
Neural Network Training as an Optimal Control Problem
— An Augmented Lagrangian Approach —

Brecht Evens1 Puya Latafat1 Andreas Themelis2 Johan Suykens1 Panagiotis Patrinos1

Abstract— Training of neural networks amounts to noncon-
vex optimization problems that are typically solved by using
backpropagation and (variants of) stochastic gradient descent.
In this work, we propose an alternative approach by viewing
the training task as a nonlinear optimal control problem. Under
this lens, backpropagation amounts to the sequential approach
(single shooting) to optimal control, where the states variables
have been eliminated. It is well known that single shooting
may lead to ill-conditioning, and for this reason the simultane-
ous approach (multiple shooting) is typically preferred. Moti-
vated by this hypothesis, an augmented Lagrangian algorithm
is developed that only requires an approximate solution to the
Lagrangian subproblems up to a user-defined accuracy. By ap-
plying this framework to the training of neural networks, it is
shown that the inner Lagrangian subproblems are amenable to
be solved using Gauss-Newton iterations. To fully exploit the
structure of neural networks, the resulting linear least-squares
problems are addressed by employing an approach based on
forward dynamic programming. Finally, the effectiveness of our
method is showcased on regression datasets.

I. Introduction

Feedforward deep neural networks (DNNs) are a promi-
nent model for supervised learning, having a lot of success
in various fields. The primary objective of this work is to
devise a novel method for training DNNs with smooth acti-
vation functions; this task can be formally stated as follows.

Main problem. Given pairs {(a(`), b(`)) ∈ �d0 × �dN+1 }`∈[m],
continuously differentiable functions {Φ j : �d j → �d j } j∈[N+1]
(operating in an element-wise fashion), and µw > 0, find
{W j ∈ �

d j×d j−1 } j∈[N+1] solutions to

minimize
W1,...,WN+1

1
2m

∑m
`=1 ‖ΦN+1(WN+1x(`)

N ) − b(`)‖2 +
µw
2

∑N+1
j=1 ‖W j‖

2
F

where x(`)
0 B a(`), ` ∈ [m], (1a)

x(`)
j B Φ j(W jx

(`)
j−1), j ∈ [N], ` ∈ [m]. (1b)

Here, (a(`), b(`)) are (given) training pairs, N ∈ � is the
number of layers of the network, each one having di many
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neurons/nodes and with Φi being the corresponding activa-
tion function, and µw is a regularization parameter for the
weights Wi commonly used to avoid overfitting [15]. These
optimization problems are typically solved using backprop-
agation [19] along with (variants of) stochastic gradient de-
scent, due to their simplicity and effectiveness. However,
these optimization methods suffer from various issues related
to the challenging, highly nonconvex nature of the training
task. First and foremost, due to the prominence of local min-
ima and saddle points, trained DNN models tend to general-
ize poorly to test data. To alleviate this issue, various regular-
ization methods have been introduced such as weight decay
[15], batch normalization [13], and dropout [20], typically
reducing the overfitting of the training data. More funda-
mentally, gradient-based methods are known to suffer from
the vanishing gradient phenomenon [12], where the gradients
in the output layers of DNNs decrease exponentially with the
number of layers. Although recent studies have shown that
piecewise affine activation functions such as ReLU, leaky
ReLU [17], and Maxout unit [8] reduce the vanishing gradi-
ent problem by making the problem more sparse, the issue
nevertheless persists especially in very deep networks.

To address these issues, in recent years a host of auxiliary
variable methods have been introduced where the network
structure is represented by equality constraints and the space
of learning parameters is extended. By lifting the number
of variables, these methods decompose the training task into
a series of local subproblems which can be solved deter-
ministically, typically using block coordinate descent (BCD)
[4, 10, 24] or the alternating direction method of multipliers
(ADMM) [21, 23, 25]. BCD and ADMM have been success-
ful for this task due to their ability to convert the equality
constrained optimization problems into unconstrained prob-
lems, which can then be solved more efficiently than their
constrained counterparts. By increasing the dimension of the
training problem, auxiliary variable methods can alleviate
some of the issues from which classical gradient-based meth-
ods suffer. Most notably, it is observed that the vanishing gra-
dient issue is alleviated as the auxiliary variables circumvent
long-term dependencies between the network weights during
training [25]. On the other hand, the increased dimensional-
ity naturally makes the training task more challenging than
when using classical gradient-based approaches.

The difference between traditional methods and auxiliary
variable methods can be related to concepts from optimal
control by viewing the training task as a nonlinear optimal
control problem. Under this lens, auxiliary variable methods
amount to the simultaneous approach (multiple shooting),



whereas backpropagation amounts to the sequential approach
(single shooting), where the state variables are eliminated
[16]. As it is well known that single shooting may lead to ill-
conditioning of the optimization problem, it can be expected
that multiple shooting methods can provide major advantages
in the learning process of DNNs.

Motivated by this hypothesis, we develop a training
methodology for neural networks based on an augmented
Lagrangian framework that only requires finding approxi-
mate stationary points of the Lagrangian subproblems up to
a user-defined accuracy. To fully exploit the structure of feed-
forward neural networks, we additionally provide a compu-
tationally efficient approach to solve the inner subproblems
based on forward dynamic programming. The overall ap-
proach leads to an efficient and provably convergent method-
ology for solving the highly nonconvex optimization prob-
lems emerging in the neural network training task.

A. Contributions

The contribution of this paper is twofold:

1) We introduce a novel augmented Lagrangian framework
(ALM) for solving general nonconvex and nonsmooth equal-
ity constrained optimization problems. The framework is in-
spired by and extends [9, Alg. 1] by waiving smoothness
assumptions and introducing a less conservative penalty up-
date rule, yet preserving convergence to an approximate KKT
point.
2) We apply this framework to the training of DNNs, which
we address from an optimal control perspective. The result-
ing optimization problem’s structure has a twofold benefit:
first, the inner Lagrangian subproblems are amenable to be
addressed with fast methods such as Gauss-Newton (GN);
in turn, forward dynamic programming (FDP) can conve-
niently be employed to efficiently solve the resulting linear
least-squares problems.

To reflect the modularity and the contribution of each compo-
nent, the three procedures (outer ALM, inner GN, and FDP)
are outlined in three standalone algorithms, each addressing
a dedicated general problem.

B. Organization

The paper is organized as follows. The notation is intro-
duced in the next subsection. An optimal control reformula-
tion for the NN problem is presented in Section II. In Sec-
tion III a novel augmented Lagrangian method (ALM) is pro-
posed for general equality constrained nonlinear programs.
The ALM method is specialized for the training of neural
networks with smooth activation functions in Section IV,
where a procedure based on the Gauss-Newton method and
forward dynamic programming is proposed. The proofs of
all the results are deferred to the appendix. Finally, numeri-
cal simulations showcasing the effectiveness of our proposed
methodology on regression datasets are discussed in Sec-
tion V.

C. Notation
We use [N] to denote the set of indices {1, . . . ,N}. We

denote by �n the standard n-dimensional Euclidean space
with inner product 〈 · , · 〉 and induced norm ‖ · ‖. The set
of extended real numbers is defined as � B � ∪ {∞}, and
we say that an extended-real valued function f : �n → � is
proper if dom f B {x ∈ �n | f (x) < ∞} is nonempty. The set
of real n-by-m matrices is denoted by �n×m. Given A ∈ �n×m,
‖A‖F is its Frobenius norm and vec(A) ∈ �nm is the vector
obtained by stacking the columns of A on top of one another.
The sets of symmetric, symmetric positive semi-definite and
symmetric positive definite n-by-n matrices are denoted by
Sn, Sn

+ and Sn
++, respectively. For V ∈ Sn

++ we define the
scalar product 〈x, y〉V = 〈x,Vy〉 and the induced norm ‖x‖V =√
〈x, x〉V . The n-by-n identity matrix is denoted by In, or

simply I when no ambiguity occurs. The vector of all zeros
with dimension n and the n-by-m matrix of all zeros are
denoted by 0n and 0n×m, respectively. The matrix Kronecker
product is denoted by ⊗. The Jacobian of a differentiable
function F : �n → �m, is denoted by JF : �n → �m×n; JxF
is a short-hand notation for the partial derivative ∂F

∂x .

II. An optimal control reformulation
In the traditional approach, (1a) and (1b) are absorbed into

the cost, thus forming an unconstrained minimization which
is then solved by employing a stochastic (sub)gradient-type
method. Here we take an alternative approach by viewing the
minimization as an optimal control problem with N stages.
To this end, (1) represents the dynamics of the problem and
may compactly be written as

X j = Φ j(W jX j−1), j ∈ [N], (2)
where X j ∈ �

d j×m is a matrix whose i-th column is the vector
x(i)

j , for i ∈ [m]. By similarly letting A ∈ �d0×m and Y ∈
�dN+1×m denote the input and output matrices (constructed
using vectors a(i), b(i)), the following compact reformulation
of (1) is obtained

minimize
(Wi)i∈[N+1],(Xi)i∈[N]

1
2m ‖ΦN+1(WN+1XN) − Y‖2F +

µw
2

∑N+1
i=1 ‖Wi‖

2
F

subject to X0 = A (3)
X j+1 = Φ j(W jX j−1), j ∈ [N].

A. Vectorized form
For simplicity of exposition and computational conve-

nience, we condense the optimization variables Wi and Xi

into a single long vector z = (w, x) with
w = (w1, . . . ,wN+1) and x = (x1, . . . , xN)

where, letting wi, j ∈ �
di−1 denote the j-th row of Wi and x( j)

i
the j-th column of Xi,
wi = (wi,1, . . . ,wi,di ) ∈ �

didi−1 and xi = (x(1)
i , . . . , x(m)

i ) ∈ �mdi .

In the vectorized notation, the cost function and the nonlinear
constraints in (3) may be represented by f and F(z) = 0 with

f (z) = 1
2m ‖HN+1(wN+1, xN) − y‖2 +

µw
2 ‖w‖

2,

F(z) =
(
x1 − H1(w1, x0), . . . , xN+1 − HN+1(wN+1, xN)

)
,

where y = vec(Y) and
H j(w j, x j−1) =

(
Φ j(W jx

(1)
j−1), . . . ,Φ j(W jx

(m)
j−1)

)
. (4)



III. The outer ALM algorithm

With vectorized notation being adopted and as long as the
activation functions Φ j are locally Lipschitz, the minimiza-
tion in (3) falls into the following general setting.

Problem I (General ALM framework). For a proper, lower
semicontinuous, lower bounded f : �n → � and a locally
Lipschitz F : �n → �p such that {z ∈ dom f | F(z) = 0} , ∅,

minimizez∈�n f (z) subject to F(z) = 0. (5)

This section proposes a conceptual algorithm for address-
ing Problem I, conceptual in the sense that, at this stage, no
hint is given as to how the inner subproblems it involves can
be solved. The algorithm will be concretized in the subse-
quent Section IV, where an implementable procedure for ad-
dressing these inner steps is detailed. The chosen method for
the inner subproblems will ultimately require some additional
structure and differentiability assumptions, which are never-
theless not needed for the (outer) ALM scheme presented in
this section. For the sake of generality of the discussion and
to well pinpoint where each requirement is invoked, the con-
vergence proof of the outer scheme is given in this broader
setting.

Equality constrained minimization problems as (5) are
amenable to be addressed by means of augmented La-
grangian methods. For β > 0, we denote the corresponding
β-augmented Lagrangian as

Lβ(z, λ) B f (z) + 〈λ, F(z)〉 + β
2 ‖F(z)‖2

= f (z) +
β
2 ‖F(z) + λ/β‖2 − 1

2β‖λ‖
2, (6)

and we say that (z, λ) is an ε-KKT pair if

‖∇zL(z, λ)‖∞ ≤ ε, and (7a)
‖F(z)‖∞ ≤ ε, (7b)

where LB L0 is the (non-augmented) Lagrangian, and ∇z
denotes the gradient with respect to z or, in case of lack of
differentiability, any vector in the subdifferential ∂zL(z, λ).

Largely inspired by [9, Alg. 1], Algorithm 1 hinges on the
upper boundedness of the augmented Lagrangian along the
iterates (see, e.g. [3, Ex. 4.12]) ensured by the initialization at
a feasible point z0. Additionally to reducing the assumptions
to the general setting of Problem I, we also introduced a less
conservative update rule for the penalty parameter β, thus
waiving the need for its unbounded growth which instead
happens in [9] (unless the dual variable converges to 0).

Theorem 1. Applied to Problem I, Algorithm 1 terminates
yielding an ε-KKT pair for (5).

Note that the result can cope with rather general functions
f and F, not necessarily derived from formulations as in
(3). The optimal control structure will instead be exploited
in the following Section IV where an iterative method for
addressing the inner problems at step 1.2 will be given.

Remark 2. When f is lower bounded, then so is Lβ( · , λ)
for any λ, thus ensuring the existence of ε-stationary points
as required in step 1.2 for any ε > 0. In the setting of the op-
timal control problem (3), not only is this condition trivially

Algorithm 1 ALM for Problem I
Require Initial feasible point z0 ∈ dom f s.t. F(z0) = 0,

multiplier λ0, and penalty β0 > 0
Parameters 0 < γ < 1 < α, ξ and tolerance ε > 0

For k = 0, 1, 2 . . .
1.1: Set ẑk = zk if Lβk (zk, λk) ≤

Lβk (z0,λk)

f (z0), or ẑk = z0 otherwise
1.2: Starting at ẑk, apply a descent method to compute an

ε-stationary point zk+1 of
minimizeLβk ( · , λ

k), (8)
i.e., a point zk+1 such that

‖∇zLβk (zk+1, λk)‖∞ ≤ ε (9)

1.3: Set λk+1 = λk + βkF(zk+1)
1.4: if ‖F(zk+1)‖∞ ≤ ε then

Return ε-KKT pair (zk+1, λk+1)

1.5: Set βk+1 = βk if ‖F(zk+1)‖∞ ≤ γ‖F(zk)‖∞,
or βk+1 = max {ξβk, β0(k + 1)α} otherwise.

satisfied, but a feasible starting point z0 can be obtained at
virtually no cost by initializing the weights W0

j and unrolling
the dynamics to generate the state variables X0

j .

IV. The Lagrangian subproblem via Gauss-Newton
iterations

In this section we present a procedure for solving the inner
minimization (8) in the setting of NNs with continuously dif-
ferentiable activation functions. With the notational conven-
tions of Section II-A, for a fixed multiplier λ = (λ1, . . . , λN)
(λ j being the one associated with the j-th dynamics) the La-
grangian subproblem associated with (3) is cast as follows.

Problem II (Lagrangian subproblem). Given smooth func-
tions {H j} j∈[N+1], vectors λ, y of suitable sizes, and β, µw > 0,

minimize
z=(w,x)

Lβ(z, λ) B 1
2m‖HN+1(wN+1, xN) − y‖2 +

µw
2 ‖w‖

2

− 1
2β‖λ‖

2 +
β
2
∑N

j=1 ‖x j − H j(w j, x j−1) + λ j/β‖
2.

This smooth unconstrained least-squares problem is
amenable to be solved by the Gauss-Newton (GN) method,
which amounts to iteratively solving minimizations obtained
after linearizing functions H j around the last iterates, and
then applying a standard line search to guarantee conver-
gence. In the next subsection, we derive explicit expressions
of the Jacobian matrices involved in the linearization.

A. Gauss-Newton linearization and update direction

Let D j : �d j−1 → �d j×d j be given by

D j(v) B diag
(
Φ′j(〈w j,1, v〉), . . . ,Φ′j(〈w j,d j , v〉)

)
,

(recall that Φ j operates element-wise) and define

Dj B blkdiag
(
D j(x(1)

j−1), . . . ,D j(x(m)
j−1)

)
.

The Jacobians Jx j−1 H j ∈ �
md j×md j−1 and Jw j H j ∈ �

md j×d jd j−1

are then given by

Jx j−1 H j(w j, x j−1) = Dj(Im ⊗W j
)
, and



Algorithm 2 Gauss-Newton procedure for Problem II
Require Initial point z0 = (w0, x0) and 0 < η1, η2 < 1
For l = 0, 1, 2 . . .
2.1: [update direction] set pl = z̄l − zl, where z̄l = (w̄l, x̄l)

solves Problem III with A,B, c as in (10)
2.2: [line search] set zl+1 = zl + τl pl, where τl

is the largest number in {1, η1, η
2
1, . . .} such that

Lβ(zl + τl pl, λ) ≤ Lβ(zl, λ) − 2η2τlGA,B,0(pl)

with Lβ and GA,B,c as in Problems II and III
2.3: if ‖∇zLβ(zl+1, λ)‖∞ ≤ ε then

Return zl+1 = (wl+1, xl+1)

Jw j H j(w j, x j−1) = Dj(Id j ⊗ x(1)
j−1, . . . , Id j ⊗ x(m)

j−1
)>
.

If zl = (wl, xl) is the l-th iterate of a GN algorithm, denoting

A j+1 =

0md1×md0 if j = 0

Jx j H j+1(wl
j+1, x

l
j) if j ∈ [N]

B j = Jw j H j(wl
j, x

l
j−1), j ∈ [N + 1] (10)

c j =

H j(wl
j, x

l
j−1) − A jxl

j−1 − B jwl
j −

1
β
λ j if j ∈ [N]

H j(wl
j, x

l
j−1) − A jxl

j−1 − B jwl
j − y if j = N + 1,

the linearized minimization yielding the l-th GN update di-
rection reduces to the following problem.

Problem III (GN direction). Given A= (A1, . . . , AN+1), B=

(B1, . . . , BN+1) and c = (c1, . . . , cN+1) with matrices A j, B j

and vectors c j of suitable sizes, and given scalars β, µw > 0,

minimize
z=(w,x)

GA,B,c(z) where,

denoting (δ j, ρ j) = (1, β) for j ≤ N and (0, 1
m ) otherwise,

GA,B,c(z)B
∑N+1

j=1

(
ρ j

2 ‖δ jx j −A jx j−1 − B jw j − c j‖
2 +

µw
2 ‖w j‖

2
)
.

B. The Gauss-Newton algorithm

The structure of Problem III emphasizes how variables are
weakly coupled, a phenomenon that owes to the stagewise
structure of the optimal control problem (3). As a result, in
spite of the large scale, Problem III admits a closed-form so-
lution that is efficiently retrievable with a forward dynamic
programming (FDP) approach detailed in the following Sec-
tion IV-C. This routine may then be invoked by the GN
method, synopsized in Algorithm 2, when computing the up-
date directions at step 2.1.

In the next lemma we show that the GN method yields an
ε-stationary solution for the original Lagrangian subproblem.

Lemma 3. The limit points of the sequence (zl)l∈� generated
by Algorithm 2 are stationary for Problem II. In particular,
if (zl)l∈� remains bounded (e.g., when Lβ(·, λ) is coercive),
then Algorithm 2 yields an ε-stationary solution.

C. Forward dynamic programming

In this subsection we propose a recursive procedure for
solving Problem III with given matrices A j ∈ �

r j×r j−1 , B j ∈

�r j×s j , and vectors c j ∈ �
r j , j ∈ [N + 1], thus providing

an efficient routine for step 2.1 of Algorithm 2. Inspired by

Algorithm 3 Recursive solution to Problem III with FDP
Require Initial state x0 ∈ �

r0

set M1 = 1
ρ1

I + 1
µu

B1B>1 , S 1 = Ir0 , q0 = x0

3.1: [Forward recursion] For j = 1, . . . ,N
(a) solve the linear system M j c̃ j = c j,
(b) q̃ j = S jq j−1 . as described in (18)

(c) q j = ρ jG jA j q̃ j + c̃ j

(d) M j+1 = 1
ρ j+1

I + 1
µu

B j+1B>j+1 + A j+1M jA>j+1

3.2: [Backward recursion]
(a) x̃N+1 = −S N+1

(
A>N+1GN+1cN+1

)
q̃N+1 = S N+1qN . as described in (18)

(b) xN = q̃N+1 + ρN+1 x̃N+1

wN+1 = − EN+1
(
AN+1xN + cN+1

)
(c) For j = N, . . . , 2:

x̃ j = S j
(
A>j G j(x j − c j)

)
. as described in (18)

x j−1 = q̃ j + ρ j x̃ j

w j = E j
(
x j − A jx j−1 − c j

)
(d) u1 = E1

(
x1 − A1x0 − c1

)
Return z = (w, x) with w = (w1, . . . ,wN+1), x = (x1, . . . , xN)

the idea of forward dynamic programming, the minimization
may be split into a series of simpler subproblems that are
solved in a recursive manner:

V?
1 (x1) = min

w1

{
ρ1
2 ‖x1 − A1x0 − B1w1 − c1‖

2 +
µw
2 ‖w1‖

2
}

(11)

V?
j (x j) = min

x j−1,w j

{
V?

j−1(x j−1) +
ρ j

2 ‖x j − A jx j−1 − B jw j − c j‖
2

+
µw
2 ‖w j‖

2
}
, j = 2, . . . ,N (12)

V?
N+1 = min

xN ,wN+1

{
V?

N (xN) +
ρN+1

2 ‖AN+1xN + BN+1wN+1 + cN+1‖
2

+
µw
2 ‖wN+1‖

2
}
. (13)

Each stage consists of the minimization of the sum of the cost
at the current stage and the optimal cost from the previous
stage. The cost at the final stage V?

N+1 is equal to the optimal
cost for Problem III. In order to obtain closed form solutions
for each of the above minimizations, let E j ∈ �

s j×r j and
G j,M j, S j ∈ �

r j×r j , j ∈ [N + 1], be defined as

E j =

(
µw
ρ j

I + B>j B j

)−1
B>j , (14)

G j = I − B jE j, (15)

M j =


1
ρ1

I + 1
µw

B1B>1 if j = 1
1
ρ j

I + 1
µw

B jB>j + A jM j−1A>j if j > 1
(16)

S j =

{
Ir0 if j = 1
M j−1 − M j−1A>j M−1

j A jM j if j > 1. (17)

Note that matrices S j need not be computed explicitly. In-
stead, given a vector v ∈ �r j , S jv is computed as follows:{

(i) solve the linear system M jv̄ = A j(M j−1v)
(ii) set S jv = M j−1

(
v − A>j v̄

)
.

(18)

The FDP procedure is presented in Algorithm 3. Other
than matrix-vector products, the algorithm requires solving
linear systems several times, which may be performed by



computing the Cholesky factorization of M j and µw
ρ j

I + B>j B j

once, thus resulting in operations involving simple forward
and backward substitution steps that substantially reduce the
computational overhead.

Remark 4 (Positive definiteness). Since ρ j, µw > 0, it holds
that G j,M j ∈ S

r j
++ for any j. Furthermore, using the Wood-

bury matrix identity and (16), the following alternative ex-
pression for S j+1 is obtained

S j+1 =
(
M−1

j + ρ j+1A>j+1G j+1A j+1
)−1
, (19)

establishing that also S j+1 ∈ S
r j
++.

The optimality of the solution obtained by the FDP pro-
cedure is established in the next lemma.

Lemma 5. Suppose that µw > 0. Then, z = (w, x) generated
by Algorithm 3 is the unique minimizer of Problem III.

V. Numerical experiments

A. Design of numerical experiments

We will generate training (and test) pairs {(a(`), b(`))}`∈[m]
for a three-layer neural network under the regression setting,
analogous to the approach in [6], as follows:

b(`) = W3Φ(W2Φ(W1a(`))) + δ,

where a(`) ∼ N(µ,Σ) and δ ∼ δ0N(0, 1). The mean µ ∈ �d0

and an additional random matrix Σ0 ∈ �
d0×d0 are generated

by a normal distribution with standard deviation 0.2, and
the covariance Σ is set to be Σ>0 Σ0. The three-layer network
consists of N = 2 hidden layers with respectively 20 and 5
neurons. As activation function the softplus function is used,
i.e. Φ(x) B ln(1 + exp(x)), a smooth approximation to the
ReLU activation function which is often used in deep learn-
ing and known for its faster convergence. The weights Wi

of the neural network are initialized according to Kaiming
[11], which is a weight initialization procedure suitable for
networks consisting of softplus activation functions, and we
obtain a feasible starting point z0 by applying (2) recursively.
All networks in this section are trained with regularization
parameter µw = 0.1. The following parameters for Algo-
rithm 1 are used:

λ0 = 0, β0 = 0.001 f (z0), γ = 0.5,

α = 2, ε = 10−3, ξ = 2.

Furthermore, to prevent solving the inner problems (8) up
to an unnecessarily high tolerance ε in the first iterations,
Eq. (9) is relaxed as follows:

‖∇zLβk (zk+1, λk)‖∞ ≤ εk B max (ε̄, 0.5εk−1) (20)

with ε0 = 10−1 and ε̄ = 10−2. Finally, the following param-
eters for the line search in Algorithm 2 are used:

η1 = 0.8, η2 = 0.1.

The ALM framework and corresponding Gauss-Newton pro-
cedure are implemented using the SciPy sparse matrix library
[22] in Python. The CHOLMOD library [5] is used to fac-
torize ( µw

ρ j
I + B>j B j) and M j. All experiments are conducted

on an HP EliteBook 845 G7 with a 1.7GHz AMD Ryzen 7
PRO 4750U processor and 32 GB RAM.

B. Numerical results and discussion

The left-hand side of Table I shows the numerical results
for training the previously introduced feedforward neural net-
works with varying input dimension d0 and noise level δ0
(averaged over 15 simulations) using our proposed ALM
method, which yields an ε̄-KKT pair after only a couple
of ALM iterations (as (7a) is satisfied for ε̄ instead of ε).

All experiments are performed with a fixed sample size
m = 250 for the training and test datasets. We should remark
that the current implementation does not scale well with the
sample size m both in terms of memory usage and computa-
tion time, as the matrices M j in the FDP procedure become
increasingly large. For this reason, our method would greatly
benefit from a mini-batch implementation where the training
set is split into smaller batches to compute the inner GN
steps. This is considered as future work.

The typical performance of the ALM algorithm with low
tolerance (ε = ε̄ = 10−7) is visualized in Fig. 1 for a simula-
tion with d0 = 15 and δ0 = 20%. In the earlier GN iterations
mainly the loss is reduced, while in the final iterations the
feasibility is recovered as the penalty parameter increases in
the outer ALM iterations. For this reason, it makes sense
to terminate our algorithm at higher tolerances, as in neu-
ral network training we are mainly interested in reducing the
loss.
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Fig. 1. Typical performance of the ALM algorithm. (Left) Training and
test loss. (Right) Feasibility. The dashed line connects the points of the outer
ALM iterations.

C. Comparison with first-order methods

We compare our method with two commonly used first-
order methods for stochastic optimization, namely Adam
[14] and stochastic gradient descent (SGD). We use the de-
fault implementations of these algorithms provided by the
Keras library using the TensorFlow [1] backend with batch
size 10, MSE loss function and `2 regularization with pa-
rameter µw.

The right portion of Table I shows the numerical results
for training the three-layer network using Adam and SGD
(averaged over 15 simulations) for 1000 epochs. No early
stopping or other monitoring callbacks are used, minimiz-
ing the computation time per epoch. SGD is typically sus-
ceptible to stagnate at suboptimal points where it ceases to
make significant progress, which explains its higher training
MSE compared to Adam. When comparing with Adam and
SGD it can be seen that our method tends to converge to-
wards very good local optima, surpassing the performance



TABLE I
Numerical results for training a three-layer network with varying input dimension and noise level using ALM, Adam and SGD.

ALM

d0 δ0 Training Test Lβk ∇xLβk ALM GN Time
MSE MSE evals evals iters iters (m:ss)

5 10% 5.37e-2 5.04e-2 22 19 6 13 0:09
5 20% 6.93e-2 6.62e-2 22 19 6 13 0:09

10 10% 6.52e-2 6.47e-2 32 25 6 19 0:14
10 20% 7.95e-2 8.08e-2 35 27 6 20 0:15
15 10% 7.36e-2 7.98e-2 40 29 6 22 0:17
15 20% 8.76e-2 9.49e-2 41 30 6 23 0:17

Adam SGD

Training Test Time Training Test Time
MSE MSE (m:ss) MSE MSE (m:ss)

5.36e-2 5.05e-2 0:14 5.47e-2 5.12e-2 0:13
6.92e-2 6.63e-2 0:15 7.03e-2 6.68e-2 0:12
6.50e-2 6.44e-2 0:15 6.56e-2 6.48e-2 0:12
7.93e-2 8.07e-2 0:14 8.04e-2 8.15e-2 0:13
7.34e-2 7.96e-2 0:15 7.63e-2 8.35e-2 0:12
8.74e-2 9.47e-2 0:15 9.07e-2 9.93e-2 0:12

of SGD and occasionally even finding a better local mini-
mum than Adam. Furthermore, the computation time of our
methodology for training the introduced networks is reason-
ably similar to the ones of Adam and SGD. Overall, these
results are encouraging as our method is expected to greatly
benefit from a mini-batch implementation, further reducing
the computation time and increasing scalability.

VI. Conclusions

In this paper a novel procedure for the training of neural
networks was introduced that leverages an optimal control
view and relies on three main components. First, a novel
augmented Lagrangian method is presented for general non-
smooth nonconvex equality constrained problems, which at-
tains an ε-KKT solution. Second, when applied to the DNN
problem we propose to solve the Lagrangian subproblems by
employing Gauss-Newton iterations resulting in a series of
linear least-squares problems. Third, owing to the stagewise
structure in the optimal control formulation, we solve the
linear least-squares GN problems through a simple recursive
procedure based on forward dynamic programming. We ob-
served encouraging results in comparison to fast first-order
solvers such as Adam which are often used in a heuristic
manner without theoretical guarantees. In the current imple-
mentation, our method is not competitive when using large
numbers of training data. Future research directions include
extending our scheme to mini-batch settings to tackle this is-
sue. It is also interesting to extend the framework to allow
for nonsmooth activations functions.
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Appendix

Lemma A.1. Suppose that G : �n → �p is locally Lipschitz
around a point z̄ at which G(z̄) = 0. Then, φ(z) B 1

2‖G(z)‖2

is strictly differentiable at z̄ (in the sense of [18, Def. 9.17])
with null gradient.

Proof. Let L be a Lipschitz constant for G in a neighborhood
U of z̄. Then, for z, z′ ∈ U we have∣∣∣φ(z) − φ(z′) − 〈0, z − z′〉

∣∣∣
‖z − z′‖

=

∣∣∣‖G(z)‖2 − ‖G(z′)‖2
∣∣∣

2‖z − z′‖

=

∣∣∣‖G(z) −G(z′)‖2 + 2〈G(z′),G(z) −G(z′)〉
∣∣∣

2‖z − z′‖
≤ L

2 ‖G(z) −G(z′)‖ + L‖G(z′)‖

which vanishes as z, z′ → z̄, hence the claim.

Lemma A.2. Let Hi ∈ �
ri×ri be symmetric positive definite,

Vi ∈ �
ri×p, and νi ∈ �

ri , i ∈ [N]. If UB
∑N

i=1 V>i H−1
i Vi is

symmetric positive definite, then∑N
i=1 ‖Vix − νi‖

2
H−1

i
= ‖Ux − d‖2

U−1 − ‖d‖2U−1 +
∑N

i=1 ‖νi‖
2
H−1

i
,

where d B
∑N

i=1 V>i H−1
i νi.

Proof. Let q(x) =
∑N

i=1 ‖Vix − νi‖
2
H−1

i
. That q(x) = ‖x‖2

U
+∑N

i=1 ‖νi‖
2
H−1

i
− 2〈x, d〉 is of immediate verification. Since q is

quadratic, the Taylor expansion around its minimizer x? =

U−1d is given by q(x) = q(x?) + ‖x − x?‖2
U

. Substituting x?

results in the claimed form.

Proof of Theorem 1. Owing to the update at step 1.3,

L(z, λk+1) = Lβk (z, λk) +
βk
2 ‖F(zk+1)‖2 − βk

2 ‖F(z) − F(zk+1)‖2.

The last term on the right-hand side is continuously differ-
entiable (with null gradient) at zk+1, owing to Lemma A.1.
It then follows from [18, Ex. 8.8(c)] that ∂zL(zk+1, λk+1) =

∂zLβk (zk+1, λk), hence that the pair (zk, λk) satisfies condition
(7a) for every k ≥ 1, by virtue of Eq. (9) in step 1.2. It re-
mains to show that (7b) too is eventually satisfied. Notice
that, by definition of ẑk at step 1.1, L(zk+1, λk) ≤ f (z0) holds
for every k, which combined with (6) yields

1
2βk
‖λk+1

‖2 =
βk
2 ‖F(zk+1) + λk/βk‖

2 ≤ f (z0)− f (zk+1) + 1
2βk
‖λk
‖2

≤ c + 1
2βk
‖λk
‖2,

where c B f (z0) − inf f is a constant. Since βk+1 ≥ βk, it
holds that 1

2βk+1
‖λk+1

‖2 ≤ c + 1
2βk
‖λk
‖2, which leads to

1
βk
‖λk
‖2 ≤ 1

β0
‖λ0
‖2 + 2kc (A.1a)

for every k ∈ �. Moreover, since
1
2 ‖F(zk+1)‖2 ≤ ‖F(zk+1) + λk/βk‖

2 + ‖λk/βk‖
2

= 1
β2

k

[
‖λk+1

‖2 + ‖λk
‖2

]
, (A.1b)

the β-update at step 1.5 implies that ‖F(zk+1)‖∞ → 0 (Q-
linearly) if βk is asymptotically constant, hence the claim.
Otherwise, the set K B {k ∈ � | βk = max {ξβk−1, β0kα}} is
infinite. Then, for k ∈K, combining (A.1) yields

1
2 ‖F(zk+1)‖2 ≤ βk+1

β2
k

( 1
β0
‖λ0
‖2 + 2(k + 1)c

)
+ 1

βk

( 1
β0
‖λ0
‖2 + 2kc

)
≤ max

{
ξ
βk
, β0(k+1)α

β2
k

}( 1
β0
‖λ0
‖2 + 2(k + 1)c

)

+ 1
βk

( 1
β0
‖λ0
‖2 + 2kc

)
(βk ≥ kα) ≤ max

{
ξ
kα ,

β0(k+1)α

k2α

}( 1
β0
‖λ0
‖2 + 2(k + 1)c

)
+ 1

kα
( 1
β0
‖λ0
‖2 + 2kc

)
→ 0

as K 3 k → ∞, owing to the fact that α > 1. The second
inequality uses the fact that, regardless of whether k + 1 ∈K
or not, βk+1 ≤ max {ξβk, β0(k + 1)α} holds (since ξ > 1).

Proof of Lemma 3. Note that matrices A j, B j and vectors
c j in Algorithm 2 depend on the current iterate zl. Here, we
use superscript l to emphasize this dependence. The linear
least-squares Problem III solved at step 2.1 may equivalently
be written as

minimize
z=(w,x)

1
2‖J(zl)z − b(zl)‖2, (A.2)

where

J(zl) =

(
−B̄l Āl
√
µwI

)
with

Ā =



√
ρ1I

−
√
ρ2Al

2
√
ρ2I
. . .

. . .

−
√
ρN Al

N
√
ρNI

−
√
ρN+1Al

N+1


,

B̄l = blkdiag
(√
ρ1Bl

1, . . . ,
√
ρN+1Bl

N+1
)
,

and b(zl) = (
√
ρ1c1, . . . ,

√
ρN+1cN+1, 0s

)
.

In what follows we show that the eigenvalues of
J(zl)>J(zl) along a converging subsequence are bounded
above and away from zero, and that step 2.2 is a restate-
ment of the standard Armijo line search, at which point
the claimed convergence results follow by standard argu-
ments for gradient methods [2, 7]. For the latter, note
that by the optimality conditions for (A.2), the solution
z̄l satisfies J(zl)>J(zl) z̄l = J(zl)>b(zl). Moreover, since
∇zLβ(zl, λ) = J(zl)>J(zl)zl − J(zl)>b(zl), combining the two
equalities yields

〈
∇zLβ(zl, λ), z̄l − zl

〉
= − ‖J(zl)( z̄l − zl)‖2 =

− 2GA,B,0(pl) establishing the claimed equivalence.
Suppose (zl)l∈K is a subsequence converging to a limit

point z?. Note that J(z)>J(z) is nonsingular since J(z) has
full column rank for any z. Therefore, by continuity of J(·)
and [7, Lem. 7.5.2] we have that c1I � J(zl)>J(zl) � c2I for
some c1, c2 > 0. The stationarity of z? follows from [7, Prop.
8.3.7]. If (zl)l∈� remains bounded at least one converging
subsequence exists establishing the claim.

Proof of Lemma 5. First, note that by (14)

G>j G j +
µw
ρ j

E>j E j = I − B jE j − E>j B>j + E>j
(
B>j B j +

µw
ρ j

I
)
E j

= I − B jE j = G j. (A.3)

We proceed by induction to show that, for j ∈ [N],

V?
j (x j) = 1

2 ‖M
−1
j x j − q j‖

2
M j

+ C j, (A.4)

where the term C j does not depend on x j, x j+1, . . . , xN . Here,
we avoid deriving a recursion for C j since it does not affect
the computation of x j and w j+1 in the next stages.



For the base case j = 1, by the first-order optimality condi-
tion for the minimization (11) the unique minimizer is com-
puted as

w?
1 (x1) = E1

(
x1 − A1x0 − c1

)
.

After substitution, by using (A.3) and simple algebra we ob-
tain

V?
1 (x1) = 1

2 ‖x1 − A1x0 − c1‖
2
ρ1G1

= 1
2‖M

−1
1 x1 − q1‖

2
M1
,

where M1 = ρ−1
1 G−1

1 and q1 = M−1
1 (A1x0 + c1).

Arguing by induction, suppose that (A.4) holds for some j
such that 1 ≤ j ≤ N −1. Let ϕ(x j,w j+1) denote the argument
being minimized in (12). From direct computation

∇2ϕ(x j,w j+1) =

(
M−1

j + ρ j+1A>j+1A j+1 ρ j+1A>j+1B j+1

ρ j+1B>j+1A j+1 µwI + ρ j+1B>j+1B j+1

)
.

Since M j ∈ S
r j
++, by forming its Schur complement and us-

ing (14) it follows that the Hessian is symmetric positive
definite if and only if so is M−1

j + ρ j+1A>j+1G j+1A j+1, which
holds true. Hence, the subproblems have unique solutions.
By the first-order optimality condition for (12), the solution
pair (x?j ,w

?
j+1) satisfies

0 = M−1
j x?j − q j − ρ j+1A>j+1

(
x j+1 − A j+1x?j − B j+1w?

j+1 − c j+1

)
and
0 = µww?

j+1 − ρ j+1B>j+1

(
x j+1 − A j+1x?j − B j+1w?

j+1 − c j+1

)
.

The latter reads w?
j+1 = E j+1

(
x j+1 − A j+1x?j − c j+1

)
. After

substituting w?
j+1 into the former, using (14) and (A.3) we

obtain
x?j = S j+1q j + P j(x j+1 − c j+1),

where Pk = ρ j+1S j+1A>j+1G j+1 and S j+1 is as in (17). Substi-
tuting the minimizer pair (x?j ,w

?
j+1) back in (12) and using

(A.3) yields
V?

j+1(x j+1) = C j + 1
2‖M

−1
j x?j − q j‖

2
M j

+ 1
2‖x j+1 − A j+1x?j − c j+1‖

2
ρ j+1G j+1

(subs. x?j ) = C j + 1
2‖V1x j+1 − ν1‖

2
H−1

1

+ 1
2‖V2x j+1 − ν2‖

2
H−1

2

where V1 = M−1
j P j, H1 = M−1

j , V2 =
(
I − A j+1P j

)
, H2 =

ρ−1
j+1G−1

j+1,

ν1 =
(
I − M−1

j S j+1

)
q j + M−1

j P jc j+1, and

ν2 = A j+1S j+1q j + (I − A j+1P j)c j+1.

On the other hand, we have that

U =

2∑
i=1

V>i H−1
i Vi

= P>j M−1
j P j + ρ j+1

(
I − A j+1P j

)>
G j+1

(
I − A j+1P j

)
(A.5)

= P>j S −1
j+1P j + ρ j+1

(
I − P>j A>j+1

)
G j+1 − ρ j+1G j+1A j+1P j

= ρ j+1G j+1 − ρ
2
j+1G j+1A j+1S j+1A>j+1G j+1

= M−1
j+1,

where (19) was used in the second equality, and the Wood-
bury matrix identity in the last one. Therefore, we may apply
Lemma A.2 to obtain

V?
j+1(x j+1) = 1

2 ‖M
−1
j+1x j+1 − q j+1‖

2
M j+1

− 1
2 ‖q j+1‖

2
M j+1

+ 1
2
∑2

i=1 ‖νi‖
2
H−1

i
+ C j, (A.6)

with
q j+1 = P>j ν1 + ρ j+1

(
I − A j+1P j

)>
G j+1ν2 (A.7)

= M−1
j+1c j+1 + ρ j+1G j+1A j+1q j, (A.8)

where we used (19) and the alternative expression for M j+1
in (A.5). The last three terms in (A.6) are absorbed into C j+1
completing the induction argument.

It remains to solve (13). Arguing as before, from the first-
order optimality condition the solution pair (x?N ,w

?
N+1) must

satisfy
0 = M−1

N x?N − qN + ρN+1A>N+1

(
AN+1x?N + BN+1w?

N+1 + cN+1

)
and
0 = µww?

N+1 + ρN+1B>N+1

(
AN+1x?N + BN+1w?

N+1 + cN+1

)
.

The former equality is equivalent to the one given in step 3.2.
After substituting w?

N+1 back into the latter and using (A.3),
the update for x?N is obtained.


