∀a ∈ A :
al(s) ≤ a ≤ au(s) ∨ π(a|s) = 0}, i.e. the solution of the constrained MDP

π∗ = argmax
π∈ΠC

Eπ,τ,ι

[∞∑
k=0

γkr(sk,ak, sk+1)

]
. (M+ΠC)

As a result, we effectively found an optimal constrained policy, with vari-
able support (based on the state-dependent action bounds). Figure 5 shows such
transformed policies, after application of different rescaling functions. The trans-
formed policies can be easily calculated from their normalized analogues using
the ‘change of variable’ formula from probability theory (requiring the inverse
rescaling function σ−1 to be differentiable) π(a|s) = π̃(σ−1(a; s)|s)

∣∣∂aσ−1(a; s)
∣∣.

Samples from this rescaled policy can be readily calculated using the procedure
outlined in the previous two subsections, i.e. by transforming samples from the
normalized policy using the chosen rescaling function σ.

As a final remark, let us briefly consider the case of a differentiable rescal-
ing function, which allows to directly store the rescaled actions a in the replay
buffer rather than the normalized actions. In such a situation, both the bound-
ing and rescaling operations can be enforced on the policy (agent), leaving the
environment untouched, effectively solving (M+ΠC) directly.

Enforcing state-dependent action bounds on reinforcement learning policies 11

෤𝜋 ෤𝑎|𝒔 𝜋 𝑎|𝒔

෤𝑎 𝑎

𝜎 ෤𝑎; 𝒔

Fig. 5. Effect of the rescaling operation on the probability density function. On the left
the normalized policy π̃ and on the right the rescaled policy π for different rescaling
functions. The used bounds are al(s) = −2, au(s) = 5 with anchor point a0 = 0 for
ã0 = 0.

3.4 Implementation

A reference implementation of our approach in pytorch will be made available
here4. In this implementation we specifically use the SAC method for learning,
while the tanh function and truncated Gaussian distribution are used to con-
strain the policies. All of the discussed rescaling functions are available, allowing
to easily reproduce the experiments of Appendix B.

4 Experimental Results

The effectiveness of the state-dependent action bounds is demonstrated in a
virtual autonomous driving environment. A patent application for this specific
application of state-dependent action bounds has been filed [10]. Additional ex-
periments on two commonly used openAI gym environments can be found in
Appendix B.

Every experiment is repeated ten times, using ten different seeds for ini-
tialization. Throughout training, E independent evaluation episodes are exe-
cuted to get an estimate of the learned policy’s average performance (E = 5 for
the autonomous driving environment and E = 10 for the gym environments).
These 10E datapoints are used to construct the plots (using exponential average
smoothing with α = 0.1) and report the performances.

4.1 Highway Driving

The considered simulated environment is a three lane highway in which a virtual
driver (the agent) has to efficiently navigate traffic by issuing high-level steering

4 https://github.com/dcbr/sdab

https://github.com/dcbr/sdab
https://github.com/dcbr/sdab

12 B. De Cooman et al.

commands based on the current traffic situation in its neighbourhood. Through
the continuous actions vref and dref the virtual driver can specify a desired longi-
tudinal velocity and lateral reference position on the road, which are tracked by
motion controllers. More details of the simulation environment can be found in
Appendix C. The virtual driver’s policy is trained using the TD3 method with
added smoothness regularization [9], to increase passenger comfort.

Action Bounds In this environment, the state-dependent action bounds are used
to avoid certain unsafe regions in state-action space.5 Using prior knowledge of
the environment, a safe maximum velocity and safe lateral position range can
be determined, preventing collisions under reasonable worst case assumptions.
Enforcing such state-dependent action bounds thus provides strong safety guar-
antees, allowing the agent to focus on its core task of efficiently navigating traffic.

Results Two constrained policies using the state-dependent action bounds with
rescaling functions σlin and σpwl are trained.

6 Both constrained policies are com-
pared with an unconstrained policy, which has to learn all aspects of driving on
its own, using only the negative penalties in the reward signal obtained when the
virtual driver chooses unreasonable or dangerous actions. Figure 6 summarizes
the results of this comparison.

The plots show the average obtained reward and average episode length of
each evaluation episode. By default, an episode lasts for 5000 timesteps, but the
episode ends immediately when the virtual driver crashes. From these results, we
can conclude both constrained policies are never involved in a crash throughout
the whole training process, even at the very start. On the other hand, without
guiding action bounds, the unconstrained policies cause many crashes early on
and throughout the training process. Moreover, these crashes never truly vanish,
even after extensive training. As a result, the best unconstrained policies never
achieve the same level of performance as the constrained policies. Additionally,
there is a significant difference in convergence speed. The constrained policies
can focus on the ‘core task’ of efficiently navigating traffic, leading to a fast
convergence after roughly 2 · 105 training steps. The unconstrained policies, on
the other hand, have to simultaneously learn common traffic rules and how to
avoid crashes, leading to a much slower convergence after roughly 8 ·105 training
steps.

These results clearly highlight the benefits of state-dependent action bounds.
First of all, it allows to effectively enforce hard constraints (bounds) on sampled
policy actions, which are always satisfied, both during training and evaluation.
Secondly, as the relevant domain knowledge can be enforced directly on the
policies, it can keep reward functions simple, focusing on the core learning tasks.
This not only considerably speeds up training, by only focusing on the relevant
parts of state-action space, but can also result in better performing policies, as
compared to unconstrained learning.

5 Similar to the avoidance objective for the pendulum environment in Appendix B.
6 These are the best performing rescaling functions in the experiments of Appendix B.

Enforcing state-dependent action bounds on reinforcement learning policies 13

Fig. 6. Average obtained reward (left) and episode length (right) during evaluation as
a function of training steps for two constrained policies with state-dependent safety
bounds (blue and orange) and one unconstrained policy (green).

5 Conclusion

In this paper we proposed a novel way to enforce certain hard constraints on
policies and prevent an agent from exploring and operating in irrelevant parts
of the state-action space. More specifically, state-dependent action bounds allow
the designer to restrict the range of available actions in certain states to a prede-
fined (safe) interval. It is thus a tool to incorporate prior domain knowledge for
a specific set of states, while keeping the model-free learning scheme’s benefits.
The proposed two-step procedure is both flexible and generic, making it easily
combinable with existing policy-based and actor-critic reinforcement learning
algorithms, as well as applicable to various domains. Experiments showed the
effectiveness of the bounds, resulting in both faster learning and better perform-
ing policies.

A limitation of the current approach is the usage of a single interval of al-
lowed actions for each state. In some situations there might however be multiple
permissible action intervals. For example, an obstacle in front can be avoided
by going either left or right. An extension to support multiple, disjoint action
intervals might therefore be an interesting avenue for future research. Further
extensions to the type of constraints that can be enforced is another potential
path forward, for instance by allowing to bound the derivatives of policy actions.

Acknowledgements The presented results were primarily obtained under Ford Al-

liance Project KUL0076, funded by Ford. This research was partially supported by

TAILOR, a project funded by EU Horizon 2020 research and innovation programme

under GA No 952215. This research received funding from the Flemish Government

(AI Research Program). Johan Suykens is affiliated to Leuven.AI - KU Leuven insti-

tute for AI, B-3000, Leuven, Belgium. The resources and services used in this work

were provided by the VSC (Flemish Supercomputer Center), funded by the Research

Foundation - Flanders (FWO) and the Flemish Government.

Bibliography

[1] Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimiza-
tion. In: 34th International Conference on Machine Learning, ICML 2017.
vol. 1, pp. 30–47 (2017)

[2] Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu,
U.: Safe reinforcement learning via shielding. In: 32nd AAAI Conference on
Artificial Intelligence, AAAI 2018. pp. 2669–2678 (2018)

[3] Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe model-
based reinforcement learning with stability guarantees. In: Advances in Neu-
ral Information Processing Systems. vol. 2017-Decem, pp. 909–919 (2017)

[4] Burkardt, J.: The Truncated Normal Distribution. Department of Scientific
Computing , Florida State University pp. 1–35 (2014)

[5] Chandak, Y., Theocharous, G., Metevier, B., Thomas, P.S.: Reinforcement
learning when all actions are not always available. In: AAAI 2020 - 34th
AAAI Conference on Artificial Intelligence. pp. 3381–3388 (2020). https:
//doi.org/10.1609/aaai.v34i04.5740

[6] Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe rein-
forcement learning through barrier functions for safety-critical continuous
control tasks. In: 33rd AAAI Conference on Artificial Intelligence, AAAI
2019. pp. 3387–3395 (2019)

[7] Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E., Ghavamzadeh, M.:
Lyapunov-based Safe Policy Optimization for Continuous Control (2019)

[8] Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.:
Safe Exploration in Continuous Action Spaces (2018)

[9] De Cooman, B., Suykens, J., Ortseifen, A.: Improving temporal smoothness
of deterministic reinforcement learning policies with continuous actions. In:
33rd Benelux Conference on Artificial Intelligence, BNAIC 2021. pp. 217–
240 (Nov 2021)

[10] De Cooman, B., Suykens, J., Ortseifen, A., Subramanya, N.: Method
for autonomous driving of a vehicle, a data processing circuit, a com-
puter program, and a computer-readable medium, E.U. Patent Application
EP22151063.9, filed 11 January 2022

[11] Figurnov, M., Mohamed, S., Mnih, A.: Implicit reparameterization gradi-
ents. In: Advances in Neural Information Processing Systems. vol. 2018-
Decem, pp. 441–452 (2018)

[12] Fujimoto, S., Van Hoof, H., Meger, D.: Addressing Function Approxima-
tion Error in Actor-Critic Methods. In: 35th International Conference on
Machine Learning, ICML 2018. vol. 4, pp. 2587–2601 (2018)

[13] Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement
learning (2015)

[14] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar,
V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft Actor-Critic Algorithms
and Applications (2018)

https://doi.org/10.1609/aaai.v34i04.5740
https://doi.org/10.1609/aaai.v34i04.5740
https://doi.org/10.1609/aaai.v34i04.5740
https://doi.org/10.1609/aaai.v34i04.5740

Enforcing state-dependent action bounds on reinforcement learning policies 15

[15] Hoel, C.J., Driggs-Campbell, K., Wolff, K., Laine, L., Kochenderfer, M.J.:
Combining Planning and Deep Reinforcement Learning in Tactical Decision
Making for Autonomous Driving. Tech. rep. (2019)

[16] Kalweit, G., Huegle, M., Werling, M., Boedecker, J.: Deep Constrained Q-
learning (2020)

[17] Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MO-
BIL for car-following models. Transportation Research Record 1999, 86–94
(2007). https://doi.org/10.3141/1999-10

[18] Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local
reparameterization trick. In: Advances in Neural Information Processing
Systems. vol. 2015-Janua, pp. 2575–2583 (2015)

[19] Koller, T., Berkenkamp, F., Turchetta, M., Krause, A.: Learning-Based
Model Predictive Control for Safe Exploration. In: Proceedings of the IEEE
Conference on Decision and Control. vol. 2018-Decem, pp. 6059–6066 (jan
2019). https://doi.org/10.1109/CDC.2018.8619572

[20] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning. In:
4th International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings (2016)

[21] Mirchevska, B., Pek, C., Werling, M., Althoff, M., Boedecker, J.: High-level
Decision Making for Safe and Reasonable Autonomous Lane Changing using
Reinforcement Learning. In: IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC. vol. 2018-Novem, pp. 2156–2162 (2018). https:
//doi.org/10.1109/ITSC.2018.8569448

[22] Rajamani, R.: Vehicle Dynamics and Control. Springer, 2nd edn. (2012).
https://doi.org/10.1007/978-1-4614-1433-9

[23] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.:
Deterministic policy gradient algorithms. In: 31st International Conference
on Machine Learning, ICML 2014. vol. 1, pp. 605–619 (2014)

[24] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, A
Bradford book, vol. 258. MIT Press, 1st edn. (1998)

[25] Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy op-
timization. In: 7th International Conference on Learning Representations,
ICLR 2019 (2019)

[26] Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical
observations and microscopic simulations. Physical Review E - Statistical
Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 62(2), 1805–
1824 (2000). https://doi.org/10.1103/PhysRevE.62.1805

[27] Wachi, A., Sui, Y.: Safe reinforcement learning in constrained markov de-
cision processes. In: 37th International Conference on Machine Learning,
ICML 2020. vol. PartF16814, pp. 9739–9748 (2020)

[28] Zhang, H., Yu, T.: Taxonomy of reinforcement learning algorithms. In:
Deep Reinforcement Learning: Fundamentals, Research and Applications,
pp. 125–133. Springer, Singapore (jan 2020). https://doi.org/10.1007/
978-981-15-4095-0 3

https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.1109/CDC.2018.8619572
https://doi.org/10.1109/CDC.2018.8619572
https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1007/978-981-15-4095-0_3
https://doi.org/10.1007/978-981-15-4095-0_3
https://doi.org/10.1007/978-981-15-4095-0_3
https://doi.org/10.1007/978-981-15-4095-0_3

16 B. De Cooman et al.

A Rescaling Functions

Let us first simplify notation, defining the rescaling functions as scalar bijections

from x to y with parameters ρ =
[
xl x0 xu yl y0 yu

]⊤
,

σ(x; ρ) : [xl ;xu] → [yl ; yu],

yl = σ(xl; ρ),

yu = σ(yu; ρ),

and the additional constraint y0 = σ(x0; ρ) if the rescaling function supports an
extra anchor point.

All of the rescaling functions introduced in Section 3 are translated and scaled
involutions. An involution is a bijection whose inverse is equal to the function
itself, i.e. f(x) = f−1(x) for all x in a certain set.

Lemma 1. Denoting by m(x; τy, σy, τx, σx) = τy + σyf(σxx+ τx) the translated
and scaled variant of an involution f , we can write its inverse as

m−1 (y; τy, σy, τx, σx) = m

(
y;

−τx
σx

,
1

σx
,
−τy
σy

,
1

σy

)
.

Proof. The inverse of m is given by

m−1 (y; τy, σy, τx, σx) =
1

σx
f−1

(
y − τy
σy

)
− τx
σx

=
−τx
σx

+
1

σx
f

(
y

σy
+

−τy
σy

)
= m

(
y;

−τx
σx

,
1

σx
,
−τy
σy

,
1

σy

)
,

where we used the property f(x) = f−1(x) of involutions.

Denoting by Px↔y the permutation matrix swapping x and y entries in ρ,

i.e. ρ̃ = Px↔yρ =
[
yl y0 yu xl x0 xu

]⊤
, we can prove the following Lemma.

Lemma 2. Each of the considered rescaling functions σlin, σpwl and σhyp satisfy
following relationship σ−1(y; ρ) = σ(y;Px↔yρ), allowing to easily calculate the
inverse rescaling by swapping x and y entries in the parameter vector.

Proof. The above relationship σ−1(y; ρ) = σ(y; ρ̃) can be proven for each rescal-
ing function by rewriting it as a scaled and translated involution

σ(x; ρ) = τy(ρ) + σy(ρ)f(σx(ρ)x+ τx(ρ)),

satisfying

τy(ρ̃) = − τx(ρ)

σx(ρ)
, σy(ρ̃) =

1

σx(ρ)
, τx(ρ̃) = − τy(ρ)

σy(ρ)
, σx(ρ̃) =

1

σy(ρ)
, (3)

Enforcing state-dependent action bounds on reinforcement learning policies 17

and applying Lemma 1.
Both linear rescaling functions σlin, σpwl can be rewritten as scaled and trans-

lated variants of the involution f(x) = x using following parameters

σlin : τy(ρ) = yl, σy(ρ) = yu − yl, τx(ρ) =
−xl

xu − xl
, σx(ρ) =

1

xu − xl

σpwl,l : τy(ρ) = y0, σy(ρ) = yl − y0, τx(ρ) =
−x0

xl − x0
, σx(ρ) =

1

xl − x0

σpwl,u : τy(ρ) = y0, σy(ρ) = yu − y0, τx(ρ) =
−x0

xu − x0
, σx(ρ) =

1

xu − x0

for which the conditions (3) can be readily checked. Note that the inverse of the
piecewise function σpwl is given by the inverse of its constituents in each of their
non-overlapping domains (both σpwl and its constituents are bijections).

Similarly, the hyperbolic rescaling function σhyp can be rewritten as a trans-
formed version of the involution f(x) = 1

x using following scales and translations

τy(ρ) =
(yu − y0)(xl − x0)yl − (yl − y0)(xu − x0)yu
(yu − y0)(xl − x0)− (yl − y0)(xu − x0)

,

σy(ρ) =
(yu − y0)(yl − y0)(yu − yl)

(yu − y0)(xl − x0)− (yl − y0)(xu − x0)
,

τx(ρ) =
(yu − y0)(xl − x0)xu − (yl − y0)(xu − x0)xl

(xu − x0)(xl − x0)(xu − xl)
,

σx(ρ) = − (yu − y0)(xl − x0)− (yl − y0)(xu − x0)

(xu − x0)(xl − x0)(xu − xl)
,

for which the conditions (3) can be verified.

B State-Dependent Bounds in Gym Environments

To provide some intuition, we compare different implementations of the state-
dependent action bounds on two commonly used openAI gym environments7:
Pendulum-v0 and LunarLanderContinous-v2. For these experiments, we used
a customized version of the latest Stable-Baselines implementation8.

B.1 Inverted Pendulum

The objective in this Pendulum-v0 environment is to swing up and stabilize an
inverted pendulum around the upward position. The observable state by the

agent s =
[
cos(θ) sin(θ) θ̇

]⊤
contains information about the pendulum’s orien-

tation angle θ and angular velocity θ̇. The scalar action a denotes the torque to
apply on the pendulum and is bounded by the interval [−2 ; 2] (larger or smaller
values are clipped by the environment). We consider two different applications
of state-dependent action bounds on this environment.

7 https://gym.openai.com
8 https://github.com/DLR-RM/stable-baselines3

https://gym.openai.com
https://github.com/DLR-RM/stable-baselines3

18 B. De Cooman et al.

𝜽𝐓 𝜽𝐓

Left Right

Upward-

Top

Bottom

Right-

𝝅

𝟐
−
𝝅

𝟐

±𝝅

𝟎

𝝅

𝟐
−
𝝅

𝟐

±𝝅

𝟎

Fig. 7. Visualization of the state space (orientation angle component) partitioning
imposed by the Upward and Right predicates in the Pendulum-v0 environment.

Aiding Stabilization The first set of state-dependent action bounds aims to aid
in the stabilization of the pendulum around the upward position. As prior do-
main knowledge, we know that at the upward equilibrium point, the velocity
of the pendulum should be low and small deviations to the left or right should
be corrected by a negative or positive torque respectively. This extra domain
knowledge is encoded in the chosen state-dependent bounds of this setup. Using
the resulting bounds, the agent still has to figure out how to swing up the pen-
dulum, but once the pendulum is close to the upward position, tighter action
bounds aid in the stabilization by slowing down the pendulum and preventing
it from falling over.

al(s) =


2− ϵ if Upward(s) ∧ FastNeg(s) (S.1)

−(2− ϵ) sin(θ)θT
if UpwardRight(s) ∧ Slow(s) (S.2)

−2 else

au(s) =


−2 + ϵ if Upward(s) ∧ FastPos(s) (S.1)

(−2 + ϵ) sin(θ)θT
if UpwardLeft(s) ∧ Slow(s) (S.2)

2 else

with predicates

UpwardLeft(s) = cos(θ) > 0 ∧ 0 ≤ sin(θ) < θT,

UpwardRight(s) = cos(θ) > 0 ∧ −θT < sin(θ) ≤ 0,

Upward(s) = UpwardLeft(s) ∨ UpwardRight(s),

FastNeg(s) = θ̇ < −θ̇T,
FastPos(s) = θ̇ > θ̇T,

Slow(s) = ¬FastNeg(s) ∧ ¬FastPos(s).

Enforcing state-dependent action bounds on reinforcement learning policies 19

The slowdown conditions and bounds (S.1) ensure the pendulum is slowed down
when it is approaching the upward position, while the stabilization conditions
and bounds (S.2) attempt to prevent the pendulum from falling over when it is
close to the upward equilibrium position. See the left side of Figure 7 for a visu-
alization of the state space partitioning originating from the Upward predicates.
In the conducted experiments we chose ϵ = 0.1, θT = 0.3 and θ̇T = 0.3.

Avoiding One Side For this environment we also analyze a second set of state-
dependent action bounds to show their usage in avoiding certain (e.g. unsafe)
regions in state space. More specifically, in this setup the chosen bounds push
the pendulum away from the right side9, leaving only the left side available for
swinging up the pendulum.

al(s) = max


(2− ϵ)

(
2min{−θ̇,θ̇M}

θ̇M
− 1

)
if RightTop(s) ∧ FastNeg(s) (A.1)

(2− ϵ)max{sin(θ),−θT}
θT

if RightTop(s) (A.2)

−2 else

au(s) = min


(−2 + ϵ)

(
2min{θ̇,θ̇M}

θ̇M
− 1

)
if RightBottom(s) ∧ FastPos(s) (A.1)

(−2 + ϵ)max{sin(θ),−θT}
θT

if RightBottom(s) (A.2)

2 else

with extra predicates

RightTop(s) = sin(θ) < θT ∧ cos(θ) > 0,

RightBottom(s) = sin(θ) < θT ∧ cos(θ) ≤ 0,

Right(s) = RightTop(s) ∨ RightBottom(s),

where we used the special notation min{ and max{ to denote taking the mini-
mum/maximum of any (possibly multiple) active cases. The slowdown conditions
and bounds (A.1) ensure the pendulum is slowed down when it is approaching
the right side with high velocity, while the avoidance conditions and bounds
(A.2) force the pendulum away from the right side. See the right side of Fig-
ure 7 for a visualization of the state space partitioning caused by the Right
predicates. In the conducted experiments we chose ϵ = 0.1, θT = 0.3, θ̇T = 0
and θ̇M = 6.

Results Figure 8 shows the average evaluation return under both setups. Differ-
ent SAC policies with state-dependent action bounds (using different rescaling
functions) are compared against an unconstrained SAC policy. In this relatively
simple environment there are no significant differences between the different
rescaling functions, as all policies solve the environment in less than 50000 train-
ing steps.

9 Leaving only some slack for the swing up movements, as otherwise, with too strict
bounds, the environment is unsolvable.

20 B. De Cooman et al.

Pendulum_stabilize Pendulum_avoid

Fig. 8. Average evaluation return on the Pendulum-v0 environment using the stabiliza-
tion (left) and avoidance (right) state-dependent bounds for various rescaling functions.

While the stabilizing bounds provide an initial benefit to the policies (giv-
ing higher rewards in the initial training phase), this does not lead to faster
training convergence (left plot). The constrained policies require extra training
time to figure out the effect of the state-dependent action bounds on the chosen
normalized actions. As the unconstrained SAC policy converges already very
fast in this environment, there is little benefit in aiding the stabilization process
through state-dependent action bounds.

On the right plot of Figure 8 we can also notice the slightly lower performance
of the constrained policies after convergence using the avoidance setup. Such a
drop is to be expected as we are effectively solving a harder problem. For certain
initial states, it would be faster to swing up along the right side, but this is
made impossible by the action bounds. Hence, the constrained policies take a
longer time to reach the upward position for certain initial states, which results
in a slightly lower return. The most important question under this setup is
however if the bounds actually succeeded in avoiding the right side as much as
possible. Figure 9 shows that this is indeed the case. The unconstrained policies
roughly utilize the left and right side equally, as the left state histogram is
almost symmetric about the vertical radial axis. On the other hand, the right
state histogram shows that the constrained policies only use the right side for
swing up (high velocities in the lower right quadrant) and to move away from
initial states10 (low velocities in the upper right quadrant).

B.2 Lunar Lander

The agent’s objective in the LunarLanderContinuous-v2 environment is to
safely land a lunar module within a marked landing zone on the moon’s surface
in a simplified 2D setting. The observable state of the agent s consists, among
other signals, of the lander’s downward velocity v, its orientation angle θ and

10 Initial states are not enforced to lie on the left side.

Enforcing state-dependent action bounds on reinforcement learning policies 21

Without avoidance bounds With avoidance bounds

Fig. 9. Polar histogram of the pendulum’s state space using states visited by all eval-
uation episodes at the end of training. The angular axis represents the pendulum’s
orientation angle θ, while the radial axis represents the pendulum’s angular velocity θ̇.
The left plot shows the results for an unconstrained SAC policy, while the right plot
shows the results for a constrained SAC policy, using σpwl as the rescaling function.

angular velocity θ̇. The action vector a consists of two components bounded to
the interval [−1 ; 1] (imposed by the environment). The first component handles
the main engine (at the module bottom), while the second component controls
the two side engines (at the left and right). The relative power P ∈ [0 ; 1] of each
engine is determined as follows

Pmain =

{
0 −1 ≤ a1 ≤ 0
1+a1

2 0 < a1 ≤ 1
,

Pleft =

{
0 −1 ≤ a2 ≤ 0.5

a2 0.5 < a2 ≤ 1
, Pright =

{
−a2 −1 ≤ a2 < −0.5

0 −0.5 ≤ a2 ≤ 1
.

Stabilizing Bounds The left plot in Figure 10 shows the fraction of evaluation
episodes ending either in a crash or astray (too far from the landing zone) for
an unconstrained SAC policy. As can be seen, at the start of training, most
evaluation episodes end without a correct landing on the lunar module’s legs. To
help the agent in correctly landing on its legs, stabilizing state-dependent bounds
are enforced on its actions. Similar to the pendulum environment these bounds
ensure the lunar module does not tilt too much to the left or right by activating
the appropriate side engines. Additionally, the bounds ensure the main engine
is activated when the downward velocity exceeds a certain threshold value.

The bounds on the first action component ensure the main engine is turned on
whenever the downward velocity is too large, thereby slowing down the descent.

al,1(s) =

{
ϵ if v > vT

−1 else
au,1(s) = 1

22 B. De Cooman et al.

Without stabilizing bounds With stabilizing bounds

Fig. 10. Fraction of evaluation episodes ending in a crash (excessive downward velocity
on touchdown or not landed on legs) or astray (too far away from the landing zone) for
an unconstrained SAC policy (left) and a SAC policy with stabilizing action bounds,
using σlin as the rescaling function (right).

The bounds on the second action component ensure the side engines are turned
on when the lander tilts too much to the left or right without adjusting for it,
thereby stabilizing the landing.

al,2(s) =

{
0.5 + ϵ if TiltLeft(s) ∧ ¬SpinRight(s)
−1 else

au,2(s) =

{
−0.5− ϵ if TiltRight(s) ∧ ¬SpinLeft(s)
−1 else

using predicates

TiltLeft(s) = θ > θT, TiltRight(s) = θ < −θT,
SpinLeft(s) = θ̇ > θ̇T, SpinRight(s) = θ̇ < −θ̇T.

In the conducted experiments we used ϵ = 0.01, vT = 0.2, θT = 0.2 and
θ̇T = 0.12. With these bounds in place, the resulting constrained policies have
significantly fewer evaluation episodes ending in a crash or astray (right plot in
Figure 10). The remaining job for the agent is now to steer the lunar module
towards the landing zone and prevent any remaining crashes11.

Results Figure 11 compares the average evaluation returns of different con-
strained SAC policies with an unconstrained SAC policy. Similar to the results
on the pendulum environment, the constrained policies have a head start. The

11 The chosen bounds do not guarantee a crash-free experience, but could be further
tightened if needed.

Enforcing state-dependent action bounds on reinforcement learning policies 23

Lunar lander stabilization

Fig. 11. Average evaluation return on the LunarLanderContinuous-v2 environment
using the stabilizing state-dependent bounds for various rescaling functions.

imposed state-dependent bounds prevent most of the crashes, giving higher re-
turns early on in the training process. Contrary to the pendulum results, the
extra stabilization benefit of most constrained policies does lead to a faster over-
all convergence in this case. The state-dependent bounds allow the agent to focus
on the most relevant parts of the state-action space during training and explo-
ration, instead of loosing many timesteps on the irrelevant parts that lead to
crashes. Only the hyperbolic rescaling function σhyp cannot turn its initial head
start in a faster overall convergence.

B.3 SAC Hyperparameters

The tables below show the used hyperparameters for the SAC algorithm on the
two used OpenAI gym environments. Most of these values correspond to the
tuned hyperparameters of the Stable-Baselines3 repository12, the differences are
highlighted in bold.

Table 1. Overview of the used hyperparameters for each environment. The shown
hyperparameters are: maximum timesteps per episode kM , total training timesteps
kM · TM , discount factor γ, replay buffer size |B|, learning rate (for both actor and
critic networks) η.

Environment kM kMTM γ |B| η

LunarLanderContinuous-v2 1000 5 · 105 0.99 1 · 106 7 · 10−4

Pendulum-v0 200 5 · 104 0.98 2 · 105 1 · 10−3

12 https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/sac.
yml

https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/sac.yml
https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/sac.yml

24 B. De Cooman et al.

Table 2. Overview of the used hyperparameters, common across both environments.

Common hyperparameters

Warmup timesteps 10000
Batch size B 256
Polyak averaging constant τ 5 · 10−3

Network architecture – hidden
dimensions (actor + critic)

400× 300

Entropy coefficient α
Automatic
adjustment

C Autonomous Highway Driving Environment

The results shown in Section 4 for the highway driving environment are ob-
tained using a proprietary highway simulator. In this section the most relevant
components of this simulator are briefly discussed.

C.1 Roads

All experiments were conducted on a three lane highway, shaped as a closed-
loop circuit, with both straight and curved segments. The maximum speed limit
was set to 30m/s in all lanes, although some vehicles were instructed to slightly
deviate from this limit, to get more varying situations on the road.

C.2 Vehicles

Every vehicle in the simulator follows the kinematic bicycle model (KBM) [22]
to update its state based on the selected inputs

ẋ
ẏ

ψ̇
v̇

 =


v cos (ψ + β)
v sin (ψ + β)

v
lr
sinβ
a

cos β

 β = arctan

(
lr

lf + lr
tan δ

)
.

The vehicle’s local state vector consists of an absolute x and y position, a head-
ing angle ψ and velocity v. The vehicle can be controlled through its inputs,
consisting of a steering angle δ and a longitudinal acceleration a. To make the
control task of the virtual driver (agent) easier, extra vehicle motion controllers
are used to stabilize the vehicle on the road, allowing the agent to select high-
level steering actions a, consisting of a desired longitudinal velocity vref and
desired lateral position dref , to solve the driving task. To take correct high level
steering decisions, the virtual driver needs some extra information about other
traffic participants in its neighbourhood. This information is gathered in the
agent’s observation vector s, containing local information such as the vehicle’s
offset w.r.t. different lane centers and its velocity components; and relative in-
formation such as relative distances and velocities w.r.t. neighbouring traffic.

Enforcing state-dependent action bounds on reinforcement learning policies 25

C.3 Policies

Every vehicle is controlled by a policy, mapping observations s to suitable high-
level actions a. The policy of the autonomous vehicle is learned using any of
the described reinforcement learning methods in this paper. The policies of the
other vehicles in the simulation environment are fixed beforehand. A mixture of
vehicles equipped with a custom rule-based policy and a policy implementing the
‘Intelligent Driver Model’ (IDM) [26] and ‘Minimizing Overall Braking Induced
by Lane change’ (MOBIL) [17] is used. Both policies try to mimic rudimentary
human driving behaviour, although being fully deterministic.

C.4 Reward

The used reward signal is calculated as a weighted sum of different penalties

r =
wfrf + wvrv + wcrc + wrrr

wf + wv + wc + wr
.

The first ‘frontal’ component rf gives a penalty whenever the following distance
to the leading vehicle is smaller than a predefined threshold. The ‘velocity’ com-
ponent rv gives a penalty whenever the virtual driver is not travelling at or near
the maximum allowed speed. The third ‘center’ component rc gives a penalty
whenever the vehicle is not travelling central in the lane. To force the virtual
driver to keep right whenever possible, the ‘right’ penalty rr is given whenever
there is a free lane to the right available. Finally, an extra penalty is given when
the virtual driver collides with other vehicles or the highway boundaries.

C.5 Action Bounds

In this environment, the state-dependent action bounds are used to avoid poten-
tially unsafe regions in state-action space. To determine the bounds, following
braking criterion is used

min

(
∆x,∆x+

v2L
2b

− v2F
2b

)
> ∆xSAFE, (4)

where∆x is the following distance between 2 vehicles, vL and vF are the velocities
of the leading and following vehicle respectively, b is the maximum deceleration
of both vehicles and ∆xSAFE is a minimum safe distance to keep between both
vehicles. For simplicity we assume following vehicles can react instantly (no de-
lay) to changing behaviour of the leading vehicle and the maximum deceleration
b is assumed to be the same for both leading and following vehicles. Comply-
ing with the braking criterion then ensures the following vehicle is always able
to avoid a crash with the leading vehicle, even in case of an emergency brake
(braking with maximum deceleration b until standstill).

The upper bound for the longitudinal reference velocity can be derived from
(4) as

vu =
√
v2L + 2b(∆x−∆xSAFE).

26 B. De Cooman et al.

This expression is evaluated for all visible13 leading vehicles having a lateral
overlap with the virtual driver (Figure 12.a). The lowest encountered value for
vu is then taken as the final velocity upper bound.

For the bounds on the lateral reference position, let us first consider the
set of safe lateral intervals DSAFE = {[dl ; dr] ⊂ [dleft ; dright] | ∀d ∈ [dl ; dr] :
(4) holds} where dleft and dright denote the lateral distance to the left and right
road boundary respectively. The braking criterion is evaluated for all visible13

vehicles having some overlap with lateral position d, with the virtual driver
as leading or following vehicle depending on the other vehicle’s longitudinal
position with respect to the virtual driver. The bounds for the lateral reference
position, are then constructed such that [dl ; du] ∈ DSAFE is the nearest (with
respect to the virtual driver’s current lateral position) and largest safe interval
(Figure 12.b).

(a) (b)

Fig. 12. Illustration of safe action bound determination on highways using the braking
criterion (4). The yellow car is driven by the virtual driver; the gray cars are not
considered for determining the safe action range; and the red cars are the limiting
entities, responsible for the lowest velocity upper bound or tightest lateral action range.
The arrows indicate the relative velocity of each car with respect to the virtual driver’s
velocity. The left side (a) illustrates the determination of the longitudinal velocity upper
bound, by evaluating the braking criterion for all leading vehicles with lateral overlap
(green area). The right side (b) illustrates the determination of the safe lateral interval,
by evaluating the braking criterion for each visible car. The green lines indicate the
resulting safe action range: allowing the virtual driver to move towards the left lane
— as the only vehicle there is quickly moving away from the virtual driver — but
preventing movement towards the right lane — as this lane is occupied by the slower
red vehicle.

13 Visible means part of the state vector in this context.

	Enforcing Hard State-Dependent Action Bounds on Deep Reinforcement Learning Policies

