
Improving temporal smoothness of deterministic
reinforcement learning policies with continuous

actions

Bram De Cooman1[0000−0003−4843−3342], Johan Suykens1[0000−0002−8846−6352],
and Andreas Ortseifen2[0000−0002−2555−4515]

1 KU Leuven, ESAT - STADIUS, Leuven, Belgium
{bram.decooman,johan.suykens}@esat.kuleuven.be

2 Ford Research & Innovation Center, Aachen, Germany
aortseif@ford.com

Abstract. A commonly observed weakness of deterministic reinforce-
ment learning policies with continuous action spaces, such as those ob-
tained after training with the DDPG or TD3 methods, is the tempo-
ral roughness of their output signals (chosen actions). This is a serious
deterrent for real-life application of such policies in continuous control
tasks. For instance, in autonomous driving the rate of change of lateral
acceleration is typically restricted to ensure passenger safety and com-
fort. Therefore, we propose a set of modified TD3 algorithms to improve
the temporal smoothness of the trained agent’s chosen actions. These
smoothed TD3 (STD3) algorithms can be applied to smoothen poli-
cies; either in a post-processing training phase, or from the very start
of training in an attempt to reduce the roughness cost (constraint) to
an acceptable level throughout training. The proposed methodology is
applied to some well-known benchmark environments, as well as to a
more complex autonomous driving problem. Results show a consistent
reduction of roughness without significant performance deterioration.

Keywords: Smooth Control · Reinforcement Learning · Deterministic
Policies · Autonomous Driving.

1 Introduction

The usage of deterministic policies with continuous action spaces can lead to
very oscillatory system behavior (see Figure 2). Such behavior is typically char-
acterized by control signals with large, altering gradients in the time domain and
high frequency components in the frequency domain. Although not as much of a
problem in virtual simulations, this can severely impact the applicability of the
learned policies in the real world, where such jerky control signals might wear
down or damage critical components.

Mitigation. For simple or purely virtual environments such roughness issues
could be dealt with using mitigation strategies. One option is to redefine the

2 B. De Cooman et al.

action space and switch to derivative control of the system [4, 23, 17]. This way,
the rough derivative actions will be smoothed out by the extra integrators in
the environment’s dynamics. Alternatively, the rough action signals could be
low-pass filtered, effectively damping high frequency oscillations [8]. Another
commonly used mitigation strategy in reinforcement learning consists of adding
a roughness penalty in the reward signal [4, 23, 15], making it beneficial for
the agent to select actions that do not change too much from one timestep to
the next. While such techniques may work on relatively simple environments,
they quickly become cumbersome in more realistic setups. In this paper, we
try to tackle the roughness problem at its core, by embedding the smoothness
constraints into the training process, leading to a set of smoothed TD3 (STD3)
algorithms. These algorithms lead to smoother policies and simpler models (no
unnecessary integrators and filters, less convoluted reward signals), allowing the
designer to focus more on prime objectives instead.

Smooth exploration. Smoothness issues with neural network outputs have
been addressed before [6] to increase the network’s generalization capabilities. A
recent overview of existing smoothing techniques for neural networks and their
advantages is given by Rosca et al. [16]. In optimal control, the requirement
of smooth control signals has been dealt with, e.g. under the form of slew rate
constraints. It is thus surprising that such techniques have been rarely applied
to the reinforcement learning domain. Initial attempts mostly focused on the
smoothness of the exploratory policy during training. Lillicrap et al. [11] sug-
gested the usage of autocorrelated Ornstein-Uhlenbeck noise to guarantee proper
exploration of the state-action space when working with deterministic policies.
Under small time discretizations, the rough uncorrelated Gaussian noise samples
could cancel each other out, leading to insufficient exploration and suboptimal
learned policies. Raffin et al. [14] presented generalized state-dependent explo-
ration (gSDE) as another solution for the non-smoothness of Gaussian noise
samples. By making the noise function state-dependent through a linear com-
bination of policy features and fixing the linear weights for a given amount of
training steps, the smoothness of the behavioural policy is drastically improved.
The prime focus of such techniques lies on the smoothness of policies during
training and exploration, while our focus in this paper lies on the smoothness
of the learned policies during evaluation or deployment. Hence these methods
could be seen as an orthogonal approach and could be readily combined with
our proposed smoothed TD3 variants to improve the overall smoothness, during
both training and evaluation.

Regularization. The usage of output regularization, in combination with deriva-
tive control, has been investigated by Chisari et al. [4]. By forcing the action rates
to remain small, the integrated actions that are passed to the environment’s dy-
namics remain smooth. Recently, Mysore et al. [12] introduced ‘Conditioning
for Action Policy Smoothness’ (CAPS), a method to improve temporal and spa-
tial smoothness of policies through the addition of two regularization terms on

Improving temporal smoothness of reinforcement learning policies 3

the policy network. This smoothness regularization is also leveraged by our pro-
posed STD3 methods, albeit in a more generic setting. In fact, the temporal
smoothness regularization of CAPS corresponds to the specific STD3C,fix vari-
ant, introduced here. Spatial smoothness is not further considered in this work,
but could also be accounted for using an extra regularization term and a dedi-
cated spatial smoothing schedule.

This paper is organized as follows. In Section 2 the required reinforcement
learning (RL) preliminaries are described, followed by a short motivational exam-
ple in Section 3 to highlight the importance of additional smoothness constraints.
Section 4 proceeds by introducing the different smoothed TD3 variants, used to
improve the learned policy’s temporal smoothness. Finally, the different vari-
ants are evaluated and compared on different environments in Section 5. These
experiments show the great potential of the added smoothness constraints, as
they not only drastically improve the policy’s smoothness, but also outperform
standard TD3 policies on a majority of the investigated environments.

2 Reinforcement Learning

In model-free Reinforcement Learning (RL) the objective is to find an optimal
controller (policy) for an entity (agent) acting under a-priori unknown system
dynamics (an unknown environment). At any given point in time t, the agent
has access to the current state st ∈ S of the environment; or an observation of
this state if the system is only partially observable. The controller then maps
these states st to suitable actions at ∈ A and is often referred to as the agent’s
policy. The execution of an action, will bring the agent to a new state st+1

— following the system dynamics — after which the same procedure can be
repeated. To improve its policy, the agent has one extra source of information
available: the reward signal r(st,at, st+1) which describes how favourable it
was to select action at while being in state st and transitioning to state st+1.
The optimal controller is thus the one which maximizes the agent’s long term
accumulated reward.

More formally, the RL problem can be described as the Markov Decision
Process (MDP) (S,A, σ0, τ, r, γ) with state space S ⊂ RS , action space A ⊂
RA, initial-state distribution σ0(s0) : S → [0 ; 1], state-transition distribution
τ(st+1|st,at) : S ×S ×A → [0 ; 1], reward signal r(st,at, st+1) : S ×A×S → R
and discount factor γ ∈ [0 ; 1). Note that the stochastic environment dynamics
τ, σ0 are modelled as a probability distribution but remain unknown to the agent.
Usually, the agent’s policy is also modelled through a probability distribution
π(at|st) from which suitable actions can be sampled at every timestep. The
special case of deterministic policies can also be considered at = π(st). Learning
the optimal policy π∗ under such a framework then corresponds to finding the

4 B. De Cooman et al.

policy maximizing the agent’s future discounted return Rt at every timestep

Rt =

∞∑
k=0

γkr(st+k,at+k, st+k+1),

π∗ = arg max
π

Eπ,τ,σ0 [R0] . (1)

The notation Eπ,τ,σ0
is used to denote an expectancy taken over the probability

distribution of actions at ∼ π(·|st), induced by the policy, and over the prob-
ability distribution of states s0 ∼ σ0(·) and st+1 ∼ τ(·|st,at), induced by the
environment. Although some RL methods try to directly search for the opti-
mal policy using the objective (1), it is often useful to use (an estimate of) the
policy’s action-value function Qπ(s,a) for extra guidance

Qπ(s,a) = Eπ,τ [Rt|st = s,at = a] .

This action-value function satisfies following recursive relationship, known as the
Bellman equation

Qπ(s,a) = Eπ,τ [r(st,at, st+1) + γQπ(st+1,at+1)|st = s,at = a].

A more extensive introduction to the domain of reinforcement learning is
given by Sutton & Barto [21]. In this paper we will further limit the discussion to
deterministic, off-policy, actor-critic methods, such as ‘Deep Deterministic Pol-
icy Gradient’ (DDPG) [11] and ‘Twin Delayed DDPG’ (TD3) [5]. These meth-
ods consist of two major components: the actor network µ(s;θµ) modelling the
deterministic policy (state-action mapping) and the critic network Q(s,a;θQ)
estimating the optimal state-action value function. Both components are jointly
updated, improving one another as training progresses, using experience col-
lected while the agent is interacting with the environment during training. As a
deterministic policy maps the same state always to the same action, an exter-
nal source of stochasticity is often required in order to sufficiently explore the
state-action space. Hence, the behavioural policy β(s) = µ(s;θµ)+ε with explo-
ration noise ε ∼ N(0,σexpl) is used to collect experience during training instead
of the deterministic policy modelled through the actor, making these methods
off-policy. The collected experience tuples (st,at, rt, st+1) are first stored in a
replay buffer B. In a second step, uniformly sampled batches of experience tuples
from this buffer are used to update the actor and critic networks.

The critic network is updated by minimizing a squared temporal difference
error3

LQ(θQ) = E(st,at,rt,st+1)∼B

[
(Q(st,at;θQ)− yt)2

]
,

yt = rt + γQ(st+1, µ(st+1;θ′µ);θ′Q),

3 For TD3 extra twin networks are introduced to avoid overestimation bias and an
extra noise term is added to the target policy’s actions to smoothen the value esti-
mate [5].

Improving temporal smoothness of reinforcement learning policies 5

where the primes on the weight vectors denote the usage of target networks to
improve the stability of the learning process. The actor network is updated by
minimizing the actor loss

Lµ(θµ) = −Est∼B [Q(st, µ(st;θµ);θQ)] , (2)

leading to an approximation of the deterministic policy gradient [19]

∇θµJ ≈ Est∼B
[
∇θµµ(s;θµ)|s=st∇aQ(s,a;θQ)|s=st,a=µ(st;θµ)

]
.

3 Motivation

As a first, motivational example, the task of learning a simple overtaking ma-
noeuvre on a three-lane highway is considered (Figure 1). At the start of each
episode, the virtual driver (agent) is positioned in the rightmost lane behind
a slower lead vehicle, travelling at a constant velocity. The virtual driver can
perceive its current velocity components, the relative lateral offset w.r.t. its cur-
rent lane center and the lanes directly to the left and right, and the relative
offset and velocity components w.r.t. the car to overtake. The action space is
two-dimensional, consisting of a longitudinal reference velocity and lateral refer-
ence offset (which are tracked by lower-level controllers). The reward r(st) is a
weighted sum of two components 0.75rV + 0.25rR. Where rV is a penalty given
when traveling at low velocities — thus rewarding policies which overtake the
slow vehicle instead of staying behind it — and rR is a penalty given when not
driving in the rightmost lane (to obtain policies following common rules of the
road). More details on the simulation environment and definitions of states and
reward signals can be found in Appendix A.

Five policies (each initialized with a different seed) are learned in this en-
vironment using the TD3 method [5]. While each of them is able to correctly
overtake the slow vehicle, therefore maximizing their long-term reward, only two
of them do so in a smooth way. The others suffer from high-frequency oscilla-
tions in their lateral reference signals, severely impacting passenger comfort as

𝑥

𝑦

𝑣 = 21 Τ𝑚 𝑠𝑣0 = 25 Τ𝑚 𝑠 ∆𝑥0= 200𝑚

Fig. 1. Schematic overview of the motivational overtaking environment. The virtual
driver (agent) is in control of the yellow vehicle and has to overtake the slower moving
blue vehicle in front of it.

6 B. De Cooman et al.

Fig. 2. Lateral reference offset of two policies trained for 250 episodes (with 600
timesteps) on the motivational overtaking environment. The blue line corresponds to
the policy trained using the vanilla TD3 method, the orange line corresponds to the
policy trained using the smoothed STD3S,lin variant (after 50 episodes of smoothing).
While both policies correctly learn the overtaking manoeuvre (around 15 − 25s), the
rough reference changes of the TD3 policy prevent its usage in real vehicles.

illustrated in Figure 2. The occurrence of these oscillations throughout training
is also quite volatile, as they seem to vanish and reappear within a few training
episodes.

For simple environments, such smoothness problems could be dealt with by
incorporating extra penalties in the reward signal and/or the usage of derivative
control (see Section 1). However, this becomes increasingly more difficult for
problems with more complex reward functions or state representations. Without
proper care, the resulting policies could take a significant performance hit, as
compared to their unconstrained counterparts (see discussion in Section 5.3 and
Figure 6). The proposed smoothed TD3 variants in this work are more easily
applicable and have higher robustness to such problems.

4 Methodology

To improve the smoothness of the learned policies, different smoothed TD3
(STD3) variants are introduced in the following subsections. First, a brief overview
of the used roughness metrics is given.

4.1 Roughness metrics

Different metrics of smoothness or roughness of a curve or control signal exist:

– The integral of the second-order time-derivatives (or its approximation us-
ing sums and finite differences for discrete signals), as commonly used in
smoothing spline applications [7].

Improving temporal smoothness of reinforcement learning policies 7

– A metric defined over the frequency spectrum of the time signal, obtained
after a Fourier transform, typically used in signal processing [6, 12].

– The average squared temporal difference of consecutive samples [14].

In the context of this paper, we use the third metric and calculate the average
roughness of a discrete time signal xk, 0 ≤ k ≤ kM as

ρ̄ =
1

kM

kM∑
k=1

ρ(xk−1,xk). (3)

The immediate roughness of the signal is then defined as

ρ(x0,x1) = ‖x0 − x1‖2P = (x0 − x1)>P (x0 − x1), (4)

where P is a positive definite matrix that can be used to put more or less weight
on certain signal components.

Equation (3) can be further generalized to time signals originating from sam-
pling actions from a policy π under an MDP with finite episode length kM . For
the specific case of calculating the average roughness of the sampled actions we
have

ρ̄π = Eπ,τ,σ0

[
1

kM

kM∑
t=1

ρ(at−1,at)

]
. (5)

Different ways to approximate this expectancy will be given in the next sub-
section. Beside being a simple metric to calculate, this definition of roughness
will turn out to be advantageous when combined with model-free reinforcement
learning schemes.

Notice that taking P = I gives the unscaled roughness, using the Euclidean
norm of the action difference. Another commonly used choice for P throughout
this paper is the diagonal matrix with elements pi,i = ∆a−2

i where ∆ai is the
maximum absolute difference between the i-th component of two actions. This
gives rise to the immediate normalized roughness ρnorm, which is less impacted
by action components with a larger range of possible values (i.e. with a higher
∆ai).

4.2 Smoothed TD3

We propose to modify the actor loss (2) by adding an extra weighted smooth-
ness term, following existing smoothness regularization techniques for neural
networks [6]. In this case, the smoothness term approximates the average rough-
ness of the policy

Rsmooth ≈ ρ̄π.

The actor weights are then updated by minimizing the total loss

Lµ,smooth = Lµ + λsRsmooth. (6)

8 B. De Cooman et al.

Actor

Smoothness
constraint

𝑟

𝑎

𝑠
𝑟𝑆

𝐿𝜇

Env.

𝑅𝑠𝑚𝑜𝑜𝑡ℎ

Performance
objective

Smoothness
constraint

Critic

Fig. 3. Schematic overview comparing the information flow of the applied smoothness
constraints using reward penalties (orange) and actor regularization (yellow). With
reward penalties, the information flow is indirect, i.e. it is first used to update the
critic model and this updated critic model is then used to update the actor model. With
regularization, the information flow is directly acting on the actor model, interfacing
with the environment.

This effectively forces the actor network to not only optimize the expected dis-
counted value, but also to force its outputs corresponding to consecutive states
(st and st+1) to be similar in the chosen roughness norm (4).

Figure 3 provides a schematic overview showing the major difference be-
tween smoothness constraints imposed through the reward and those imposed
through actor regularization. Notice the indirect application of the smoothness
constraints on the actor model, through the critic model, when using the re-
ward signal. As a consequence, the actor model can not be smoothed properly
whenever the critic is not able to accurately capture the underlying smoothness
constraints. In fact, as the critic is only an approximation of the optimal value
function, there is no guarantee that the critic is able to capture this relationship
at all. In practice this means many experience samples are required in order for
the critic to discover the complex relationship between states, actions and accu-
mulated returns — encoding both the performance objective and the smoothness
constraints — without any certainty of success. Hence, while such an indirect in-
formation flow works reasonably well for complex functions of states and actions,
such as the performance objective (1), it is needlessly complex for the applied
smoothness constraints, which only depend on consecutive transitions in state-
action space. In contrast, when using the regularization term, the smoothness
constraints are applied directly on the actor model, without any intermediate
approximation step. Moreover, in the calculation of the regularization term we
can explicitly utilize the tight temporal connection in state-action space of the
smoothness constraints, leading to a more sample-efficient smoothing effect.

The introduced hyperparameter λs ≥ 0 in (6) can be tuned to trade-off
performance and smoothness objectives. Low values will result in policies op-
timizing their future rewards, but they might be non-smooth (see the example
of Section 3). High values will result in smooth policies, but might not always
achieve a good performance. Remark that the effective amount of smoothing
also depends on the definition of the reward signal. After all, the smoothness

Improving temporal smoothness of reinforcement learning policies 9

weight λs balances the regularization term Rsmooth relatively against the actor
loss Lµ (6), which is proportional to the average Q-value (2). Hence, the same
value of λs will have less smoothing impact on environments with larger rewards
(in absolute value), leading to Q-values and actor loss values with higher order
of magnitude, effectively suppressing the smoothness regularization term. For
this reason, it is recommended to normalize the reward signal, prior to storing it
in the replay buffer. Then, bounds on the Lµ term can be calculated and traded
off against the maximum value of Rsmooth, which is bounded by maxi,j ρ(ai,aj).
Such reward normalization is also applied in the conducted experiments of Sec-
tion 5 and shows the improved robustness of the smoothness weight parameter:
a single λs value leading to acceptable policy smoothing across varying environ-
ments.

Different approximations of the used roughness metric ρ̄π (5) and different
schedules for the smoothness weight λs lead to different STD3 variants. In the
remainder of this subsection, these different variants will be introduced. Remark
that the specific combination STD3C,fix corresponds to the temporal smoothness
regularization term of the CAPS method presented by Mysore et al. [12].

Roughness approximation The expectancy in (5) can be approximated in
different ways, leading to two STD3 variants introduced below. Both approxi-
mations can reuse the same batch of sampled experience from the replay buffer
B, used to calculate (2). Hence, the extra smoothness regularization term can
be easily plugged into existing training loops of off-policy actor-critic methods
such as DDPG, TD3, Proximal Policy Optimization (PPO) [18] and Soft Actor
Critic (SAC) [9].

The first supervised smoothing (STD3S,•) variant uses the current action at,
as sampled from the replay buffer, and the next action ãt+1 = µ(st+1;θµ), as
given by the policy for the next state st+1, in the regularizer calculation

Rsmooth(θµ) = E(at,st+1)∼B [ρ(at, µ(st+1;θµ))] .

The name ‘supervised’ stems from the fact that the resulting smoothness regu-
larizer forces actor network outputs to be similar to given targets (the sampled
at actions from the replay buffer) in the chosen roughness norm (4), analogous
to the classical supervised learning setting.

The second contrastive smoothing (STD3C,•) variant uses the current action
ãt = µ(st;θµ) and next action ãt+1 = µ(st+1;θµ), both as given by the policy
for the current and next states, in the regularizer calculation

Rsmooth(θµ) = E(st,st+1)∼B [ρ(µ(st;θµ), µ(st+1;θµ))] .

In this case the name ‘contrastive’ stems from the fact that two outputs from
the same actor network are forced to be similar in the chosen roughness norm
(4), comparable to the contrastive learning setting. Remark that the calculation
of ãt = µ(st;θµ) and the corresponding forward and backward pass through the
actor network are already performed for the calculation of the actor loss Lµ (2).

10 B. De Cooman et al.

Timestep 𝑡 + 1Timestep 𝑡

𝑠𝑡

𝑠𝑡+1

ǁ𝑠𝑡+1

𝑎𝑡~𝛽(∙, 𝑠𝑡)

𝑎𝑡 = 𝜇(𝑠𝑡)

Timestep 𝑡 + 2

ǁ𝑠𝑡+2

𝑎𝑡+1 = 𝜇(𝑠𝑡+1)

Fig. 4. Comparison of supervised and contrastive smoothing approximations. In blue
are the states and actions present in the replay buffer B. In green are the actions
calculated during evaluation of the smoothness regularizer. For supervised smooth-
ing, ρ(at, ãt+1) is used for the immediate roughness approximation. For contrastive
smoothing, ρ(ãt, ãt+1) is used instead.

Hence, there is no significant computational overhead for using the contrastive
variant, as compared to the supervised variant.

Notice that only a single (at, st+1) or (st, st+1) experience sample is needed
to already start improving the smoothness of the actor model for the sampled
state transition. As previously mentioned this is more sample-efficient than the
usage of smoothness penalties in the reward, which require multiple experience
samples to uncover the underlying smoothness goal.

A comparison of the used state and action information by both variants is
shown in Figure 4. The supervised variant has the strongest temporal connection
between the consecutive actions at and ãt+1 used in the regularizer calculation.
More precisely, it is guaranteed that taking action at in state st can lead to state
st+1, where the current deterministic policy will take action ãt+1. Hence, forcing
the actor output µ(st+1;θµ) to be similar to at in the chosen roughness norm,
will indeed improve the temporal smoothness of the policy. For the contrastive
variant there is no such strong temporal connection, as taking action ãt in state
st does not necessarily lead to state st+1. This discrepancy (between states st+1

and s̃t+1) will however diminish as training goes on and the behavioural policy
β becomes more similar to the deterministic policy µ.

Smoothing schedules A smoothing schedule is a function λs(f) : [0 ; 1] →
[λs,m ;λs,M] mapping the current training progress f = T

TM
to a value for the

smoothing weight λs, where the current training episode is denoted by T and the
total amount of training episodes by TM . All considered schedules are bounded,
i.e., 0 ≤ λs,m ≤ λs(f) ≤ λs,M ∀f ∈ [0 ; 1].

The most straightforward STD3•,fix variant keeps the smoothness weight λs
fixed during the whole training process. The smoothness weight then becomes
another hyperparameter to tune, depending on the complexity of the environ-

Improving temporal smoothness of reinforcement learning policies 11

ment and desired amount of policy smoothing

λs(f) = λs = λs,m = λs,M ∀f ∈ [0 ; 1].

On difficult environments, it can be hard to find good smoothness weight val-
ues under the fixed scheme. Extra smoothing constraints too early in the train-
ing process can hamper the optimization process, leading to suboptimal learned
policies. The second STD3•,lin variant tries to resolve this issue by splitting the
training process in two phases: an initial phase from f = 0 to f = fp1 < 1, fol-
lowed by a second phase until f = 1. In the first training phase λs remains equal
to λs,m = 0, allowing the agent to maximally optimize the policy’s performance
without any smoothness constraints. Hence, during this phase, there is no differ-
ence between the smoothed and raw TD3 method. In the second training phase,
after a reasonably good policy has been found, the smoothness constraints are
gradually introduced by linearly increasing λs as training progresses (until the
end of training). The resulting schedule effectively ‘smoothens out’ the policies
obtained after the first training phase

λs(f) =

0 0 ≤ f ≤ fp1 (Phase 1)

λs,M
f − fp1
1− fp1

fp1 < f ≤ 1 (Phase 2)
.

In practice, the determination of fp1 — the end of phase 1 — might require
some trial-and-error experiments. Moreover, it might not always be necessary to
maximally reduce the policy’s roughness at the potential cost of a reduced perfor-
mance. For some applications, keeping the roughness below a certain threshold
may satisfy all real-world requirements on smoothness. The last STD3•,adapt

variant addresses both issues, by automatically putting more weight on smooth-
ing or value optimization depending on a current roughness estimate ρ̃π. This
roughness estimate tries to approximate ρ̄π (5) by averaging the measured aver-
age roughness (3) over E evaluation episodes (i.e. using the deterministic policy
a = µ(s;θµ) without exploration noise)

ρ̃π =
1

E

E∑
e=1

1

Ne

Ne∑
t=1

ρ(aet−1,a
e
t), (7)

where the superscript on the actions denotes the specific evaluation episode
in which they occurred. This estimate is then reevaluated every Te training
episodes, keeping the smoothness weight constant in between the evaluations

λs(f) = λs,k ∀f : kTe ≤ fTM < (k + 1)Te,

λs,0 ∈ [λs,m ;λs,M],

λs,k+1 =

max{λs,m, s−λs,k} ρ̃π < ρm

λs,k ρ̃π ∈ [ρm ; ρM]

min{λs,M , s+λs,k} ρ̃π > ρM

.

12 B. De Cooman et al.

The resulting smoothing schedule is piecewise constant and adapts the amount
of smoothing throughout training, based on the specific needs. More precisely,
in case the roughness estimate lies above a predefined upper threshold ρM , more
weight is put on the policy smoothing for the next Te training episodes — through
multiplication of λs by s+ > 1. Similarly, in case the roughness estimate lies
below a predefined lower threshold ρm, more weight is put (again) on policy
optimization for the next Te training episodes — through multiplication of λs
by s− ∈ (0 ; 1).

This last variant could be seen as an ad-hoc strategy to find an approximate
solution of the constrained MDP (CMDP)

π∗ = arg max
π

Eπ,τ,σ0
[R0]

s.t. ρ̄π ≤ ρM .

Here, the focus is not to maximally reduce the roughness of the obtained poli-
cies (as is the case for the first two smoothing schedules), but rather to reduce
the roughness of the policies to an acceptable level determined by the specified
roughness thresholds. In optimal control, such a constraint is also referred to as
a slew rate constraint.

5 Experimental results

Three different experiments were conducted to compare the different smoothed
TD3 variants across different environments of varying complexity. The training
and evaluation procedures are briefly described first.

For every hyperparameter configuration, the experiment is repeated five
times, using five different seeds for initialization. After every Te training episodes
or ke training timesteps, E independent evaluation episodes are executed to get
an estimate of the learned policy’s average performance R̃π and roughness ρ̃π
(7)

R̃π =
1

E

E∑
e=1

1

Ne

Ne∑
t=1

r(set−1,a
e
t−1, s

e
t).

To summarize these average evaluation metrics and make a comparison between
different settings easier, only evaluation metrics of the best B episodes, occurring
in the last TB episodes of the training process4 are retained. Note that the best B
episodes are determined based on the average evaluation performance R̃π only.
Combined with the five independent repeats of each experiment, this leads to 5B
datapoints, from which comparison statistics are calculated (e.g. a mean value
and standard deviation).

4 This is to guarantee proper convergence of both the performance and smoothness
objective on every environment.

Improving temporal smoothness of reinforcement learning policies 13

5.1 Highway overtaking

As the first experiment, let us quickly revisit the motivational example of Sec-
tion 3, where the goal was to learn a policy that can overtake a slow vehicle
in the rightmost lane of a highway (Figure 1). First, five policies (initialized
using different seeds) were trained using the TD3 method without smoothness
constraints. Afterwards, five policies (reusing the same five seeds) were trained
using the STD3S,lin method to smoothen out the previously obtained policies
after an initial 200 training episodes (fp1 = 2/3). While almost all TD3 policies
suffered from jerky actions throughout training, the smoothness has improved
a lot for the STD3 policies. Only one policy still had some oscillatory reference
actions after smoothing, but for only a fraction of the time as compared to the
unsmoothed policies. Figure 2 shows an evaluation episode of one of the five poli-
cies after 250 training episodes (i.e. after 50 smoothing episodes for the STD3
policy).

5.2 OpenAI benchmarks

In this second experiment, the different STD3 variants will be compared against
each other (and the standard TD3 method) on 10 commonly used OpenAI gym
environments5. We use a customized version of the latest Stable-Baselines im-
plementation6 to perform these experiments. Their tuned hyperparameters for
the TD3 algorithm are reused with a few exceptions for some environments re-
quiring a longer training time. A summary of the used hyperparameters and full
environment names can be found in Appendix B. The used smoothness param-
eters are summarized in Table 1. Notice that for the fixed and linear smoothing
schedule, the same parameters could be reused across all environments. This was
possible due to the normalization of states and rewards, prior to storage in the
replay buffer, and shows the robustness of these smoothness parameters. For the
adaptive smoothing schedule, the extra imposed smoothness constraint was set
as to reduce the roughness of the policies by half, as compared to standard TD3.
More precisely, we put the maximum threshold ρM equal to approximately half
the roughness of policies obtained using default TD3. The minimum threshold
was set to roughly 90% of the maximum threshold’s value.

The training and evaluation procedure outlined at the beginning of this sec-
tion was followed using five independent repeats with E = 5 evaluation episodes
every ke = 5000 training timesteps. Evaluation metrics of the five best episodes
occurring in the last 20% of the training process were used to make the compari-
son between different configurations (B = 5, TB = 0.2TM). The mean values and
standard deviations for the performance and roughness metrics are summarized
in Table 2.

In general, all investigated STD3 variants significantly improve the policy
smoothness. However, some do so at the cost of a reduced performance. For ex-
ample, the STD3S,fix method consistently leads to the smoothest policies, but

5 https://gym.openai.com
6 https://github.com/DLR-RM/stable-baselines3

https://gym.openai.com
https://github.com/DLR-RM/stable-baselines3

14 B. De Cooman et al.

Table 1. Smoothness parameters for the different environments. The normalized
roughness norm ρnorm was used for both the regularizer calculation Rsmooth and rough-
ness estimation ρ̃π. The remaining parameters for the adaptive variant were set as
follows for every environment: λs,0 = 1 · 10−4, λs,m = 1 · 10−6, λs,M = 1.

Environment STD3•,fix STD3•,lin STD3•,adapt

λs fp1 λs,M ρm ρM

Ant 0.2 0.6 0.4 0.36 0.4

Bipedal 0.2 0.6 0.4 0.16 0.18

Hopper 0.2 0.6 0.4 0.04 0.05

IDP 0.2 0.6 0.4 0.08 0.09

IPS 0.2 0.6 0.4 0.08 0.1

Lunar 0.2 0.6 0.4 0.18 0.2

Minitaur 0.2 0.6 0.4 0.36 0.4

MCC 0.2 0.6 0.4 0.004 0.005

Pendulum 0.2 0.6 0.4 0.08 0.1

Walker 0.2 0.6 0.4 0.16 0.18

often not to the best performing ones. The reverse situation is also observable
for the STD3C,fix method: this method leads to the best performing policies,
but other methods can typically reduce the roughness slightly more. It should
be noted however that results lie close together for some environments. Further-
more, the addition of extra smoothness constraints does not always lead to a
reduction in performance. On five environments the best performing TD3 poli-
cies are outperformed by an STD3 variant. In particular, the STD3C,lin method
seems to find the best balance between performance and smoothness, as it leads
most often (on five environments) to both the best performing and smoothest
policies.

It might not always be required to obtain the absolute best performing or
smoothest policy though. Depending on the performance-smoothness trade-off
acceptable for a given application, the best STD3 variant can be selected. The
maximum flexibility in defining the desired smoothing behaviour is obtained
using the adaptive smoothing schedules. As can be seen from Table 2, reducing
the roughness by 50% seems to succeed in at least 6 different environments. This
comes without large performance costs, as we still obtain best performing policies
in half of the environments. The adaptive smoothing schedules seem to have the
most difficulty on environments where the best performing TD3 policies have
a high smoothness variability (high roughness variance in Table 2). A possible
explanation for this behaviour is the observed abrupt vanishing and reappearance
of rough actions throughout training. This might lower the smoothness weight,
even though the policies are still ‘vulnerable’ to emerging jerky actions. One
possible solution for this, is the usage of an exponential moving average for the
roughness estimate, instead of recalculating it from scratch every evaluation. In

Improving temporal smoothness of reinforcement learning policies 15

Table 2. Benchmark results of the different STD3 variants. All values are relative
changes with respect to the mean value obtained by the TD3 algorithm. The best
performing policies (top) and smoothest policies (bottom) are highlighted in bold. The
bottom row summarizes the data, denoting the number of environments for which both
the best performing policy and smoothest policy was obtained using the given method.
For the adaptive variants, the number in parentheses is the amount of environments for
which the best performing policy was obtained, under the given smoothness constraint.

Environ Average return (↑) [%]
ment TD3 STD3S,fix STD3S,lin STD3S,adapt STD3C,fix STD3C,lin STD3C,adapt

Ant 0.00 ± 4.92 −21.87± 5.33 −11.47± 7.29 −20.26± 38.03 −4.00 ± 8.68 −1.62 ± 6.29 −1.19 ± 3.62
Bipedal 0.00± 0.88 −3.45± 1.02 −0.24± 1.24 −0.09± 2.09 2.95 ± 0.61 2.99 ± 0.56 1.74± 0.39
Hopper 0.00± 4.18 −4.92± 5.76 −0.86± 4.47 −2.25± 3.50 9.70 ± 2.60 −2.48± 4.11 2.72± 5.74
IDP 0.00 ± 0.02 −0.06± 0.01 −0.03± 0.02 −0.02 ± 0.04 −0.02± 0.03 −0.01 ± 0.02 −0.02 ± 0.02
IPS 0.00 ± 0.09 −2.58± 2.65 −0.95± 0.46 −0.04 ± 0.07 −0.08 ± 0.21 −0.19± 0.24 −0.15± 0.17
Lunar 0.00± 2.88 5.02 ± 1.75 1.60± 4.49 1.51± 2.10 5.91 ± 4.24 1.94± 3.11 2.30± 2.70
Minitaur 0.00± 15.42 −27.89± 32.24 −23.32± 22.35 3.15± 27.48 25.84 ± 9.73 −3.03± 26.09 19.75 ± 6.22
MCC 0.00± 0.15 −19.21± 40.61 0.72 ± 0.23 0.24± 0.11 0.36± 0.10 0.35± 0.09 −20.10± 40.00
Pendulum 0.00 ± 26.96 −3.35 ± 28.93 −4.37 ± 28.59 −1.40 ± 29.14 −1.52 ± 26.10 −0.36 ± 26.57 −2.31 ± 26.73
Walker 0.00 ± 4.55 −2.16 ± 2.94 1.02 ± 3.21 −1.60 ± 6.16 2.18 ± 5.32 −1.78 ± 3.80 −1.82 ± 3.44

Environ Average roughness (↓) [%]
ment TD3 STD3S,fix STD3S,lin STD3S,adapt STD3C,fix STD3C,lin STD3C,adapt

Ant 0.00± 9.89 −83.93± 1.02 −83.46± 1.97 −63.53± 18.81 −84.62± 1.91 −87.04 ± 1.65 −55.17± 5.64
Bipedal 0.00± 7.61 −85.31 ± 2.40 −84.45 ± 3.05 −48.76± 4.46 −82.08± 4.78 −85.59 ± 2.54 −53.15± 5.64
Hopper 0.00± 27.74 −70.23 ± 4.62 −65.40± 8.73 −43.37± 8.60 −66.12± 8.95 −75.98 ± 8.93 −48.31± 7.49
IDP 0.00± 58.45 −97.82 ± 0.69 −97.31 ± 1.10 −16.07± 88.20 −98.66 ± 2.29 −98.92 ± 1.70 −33.76± 42.98
IPS 0.00± 146.19 −99.70 ± 0.22 −98.61± 0.64 −0.27± 139.53 −99.74 ± 0.20 −99.38± 0.40 −68.86± 36.79
Lunar 0.00± 32.70 −96.79 ± 1.11 −96.96 ± 1.26 −48.66± 18.96 −91.13± 2.44 −92.04± 3.19 −48.00± 25.37
Minitaur 0.00± 16.36 −82.00 ± 5.70 −76.02± 6.79 −49.75± 4.14 −59.03± 4.63 −66.41± 11.81 −52.63± 4.38
MCC 0.00± 63.12 −74.66 ± 14.05 −71.53 ± 5.11 −33.44± 24.95 −68.87 ± 2.37 −69.75 ± 4.27 −20.68± 69.77
Pendulum 0.00± 114.96 −98.81 ± 0.51 −98.75 ± 0.51 −38.01± 82.90 −98.17± 1.22 −98.74 ± 0.74 13.20± 125.25
Walker 0.00± 18.60 −77.15± 2.55 −77.42± 3.22 −48.39± 9.01 −76.94± 4.24 −82.79 ± 4.38 −52.17± 11.10

Best − 2 2 − (4) 1 5 − (5)

Fig. 5. Exponentially smoothed (α = 0.1) evolution of the average return (left) and
roughness (right) of the policies as training goes on for the Bipedal environment.

16 B. De Cooman et al.

this way, past non-smooth behaviour is accounted for longer. It is left for future
work to investigate such more elaborate smoothing schemes.

Finally, Figure 5 shows the different smoothing schedules’ effect on the pol-
icy’s roughness throughout training. The simplest fixed scheme immediately acts
on the policy, from the very start of the training process, giving no chance for
policies to become too rough. In the linear scheme, the same roughness behaviour
as for the TD3 method is obtained during the initial training phase. As soon as
the smoothing phase starts, the roughness is drastically reduced to roughly the
same level as the fixed scheme. Both of these clearly try to reduce the rough-
ness as much as possible. The final adaptive scheme starts to smoothen out the
policies as soon as the predefined threshold is crossed, after which the roughness
settles around this threshold value.

5.3 Highway driving

In this last experiment, we investigate the best performing STD3C,lin variant and
compare it against its supervised counterpart on a more complex environment.
The same simulator as in the first experiment is used, but this time there are
multiple moving vehicles on the three-lane highway. The objective in this envi-
ronment is to travel as fast as possible, while respecting all traffic rules (speed
limit, keep right) and safety constraints (preventing crashes). Details can be
found in Appendix A.

Once again, all configurations are repeated five times with differently seeded
initializations. Average performance and smoothness metrics are calculated from
one evaluation episode after every training episode (E = Te = 1). The smooth-
ness estimate is calculated as

s̃π =
1

Ne

Ne∑
t=1

(
exp[−ρ(at−1,at)]− 1

)
,

giving values closer to 0 for smoother policies and values closer to −1 for non-
smooth policies. The performance metric is the accumulated sum of normalized
rewards without smoothness penalty rS , with maximum value 0 and minimum
value −1. All policies were trained for TM = 300 episodes with kM = 5000
timesteps, smoothing started after one third of the training was done (fp1 = 1/3
empirically determined) using different values of the final (maximum) smoothing
weight λs,M and of the smoothness penalty weight wS in the reward. Performance
and smoothness statistics are calculated from the best 20 episodes occurring in
the second half of the training process (B = 20, TB = 0.5TM). A summary of
the results is shown in Figure 6. The first experiment (on top) compares the
STD3S,lin method with the standard TD3 method using smoothness penalties in
the reward. Clearly, the smoothness of the obtained policies is increased for both
approaches. However, using smoothness penalties quickly becomes impractical,
as performance starts to deteriorate for increasing values of wS . Using smoothed
TD3 on the other hand, results in policies having higher smoothness values
without any performance reduction. Naturally, this only holds up to certain

Improving temporal smoothness of reinforcement learning policies 17

Performance ()

Supervised Reward

Smoothness ()

Supervised Reward

Smoothness ()

Supervised Contrastive

Performance ()

Supervised Contrastive

Fig. 6. Comparison of performance (left) and smoothness (right) for policies trained
on the highway driving environment. In blue the standard TD3 method without any
smoothness constraints or penalties. In green the supervised STD3S,lin method. In or-
ange the policies trained with extra smoothness penalties in the reward signal (top)
or using the contrastive STD3C,lin method (bottom). The whiskers denote the mini-
mum/maximum values, the shaded area shows an estimate of the underlying distribu-
tion, the middle rectangle spans from the first to the third quartile and the white dot
shows the mean value.

18 B. De Cooman et al.

limits but policies trained using STD3 were found to be much more robust to such
performance declines empirically. Hence less time can be spent on finetuning the
trade-off between performance and smoothness, which typically required trying
to fit in smoothness penalties into an already existing reward signal.

In the second experiment (bottom of Figure 6), the constrastive and super-
vised STD3 variants were compared (both using the ‘lin’ smoothing schedule).
Both lead to roughly the same amount of smoothness improvement for different
values of λs,M . Performance stays roughly at the same level, although there is
a slight increase for the supervised variant and a slight decrease for the con-
trastive variant. This might be a bit surprising, as the results on the openAI
gym environments seemed to indicate the contrastive variants had superior per-
formance. But this confirms the fact that different environments require different
smoothing measures. For the simplest environments, an extra penalty in the re-
ward might suffice. As complexity increases, the smoothed TD3 variants become
necessary to prevent severe performance deterioration. Finally, for the most com-
plex environments (such as chaotic systems [2]), it seems the stronger temporal
connection of actions in the supervised smoothing setting, makes them more
relevant. In such environments initial policy estimates might be far off from the
later, more optimal policies; and slight changes in the chosen actions could lead
to vastly different state transitions. Both contributing to higher discrepancies in
the compared states of the contrastive smoothing method (see Figure 4).

6 Conclusion

In this paper we introduced different smoothed TD3 (STD3) variants to im-
prove the learned policy’s temporal smoothness. The specific choice of rough-
ness metric (5) used for the calculation of both the smoothness regularization
term and the smoothness estimate, makes it easily combinable with existing
off-policy, policy-based and actor-critic reinforcement learning algorithms. Ex-
periments using normalized returns and roughness metrics show that the extra
smoothness weight hyperparameter generalizes well across a variety of different
environments, leading to smooth policies without significant performance deteri-
oration. For more fine-grained control over the desired smoothness–performance
trade-off, a proper smoothing schedule can be selected. From these schedules,
the adaptive smoothing variant is the most versatile. Using an estimate of the
currently learned policy’s roughness on evaluation episodes, it tries to automati-
cally reduce this policy’s roughness below a predefined threshold set at the start
of training. The resulting policy is an approximate solution of the constrained
MDP with added smoothness constraints.

A possible path forward is the application of the introduced smoothing reg-
ularizers to other actor-critic methods, such as PPO and SAC. Although a sim-
ilar investigation by Mysore et al. [12] observed smoothness regularization to be
mostly effective for TD3 as “soft-policies such as PPO and SAC appear to learn
relatively smoother policies on their own”. Another direction of future work can
be the investigation of other methods to deal with constrained MDPs, such as

Improving temporal smoothness of reinforcement learning policies 19

Constrained Policy Optimization (CPO) [1] or Lagrangian methods [20], and
compare them with the adaptive STD3 variant introduced here.

Acknowledgements

The presented results were obtained under Ford Alliance Project KUL0076,
funded by Ford.

The resources and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by the Research Foundation - Flanders
(FWO) and the Flemish Government.

Bibliography

[1] Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimiza-
tion. In: 34th International Conference on Machine Learning, ICML 2017.
vol. 1, pp. 30–47 (2017)

[2] Bucci, M.A., Semeraro, O., Allauzen, A., Wisniewski, G., Cordier, L., Math-
elin, L.: Control of chaotic systems by deep reinforcement learning. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 475(2231), 20190351 (2019). https://doi.org/10.1098/rspa.2019.0351

[3] Chen, W., Xiao, H., Wang, Q., Zhao, L., Zhu, M.: Lateral Vehicle
Dynamics and Control. John Wiley & Sons, Ltd, 2nd edn. (2016).
https://doi.org/10.1002/9781118380000

[4] Chisari, E., Liniger, A., Rupenyan, A., Van Gool, L., Lygeros, J.: Learn-
ing from Simulation, Racing in Reality. arXiv preprint 2011.13332 [cs.RO]
(2020)

[5] Fujimoto, S., Van Hoof, H., Meger, D.: Addressing Function Approxima-
tion Error in Actor-Critic Methods. In: 35th International Conference on
Machine Learning, ICML 2018. vol. 4, pp. 2587–2601 (2018)

[6] Girosi, F., Jones, M., Poggio, T.: Regularization Theory and Neu-
ral Networks Architectures. Neural Computation 7(2), 219–269 (1995).
https://doi.org/10.1162/neco.1995.7.2.219

[7] Green, P., Silverman, B.W.: Nonparametric Regression and Gen-
eralized Linear Models. Chapman and Hall/CRC (may 1993).
https://doi.org/10.1201/b15710

[8] Ha, S., Xu, P., Tan, Z., Levine, S., Tan, J.: Learning to Walk in the
Real World with Minimal Human Effort. arXiv preprint 2002.08550 [cs.RO]
(2020)

[9] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In:
35th International Conference on Machine Learning, ICML 2018. vol. 5, pp.
2976–2989 (2018)

[10] Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL
for car-following models. Transportation Research Record pp. 86–94 (2007).
https://doi.org/10.3141/1999-10

[11] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning. In:
4th International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings (2016)

[12] Mysore, S., Mabsout, B., Mancuso, R., Saenko, K.: Regularizing Action
Policies for Smooth Control with Reinforcement Learning. arXiv preprint
2012.06644 [cs.RO] (2020)

[13] Nageshrao, S., Tseng, H.E., Filev, D.: Autonomous highway driving using
deep reinforcement learning. Conference Proceedings - IEEE International

https://doi.org/10.1098/rspa.2019.0351
https://doi.org/10.1002/9781118380000
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1201/b15710
https://doi.org/10.3141/1999-10

Improving temporal smoothness of reinforcement learning policies 21

Conference on Systems, Man and Cybernetics pp. 2326–2331 (mar 2019).
https://doi.org/10.1109/SMC.2019.8914621

[14] Raffin, A., Kober, J., Stulp, F.: Smooth Exploration for Robotic Reinforce-
ment Learning. arXiv preprint 2005.05719 [cs.LG] (2020)

[15] Rodriguez-Ramos, A., Sampedro, C., Bavle, H., de la Puente, P., Campoy,
P.: A Deep Reinforcement Learning Strategy for UAV Autonomous Landing
on a Moving Platform. Journal of Intelligent and Robotic Systems: Theory
and Applications 93(1-2), 351–366 (2019). https://doi.org/10.1007/s10846-
018-0891-8

[16] Rosca, M., Weber, T., Gretton, A., Mohamed, S.: A case for new neural
network smoothness constraints. arXiv preprint 2012.07969 [stat.ML] (2020)

[17] Saxena, D.M., Bae, S., Nakhaei, A., Fujimura, K., Likhachev, M.: Driving
in Dense Traffic with Model-Free Reinforcement Learning. In: Proceedings -
IEEE International Conference on Robotics and Automation. pp. 5385–5392
(sep 2020). https://doi.org/10.1109/ICRA40945.2020.9197132

[18] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal
Policy Optimization Algorithms. arXiv preprint 1707.06347 [cs.LG] (2017)

[19] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.:
Deterministic policy gradient algorithms. In: 31st International Conference
on Machine Learning, ICML 2014. vol. 1, pp. 605–619 (2014)

[20] Stooke, A., Achiam, J., Abbeel, P.: Responsive safety in reinforcement learn-
ing by PID Lagrangian Methods. arXiv preprint 2007.03964 [math.OC] pp.
9070–9080 (2020)

[21] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, A
Bradford book, vol. 258. MIT Press, 1st edn. (1998)

[22] Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical
observations and microscopic simulations. Physical Review E - Statistical
Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 62(2), 1805–
1824 (2000). https://doi.org/10.1103/PhysRevE.62.1805

[23] Wang, P., Chan, C.Y., De La Fortelle, A.: A Reinforcement Learning Based
Approach for Automated Lane Change Maneuvers. In: IEEE Intelligent Ve-
hicles Symposium, Proceedings. vol. 2018-June, pp. 1379–1384 (oct 2018).
https://doi.org/10.1109/IVS.2018.8500556

https://doi.org/10.1109/SMC.2019.8914621
https://doi.org/10.1007/s10846-018-0891-8
https://doi.org/10.1007/s10846-018-0891-8
https://doi.org/10.1109/ICRA40945.2020.9197132
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1109/IVS.2018.8500556

22 B. De Cooman et al.

A Autonomous highway driving environment

The results shown in Section 5 for the highway overtaking and driving environ-
ments are obtained using a proprietary highway simulator. In this section the
most relevant components of this simulator will be briefly discussed. See also
Figure 1 for a schematic overview of the overtaking environment.

A.1 Roads

All experiments were conducted on a three lane highway. For the overtaking
environment, this highway was straight along the whole trajectory. For the driv-
ing environment, the highway was a closed-loop circuit, with both straight and
curved segments. The maximum speed limit was set to 30m/s in all lanes, al-
though some vehicles were instructed to slightly deviate from this limit, to get
more varying situations on the road.

A.2 Vehicles

Every vehicle in the simulator follows the kinematic bicycle model (KBM) [3] to
update its state based on the selected inputs

ẋ
ẏ

ψ̇
v̇

 =

v cos (ψ + β)
v sin (ψ + β)

v
lr

sinβ
a

cos β

 β = arctan

(
lr

lf + lr
tan δ

)
.

The vehicle’s local state vector consists of an absolute x and y position, a head-
ing angle ψ and velocity v. The vehicle can be controlled through its inputs,
consisting of a steering angle δ and a longitudinal acceleration a. To make the
control task of the virtual driver (agent) easier, extra low level controllers are
used to stabilize the vehicle on the road, allowing the agent to select high-level
steering actions a, consisting of a desired longitudinal velocity and desired lateral
position, to solve the driving task. To take correct high level steering decisions,
the virtual driver needs some extra information about other traffic participants
in its neighbourhood. This information is all gathered in the agent’s observation
vector s, containing local information such as the vehicle’s offset w.r.t. differ-
ent lane centers and its velocity components; and relative information such as
relative gaps and velocities w.r.t. neighbouring traffic. Internally, the simulator
discretizes time with step size ∆t = 0.1s and a Runge-Kutta integration scheme
to calculate subsequent states.

A.3 Policies

Every vehicle is controlled by a policy, mapping observations s to suitable high-
level actions a. The policy of the autonomous vehicle is learned using any of the
described RL methods in this paper. The policies of the other vehicles in the

Improving temporal smoothness of reinforcement learning policies 23

simulation environment are fixed beforehand. In the overtaking environment,
the policy used for the slow leading vehicle (blue in Figure 1) yields the same,
fixed actions for every state, keeping the vehicle within the initial lane at a
constant velocity. In the driving environment, a mixture of vehicles equipped
with a custom rule-based policy and a policy implementing the ‘Intelligent Driver
Model’ (IDM) [22] and ‘Minimizing Overall Braking Induced by Lane change’
(MOBIL) [10] is used. Both policies try to mimick rudimentary human driving
behaviour, although being fully deterministic. Safety of the chosen actions was
guaranteed through an extra safety check, similar to what is done by Nageshrao
et al. [13]. Unsafe actions are mapped to the nearest safe actions, before being
passed to the lower level controllers, avoiding most collisions.

A.4 Reward

The used reward signal is calculated as a weighted sum of different penalties

r = wF rF + wV rV + wCrC + wRrR + wBrB + wSrS .

The first ‘frontal’ component rF gives a penalty whenever the following distance
to the leading vehicle is smaller than a predefined threshold. The ‘velocity’ com-
ponent rV gives a penalty whenever the virtual driver is not travelling at or near
the maximum allowed speed. The third ‘center’ component rC gives a penalty
whenever the vehicle is not correctly aligned within its current lane – travelling
central in the lane. To force the virtual driver to keep right whenever possible,
the ‘right’ penalty rR is given whenever there is a free lane to the right available.
Finally, for some experiments a penalty for non-smooth policies is given in the
reward through the rS component.

The final reward is rescaled by the sum of all composing weights, such that
it always lies in the interval [−1 ; 0].

B TD3 hyperparameters for the gym environments

The table below shows the used hyperparameters for the TD3 algorithm (and
its smoothed variants) on the 10 used OpenAI gym environments used in the
experiments section. Most of these values correspond to the tuned hyperparame-
ters of the Stable-Baselines3 repository7, the differences are highlighted in bold.

7 https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/td3.
yml

https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/td3.yml
https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/td3.yml

24 B. De Cooman et al.

Table 3. Overview of the used hyperparameters for each environment. The shown
hyperparameters are: maximum timesteps per episode kM , total training timesteps
kM · TM , distribution of the exploration noise ε ∼ E, discount factor γ, replay buffer
size |B|. The exploration noise generators are: the normal distribution N(µ, σ) with
mean µ and standard deviation σ, the Ornstein-Uhlenbeck process O(µ, σ, θ) with
mean µ, standard deviation σ and damping θ.

Environment kM kMTM E γ |B|

Ant (AntBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Bipedal (BipedalWalker-v3) 1600 1 · 106 N(0, 0.1) 0.98 2 · 105

Hopper (HopperBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

IDP (InvertedDoublePendulumBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

IPS (InvertedPendulumSwingupBulletEnv-v0) 1000 5 · 105 N(0, 0.1) 0.98 2 · 105

Lunar (LunarLanderContinuous-v2) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Minitaur (MinitaurBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.99 1 · 106

MCC (MountainCarContinuous-v0) 999 5 · 105 O(0, 0.5, 0.15) 0.99 1 · 106

Pendulum (Pendulum-v0) 200 1 · 105 N(0, 0.1) 0.98 2 · 105

Walker (Walker2DBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Table 4. Overview of the used hyperparameters, common across all used environments.

Common hyperparameters

Learning rate (actor + critic) η 1 · 10−3

Warmup timesteps 10000
Batch size B 100
Policy update delay d 2
Target policy noise distribu-
tion

N(0, 0.2)

Target policy noise clipping [−0.5 ; 0.5]
Polyak averaging constant τ 5 · 10−3

Network architecture – hidden
dimensions (actor + critic)

400× 300

	Improving temporal smoothness of deterministic reinforcement learning policies with continuous actions

