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Abstract

This paper first gives an introduction in the main aspects of existing
time-domain methods for identifying linear continuous models of dy-
namical systems form sampled input-output data. The second part
of the paper demonstrates these approaches via a real data example.
Keywords: Identification, distillation column

1 Introduction

System modeling plays a fundamental role in modern engineering, as it is
typically the first step in a design cycle. However, it is also one of the
more complicated tasks in engineering, as it is more closely connected with
reality (in contrast with the tasks of analysis and design, which are usually
performed on a mathematical model). In some cases, one could build a so-
called white-box model based on first principles (Newton’s law, Kirchhoff’s
laws, laws of thermodynamics, reaction kinetics, etc.), but in many cases
such models will be overly complex and possibly even impossible to obtain in
reasonable time due to the complex nature of many systems and processes. A
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much more common approach is therefore to start from measurements of the
behavior of the system and the external influences (inputs to the system) and
try to determine a mathematical relation between them without going into
the details of what is actually happening inside the system. This approach
is called system identification. Two types of models are common in the field
of system identification:

• ”Grey box” model: Sometimes the model obtained by invoking the
first principles is incomplete because the value of some parameter is
missing. For instance, a planet is subject to the gravitation law but its
mass is unknown. In this case, it is necessary to collect experimental
data and proceed to a tuning of the unknown parameters until the
outputs predicted by the model match the observed data, The internal
structure of the box is only partially known (there are grey zones).

• ”Black box” model: When either the internal structure of the system
is unknown or there are no first principles available, the only chance is
to collect data and use them to guess the links between inputs and out-
puts. Black box modeling is useful to deal with very complex systems
where the white box approach would be time consuming and expensive
(an example: modeling the dynamics of an internal combustion engine
in order to develop the idle-speed controller).

This paper is organized as follows. In section 2 we give an introduction to
system identification. We discuss also methods for identifying linear models.
Section 3 gives a application where these methods are applied. The results
are given in section 4 and summarized in section 5.

2 Identifying Linear Multivariate Models

For this paper, linear, discrete-time, stochastic models are of interest. The
books by Ljung [1] and Soderstrom and Stoica [2] are excellent references
for the classical system identification theory. A summary of the relevant
issues is presented within this section.

Identifying an empirical process model requires exciting the process to col-
lect experimental data, and using these data for estimating a mathematical
model. After the experimental data have been collected, the user makes
three important selections: whether to use a parametric or nonparametric
model, the model structure (i.e., the type of model and the model order),
and the method for estimating parameters.
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2.1 Introduction to System Identification

When attempting to identify a model of a dynamical system it is common
practice to follow the procedure described in figure 1.

Experiment

Select model structure

Estimate model

Validate model

Accepted

Figure 1: The basic system identification procedure.

Experiment The purpose of the experiment is to collect a set of data that
describes how the system behaves over its entire range of operation. The
idea is to vary the input(s), u, and observe the impact on the output(s), y
(see Figure 2).

System
u(t) y(t)

v(t)

Disturbance/noise

Figure 2: An input is applied to the system and it is observed how the output is
affected.
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The data set of corresponding inputs and outputs Dn = {(u(t), y(t)), t =
1, . . . , n} is later used for inferring a model of the system.

Model structure selection. A model structure is a set of candidate mod-
els. That is, a set inside which one should search for a model. On a general
level the problem of selecting a model structure is twofold:

1. Select a ”‘family”’ of model structures considered appropriate for de-
scribing the system, e.g., linear model structures, Hammerstein mod-
els, wavelets, Support Vector Machines. This paper concentrates on
the linear model structures.

2. Select a subset of the chosen family of model structures. In the family
of linear structures this can for instance be an ARX(d,p,m) model
structure where (d, p,m) signifies a time delay of m sampling periods
and that the present output depends on d past outputs and p past
inputs. Both input-output models and state space models will be
considered, although most attention will be given to the former.

Estimate model. Estimate model. Once a set of candidate models has
been chosen, the next step is to pick one particular model from this set.
One will typically pick the model that performs best according to some type
of criterion. This criterion can be formulated in many different ways but
should ideally relate to the intended use of the model. The most common
strategy is to pick the model that provides the best k-step, k ∈ N0, ahead
predictions in terms of the smallest expected squared error between observed
outputs and predictions.

Validation. When a model has been estimated it must be evaluated to in-
vestigate whether or not it meets the necessary requirements. The validation
is closely connected to the intended use of the model.

Going backwards in the procedure. The paths going from the vali-
dation block and back to the previous stages indicate that the procedure is
executed in an iterative manner. It is necessary to go back in the proce-
dure to determine a number of different models, to try out various model
structures, and in the worst case even redo the experiment.
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2.2 Model Structure Selection

2.2.1 Input-output equations

Let us consider the case where the input u(t) is an m-dimensional vector
and the output y(t) is a p-dimensional vector. Probably the most simple
input-output relationship is obtained by describing it as a linear difference
equation:

y(t) + A1y(t− 1) + · · ·+ Anay(t− na) =
B1u(t− 1) + · · ·+ Bnb

u(t− nb) + v(t)
(1)

where the Ai are (p × p) matrices, the Bi are (p ×m) matrices and v(t) is
the white noise term. According to Ljung [1] a system can be written as

y(t) = G(q−1)u(t) + H(q−1)v(t) (2)

where G and H are transfer functions in the time delay operator, q−1. The
operator works on a signal in the following way:

q−1x(t) = x(t− 1). (3)

The model structure (1) corresponds to the generalized model structure (2)
with

G(q−1) = A−1(q−1)B(q−1), H(q−1) = A−1(q−1). (4)

where

A(q−1) = I + A1q
−1 + · · ·+ Anaq

−na (5)
B(q−1) = B1q

−1 + · · ·+ Bnb
q−nb (6)

These are matrix polynomials in q−1. The input-output relationship (1) is
an ARX model, where AR refers to the autoregressive part and X to the
extra input (exogeneous variable).

ARMAX model structure The basic disadvantage with (1) is the lack
of adequate freedom in describing the properties of the disturbance term.
One could add flexibility to that by describing the equation error as a moving
average of white noise. This gives the model

y(t) + A1y(t− 1) + · · ·+ Anay(t− na) = B1u(t− 1) + · · ·
+Bnb

y(t− nb) + v(t) + C1v(t− 1) + · · ·+ Cncv(t− nc)
(7)

With
C(q−1) = I + C1q

−1 + · · ·+ Cncq
−nc , (8)

the ARMAX model structure (7) corresponds to the generalized model struc-
ture (2) with

G(q−1) = A−1(q−1)B(q−1), H(q−1) = A−1(q−1)C(q−1). (9)
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Output Error model structure If one supposes that the relation be-
tween input and undisturbed output z can be written as a linear difference
equation, and that the disturbances consist of white measurement noise,
then we obtain the following description:

z(t) + F1z(t− 1) + · · ·+ Fnf
z(t− nf ) =

B1u(t− 1) + · · ·+ Bnb
z(t− nb)

y(t) = z(t) + v(t)

(10)

With
F (q−1) = I + F1q

−1 + · · ·+ Fnf
q−nf , (11)

the model can be written as

y(t) = F−1(q−1)B(q−1)u(t) + v(t). (12)

Comparing with the generalized model structure (2), H(q−1) = I, which
gives the natural predictor

ŷ(t) = F−1(q−1)B(q−1)u(t) = z(t). (13)

2.2.2 State space form

Another important class is state space representations, which have been
popularized by the seminal work of Kalman (see, e.g., Kalman, 1963). They
are of the form

x(t + 1) = Ax(t) + Bu(t) + He(t) (14)
y(t) = Cx(t) + v(t) (15)

where x ∈ Rnx is a vector containing the states of the system, e ∈ Rnx is
the vector of the state noise variables, v ∈ Rny is the vector of measurement
errors and A, B,C and D are matrices of compatible dimensions. The state
and the measurement noise vectors are assumed to be uncorrelated. A simple
relationship between the state space form and the general input-output form
exists [1].

3 Practical application: identification of a distil-
lation column

As an example of a dynamic system, some parts of a distillation column are
identified. This is a nonlinear system, but due to the need for linear models
for many control techniques, a linear model will be identified. Such a model
will only be valid around the working point where the column is identified.
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3.1 Column

The column (figure 3 is about 6 m high and consists of 3 sections of about
1.5m with packing responsible for the separation ). The content of the
column is a binary mixture of methanol (CH3OH, boiling point: 64.7 ◦C
(337.8K), molar mass: 32.04 g/mol, density: 0.7918 g/cm3, liquid) and
isopropanol (C3H8O, boiling point: 82.3 ◦C (355K), molar mass: 0.785
g/mol, density: 0.785 g/cm3, liquid).

The distillation column is a multiple input multiple output (MIMO) system
with 4 manipulated variables (inputs) and 10 controlled variables (outputs).
The manipulated variables are: reboiler power (Qr), feed (Fv), feed tem-
perature (Qv) and distillate flow (Fd). The controlled variables (outputs)
are distillate flow (Fd), feed flow (Fv) and nine temperatures: temperature
at the top of the column (Tt); temperature in the center of every packing
section, respectively Ts1, Ts2 and Ts3; temperature between section 1 and 2
(Tv2); temperature between the second and the third packing section (Tv1).
This is where the feed enters the column; temperature in the reboiler of the
column (Tb) and the temperature of the feed before heating (Tv0).

There is no on line measurement of the concentration of the distillate flow.
The concentration can be measured by its refractive index on a refractome-
ter. Because the concentration of the column can be derived from the tem-
peratures, only a model with the measured inputs and outputs is made.
Gibbs phase rule for binary vapor-liquid systems shows that if pressure,
temperature and relative volatility is fixed, phase compositions are defined.
In this column, only temperature can be changed, so if the temperature is
known, the concentration is known [3]. To know the concentration of the
column, an identification process similar as the one to make the model of
the column with the measured inputs and outputs, can be done with the
temperatures and the concentration, but will not be done in this work.

3.2 Excitation signals

The actuators and sensors are connected to a fieldpoint (National Instru-
ments, controller interface: cFP-2100, I/O modules: cFP-AIO-610 and cFP-
AI-110). A Labview program is written to control the actuators and register
the variables.

As an excitation signal a PRBS (Pseudorandom binary sequence) signal is
generated with constant intervals with a length of 400 seconds. From this
signal, the first 10000 samples are used and applied to the system with a
sample time of one second.
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Figure 3: Schematical overview of the distillation kolom.
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3.3 Experiment

Before the identification experiment was performed, the column was stirred
to reach steady state. The steady state values were: reboiler power: 4500 W,
feed flow: 150 g/min, feed temperature: 40 ◦C and distillate flow: 70 g/min.
After 2 hours, the test signals where applied for 9620 seconds. The binary
signal for the reboiler power was switched between 4200 and 4800 Watt. The
feed (Fv) was manipulated from 125 to 175 g/min. The feed temperature
(Qv) was manipulated between 145 and 175 Watt and the distillate flow
(Fd) was manipulated form from 45 to 95 g/min during the experiment.

The registered signals are resampled to a sampling period of 5 seconds for
use in the identification process.

4 Results

The two systems that will be identified are MISO (Multiple Input, Single
Output) systems with 6 inputs and one output. The output is the top
temperature (Tt) or the reboiler temperature (Tr) of the column . The
inputs are in both cases: feed flow (Fv, g/min), feed heating (Qv, W), the
temperature of the feed before heating (Tv0, ◦C), the temperature of the
feed (Tv2, ◦C), distillate flow (Fd, g/min) and the reboiler power (Qr, W).
With this system, different linear system models are fitted. The first 8000
data points are used for estimation. The next 1920 points are used for
validation. The results of the model estimations are showed in figure 4 and
Table 1.

To compare the different models a fit factor is defined [4]:

Fit = 100.


1−

∣∣∣Y − Ŷ
∣∣∣

∣∣Y − Ȳ
∣∣


 (16)

Where Ŷ is the predicted output, Ȳ is the mean value of Y and Y is the
measured output.

As suggested in paragraph 2.2, ARX models are the simplest models and
are first tried. The next model types tried, are ARMAX and output error
models. The last type tried for this work is the state space class. As can
be seen in table 1, the amelioration of the fit is very less when taking more
complex models. Output error models are not even able to produce a satis-
fying fit. As a rule of thumb, the simplest model structure is taken for the
final model. Thats why ARX models are taken in both cases.
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Table 1: The quality of some models for a 1 step ahead prediction and a 12 step
(one minute) ahead prediction of the model. The fit factor is defined by
16. ARX(na,nb,nk) is an ARX model with a time delay of nk samples and
and a present output depending on nb past inputs and na past outputs.
AMX(na,nb,nc,nk) is an ARMAX model with na,nb and nc the orders of
the matrices A, B and C in 7 and nk a time delay of nk samples. n4s1
and n4s3 are both state space models with respectively order 1 and 3.

(a) Results for the reboiler temperature.

reboiler temperature
model 1 step ahead 12 step ahead

arx(3,5,6) 86.28 76.46
arx(3,2,10) 86.2 72.91

amx(3,2,5,6) 86.16 74.17
amx(3,1,1,0) 86.09 70.22
amx(3,5,5,6) 86.01 74.9
amx(3,1,1,9) 85.98 67.77

n4s1 85.11 64.28

(b) Results for the top temperature.

top temperature
model 1 step ahead 12 step ahead

arx(10,3,8) 98.74 72.35
arx(5,1,8) 98.42 71.45
arx(5,2,10) 98.42 71.67
arx(3,1,8) 98.42 71.16

amx(3,1,1,8) 98.38 70.79
amx(5,2,1,9) 98.37 69.71
arx(3,1,2,8) 98.36 70.17

n4s3 98.32 71.36
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Figure 4: Overview validation plot of the best fitting model. On the left the ARX
model for the top temperature (Tt) is shown. The model used for these
plots is ARX(10,3,8). On the right the validation of the reboiler tem-
perature (Tb) is shown. The mode used for these plots is ARX(3,5,6).
(a) and (b) are a 1 step ahead prediction of the model. (c) and (d) are
a 12 step ahead prediction of the model.
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The models will be used to predict the behavior of the temperature of the
column. Therefor the k-step ahead predictions are of more importance than
the simulated output.

The final model chosen for the reboiler temperature is ARX model with
na = 3, nb = 5 and a time delay nk = 6. This ARX model is converted to a
state space model with 35 states. After model reduction 10 states are left.
The final model chosen for the top temperature is also an ARX model with
na = 10, nb = 3 and a time delay nk = 8. This ARX model is converted to
a state space model with 52 states. After model reduction, also is this case
10 states are left.

5 Discussion

This article illustrates linear system identification techniques applied on a
nonlinear dynamic system. Two ARX models are estimated. These models
can be used for prediction of the top and reboiler temperature of the column.
Short time prediction will be very good. Long time prediction will result in
a bigger deviation.

In the future other input signals will be applied to the column, for instance
Gaussian noise and sum-of-sinusoid signals. These signals have a richer fre-
quency spectrum and will provide more information which results in better
models. Nonlinear models can be fitted too, but will not be used because this
work must result in a linear model predictive controller for this distillation
column.
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