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Abstract: This paper examines the use of code generators for Model Predictive Control
(MPC) on a Programmable Automation Controller (PAC). Recently, a strong interest has been
observed in code generators able to produce dedicated code for solving optimization problems
on embedded devices. This interest has consecutively raised questions about usability, flexibility
and user-friendliness of these code generators in more standard industrial hardware or lab
equipment. To this end, the current paper investigates as a benchmark example the constrained
model predictive control of a real-life Two Input - Single Output hair dryer system that is
controlled with a CompactRIO controller (National Instruments). The aim is to provide practical
information throughout the description of the entire development process (i.e., from model
identification over code generation to MPC implementation and validation). Hence, advantages
as well as possible limitations and pitfalls are explored.
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1. INTRODUCTION

Given the growing processor power of current micro con-
trollers, much research is performed on the development
of techniques capable of solving optimization problems
on these types of devices rapidly and efficiently. To this
end, different strategies have been followed. The first and
classic approach involves the adaptation of currently avail-
able fast optimization algorithms in a language that can
be understood by compilers of micro controllers. In the
case of Model Predictive Control (MPC), this typically
relates to Quadratic Program (QP) solvers. With respect
to the languages, not only common languages as C or
C++ (Ferreau et al., 2008) but also specific languages as
VHDL for FPGA devices (Currie and Wilson, 2010) may
be required depending on the controller type. The correct
adaptation is generally a rather fast process but creates
computational overhead. Another approach is not only to
adapt, but also to rewrite the code in order to remove
this overhead as much as possible. The elimination of
multiplications by zero matrix-entries, for instance, saves a
lot of runtime for a processor. It should, however, be noted
that the removal of these unnecessary calculations has to
be done for each (re)formulation of a specific problem.
As this process is time-consuming and repetitive, it has
to be automated with code generators (e.g., CVXGEN

(Mattingley et al., 2010) and ACADO (Houska et al.,
2010)). Code generation claims to have reached the kHz
range for solving optimization problems on standard PCs.
However, when computation speed is less critical, these
codes can be used in an equally efficient manner on com-
putationally less powerful industry standard controlling
hardware, e.g., Programmable Logic Controllers (PLCs) or
Programmable Automation Controllers (PACs), to control
industrial processes in practice.

Constrained Model Predictive Control (MPC) is in fact an
optimization problem. The calculated inputs are the result
of a Quadratic Programming problem (Maciejowski, 2002;
Camacho and Bordons, 2003). Recent contributions to
the field discussed, e.g., the unconstrained MPC of Single
Input - Single Output (SISO) systems on a PLC without
the use of code generation (Valencia-Palomo et al., 2009).
The current paper, however, investigates the use of the
code generator CVXGEN (Mattingley et al., 2010) for con-
strained MPC on a real life Multiple-Input Single-Output
(MISO) hairdryer set-up using a CompactRIO (National
Instruments) controller. The aim is to provide practical
information throughout the description of the entire devel-
opment process (i.e., from model identification over code
generation to MPC implementation and validation) and
to discuss current advantages and limitations. In addition,



the MPC created with CVXGEN is also compared to the
built-in LabVIEW MPC controller.

This paper is structured as follows. The next section briefly
reviews the basics of MPC. Section 3 describes the exper-
imental set-up and hardware used. Section 4 presents the
model identification procedure and consecutively Section 5
describes and discusses the MPC implementation. Finally,
Section 6 summarizes the main conclusions.

2. MODEL PREDICTIVE CONTROL AS
OPTIMIZATION PROBLEM

Linear model predictive control is well known and investi-
gated in depth in literature (Maciejowski, 2002; Camacho
and Bordons, 2003) and the reader is invited to read these
works for a detailed description. The basic formulation
needed for this paper is given below.

A linear system is described by

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k), (1)

where A € R™" B € R™ and C' € RP*" with m, n and
p, respectively the number of inputs, states and outputs.
The objective of the controller is to find the optimal input
for this system by means of minimizing a cost function,
which for the purpose of this paper, is assumed to be the
following:
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given the constraints for the input: uy;, < u < upqs-
H, and H. are respectively the prediction and control
horizon of the controller. H. < H,, is assumed. () € R™*"™
and R € RP*P are positive definite weighting matrices.
The notation ||x||5 corresponds to x”Sx for x € R"
and S > 0 € R™. Qutput constraints are not taken
into account in this paper. The formulation y(k + i|k)
represents the vector y on time k + ¢ at calculation time
k. Hence, the optimization problem can be formulated as:

HP
Minimize .J = Z ly (k +ilk) — x(k +ilk)||5,
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+Z||u(k+i|k)||i 3)
Subject to  x(k + 1) Ax(k) + Bu(k)

y(k) = Cx(k) (4)

u(?) < Upfax (5)
(Z) > Upfin (6)

This formulation of the problem can now be offered in
an appropriate form to the code generator. The generator
will then provide code that calculates the minimized input
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Fig. 1. Schematic overview of the hair dryer set-up.

vector u where only the first input has to be applied to
the system.

3. HARD- AND SOFTWARE
3.1 Hardware

The set-up consists of a hairdryer whose connections to the
resistor and the fan are made accessible. The fan is driven
by a 24V DC motor and the resistor has a maximum power
of 1400 W taken out of the 230V AC grid. The heating
power delivered by the resistor can be adapted by a solid
state relais with analog control (Gefran GTT 25A 480VAC
- analog control voltage 0-10 V). The fan is controlled
by a DC brushed Servo Drive (National Instruments
NI9505 module). A National Instruments CompactRio
controller system is built with the following elements:
a NI cRio— 9024 Real-Time Controller, a cRIO-9114
Reconfigurable Chassis, a NI 9265 Analog Current Output
module, a NI 9505 DC brushed Servo Drive module and a
NI 9217 RTD 24-Bit Analog Input Module. Temperature
sensors measure the environmental temperature and the
temperature of the heated air as indicated in Fig. 1. Both
sensors types are PT100 class B.

3.2 Software

The CompactRio is programmed with LabVIEW 2010
(Austin, Texas). This graphical language is suited for rapid
application development. The MPC optimization problem
is formulated in CVXGEN (http://cvxgen.com/) and the
code generator provides a number of files written in plain
C-code. The produced C-files are adapted slightly to make
a library of this code. This is an easy way to call C-
code from within the graphical programming language
LabVIEW. The NI cRio— 9024 Real-Time Controller is
equipped with the VxWorks (Wind River Systems, Cali-
fornia) real-time operating system. A gcc-compiler is avail-
able to compile the library function for the VxWorks real-
time operation system.

4. MODEL IDENTIFICATATION

MPC requires a model. Although physical modeling can
be executed rather easily for this set-up, this paper uses
an identified model of the hairdryer set-up. The aim is
to create a two input (fan speed and resistor power)
and single output (temperature) model. For this purpose,
the System Identification Toolbox (Ljung, 2009) from
Matlab is used. Two parametric model classes are used:
(4) continuous transfer function models, where only first-
order models are fitted and, as a state-space representation
is recommended, (i) a subspace state-space identification
(Van Overschee and De Moor, 1996).



4.1 Experiment

The excitation signal is a multisine where both inputs use
different frequencies within the range 0.05 - 0.00125 Hz.
An experiment of length 500 seconds is repeated 4 times.
These 4 experiments are averaged to eliminate distur-
bances. After detrending and normalisation, this dataset,
recorded at a sample rate of 0.1 s, is divided in an estima-
tion and validation subset with each a length of 250 s.

4.2 Model Classes

Two model classes will be employed to construct a lin-
ear MISO black-box model for the hair dryer: a continu-
ous time transfer function and a subspace discrete state
space model. From first principles, the subsystems of the
hairdryer are known to be of first-order. Consequently, a
linear, low-order, continuous-time transfer function of the
form:
_ KP —Tys

Gls) = e (7)
is fitted to the data. Afterwards, this model is discretized
and converted to state-space and is called PEM P1D.

The state-space formulation of a linear system is

x(kT +T) = Ax(kT) + Bu(kT) + Ke(kT)
y(kT) = Cx(kT) + Du(kT) + e(kT) (8)

with parameter matrices A, B, C, D and K. The mea-
surements are sampled at time instances t = kT, with k£ =
1,2,.... The parameters in the general formulation (8) are
identified using the subspace identification method (Van
Overschee and De Moor, 1996). The subspace identified
model is called N4SID.

4.8 Validation

As model validation, the simulation of the dataset is
compared with the data based on a fit measure defined
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where ¢(t) is the simulated output, y(t) the measured
output and 7 (¢) the mean of the measured output. A fit
value of 100% means that the simulation is the same as
the measured output. If the predicted value is the mean
value, the result is 0%.

4.4 Identification results

In Fig. 2 the validation for the two model classes is dis-
played on the validation dataset. The models are simulated
over the horizon of the validation experiment. The first-
order model P1D reaches a Fit of 78%, while the first-
order subspace state-space model ends at 67%. Based on
this observation, the P1D model is selected.

In an industrial environment, set-point changes are com-
mon. To account for this factor, a new validation dataset
containing only steps is recorded. The sequence displayed
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Fig. 2. Validation on multisine validation data. The se-
lected model is the P1D is the first-order transfer
function model.
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Fig. 3. Validation on validation data containing steps.

in Fig. 3 contains successively: (i) an increase of power,
(i1) an increase of fan speed, (i) a decrease of power and
finally (iv) a decrease of fan speed. Based on this plot, it
is clear that the gain of both models is too large. Though
not so clearly, steps causing an increase of the temperature
above the mean temperature do have a smaller difference
then the steps causing a decrease of temperature. This
clarifies that some nonlinear effects, e.g., heat losses, have
to be taken into account when developing a robust con-
troller for this set-up.

The identified model, employed for further development
of the MPC controller, is the P1D model (10). Validation
on step data (Fig. 3) demonstrates this model is too large.
To ensure robustness two other models are created: model
PEM P1Da with gain 0.4 times the gain of the original
model and 7T),; and Ty 0.8 times the original parameters
which is too small. This model and the identified model
are employed to determine the robust settings for the



controller. The implemented model is named PEM P1Db.
The gain is 0.7 times the original PEM P1D gain.

The final identified P1D model is:
—1.33 1.1

— —3.59s
14 12.35s 1+ 18.9s

—3.74s UFan,n

" ¢ :| |:uPower,n :| (10)
where the index n indicates a normalised variable. wpgn, n
and Upower,n are respectively the normalised and de-
trended Pulse Width Modulation (PWM) signal for the
motor and the normalised and detrended voltage applied
to the solid state relais of the resistor. Conversion to state
space of the P1Db model results in a state space model of
order 4. The discretisation interval is 2.5 s. This model is
controllable, observable and stable.

4.5 Conclusion

A model is identified for the hairdryer. A transfer function
model is selected as this is the best performing model, but
also because this model class can be tuned by hand to fit
step validation data closer.

5. MPC IMPLEMENTATION

The optimization problem formulated in Section 2 is
introduced into the CVXGEN code generator available
on the internet (http://cvxgen.com). Comparison of this
controller with LabVIEW MPC, results and comments can
be found in this section.

5.1 MPC controller design

Before code can be generated, some design decisions have
to be made. First of all, a prediction and control horizon
is selected. In literature (Valencia-Palomo and Rossiter,
2010; Shridhar and Cooper, 1998) it is recommended to
take the prediction horizon longer than the settling time.
With a settling time that is three time the longest time
constant, the hairdryer needs a prediction horizon of min-
imum 62 s. Divided by a chosen discretization time of 2.5 s,
the prediction horizon H, has to be at least 25. Although
this is preferred, the designers chose H,, = 16, this to meet
the limit of a maximum 2000 non-zero Karush-Kuhn-—
Tucker (KKT) matrix entries forced by the CVXGEN
code generator. Even though the limit of the KKT matrix
entries might increase in the future, the limit of 2000
KKT matrix entries seems also a hard constraint for the
compiler for the CompactRio device. Larger code results
in compilation or runtime errors. Fortunately, simulation
on computer shows no performance degradation between
H, = 16 and H, = 25. Both controlled temperatures
are the same even though the system model is different
from the controller model. Despite there is no sign of per-
formance degradation for this set-up, other systems with
larger system matrices or a longer prediction horizon, will
get into trouble if the limit is crossed. A control horizon
of 7 time steps is selected.

The optimization problem formated in the CVX format is
given below.
dimensions

m=2
n=4

parameters
A (n,n)
B (n,m)
C (p,n)
Q (p.p) psd
R (m,m) psd
x[0] (n)
yref[t] (p), t=0..Hp
S nonnegative # slew rate limit.
uMax nonnegative
uMin nonnegative
end

variables
x[t] (n), t=1..Hp+1
ult] (m), t=0..Hp
y[t]l (p), t=0..Hp
end

minimize

sum[t=0..Hp] (quad ((y[t]-yref[t]l), Q))
+ sum[t=0..Hc] (quad(u[t], R))

subject to
x[t+1] == Axx[t] + Bxu[t], t=0..Hp
y[t] == C*x[t], t=0..Hp

ult] < uMax, t=0..Hc

ult] > uMin, t=0..Hc

ult] == ul7], t = He+l..Hp

norminf (ult+1] - ult]) <= 8, t=0..Hc-1
end

5.2 Implementation

After code generation, the generated C-code files are
compiled with gcc into an extern C-linkage library. This
library is called from within a small LabVIEW program
that scales the input- and output and exchanges the
information with the correct physical in- and outputs
to manipulate the fan and resistor. This program also
contains a linear kalman filter to estimate the states of the
black-box model. The implementation is rather easy, but
be aware of the process to incorporate the code into your
own program, as this takes more time than to generate
appropriate code.

5.3 FExperimental Results

The controller parameters are tuned in simulation based
on the models P1D and P1Da. As this concerns a test set-
up, no particular goals for the fan speed or resistor power
are put forward. The penalties on both inputs are set
equal which corresponds to R € R?*?2, R = I. Parameter
Q € R™! is adapted to fit the set-point closely. Simulation
experiments have selected @@ to be 15 to ensure a small
steady state error without excessive overshoot. Fig. 4
displays two experiments on the set-up. The solid line
is an experiment where the desired reference is followed
by the CVXGEN MPC controller. The dashed line is the
same reference followed by the LabVIEW MPC controller
with the same settings. To verify the robustness of the
controller, the initial start point of the temperature is
20°C, which is lower than the lowest temperature in the
identification experiment. For the CVXGEN MPC, the
temperature slowly evolves to the set-point but a steady
state error of about 2°C below the set-point is noticed.
This error is also observed during the temperature set-
point decrease to 34°C. When changing the set-point to
50°C, an overshoot to 55°C is observed and a steady
state error of about 2.5°C is seen. Similar results are
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Fig. 4. An overview for the controlled temperature. The
controller parameters ) and R are selected 15 and
R = I respectively.

obtained for the LabVIEW MPC controller. Due to the
different environmental conditions during the experiment,
the reached steady state temperature is lower for the
LabVIEW controller. The calculation time to solve the QP
problem is between 12 and 18 ms for CVXGEN. LabVIEW
is slighly faster with 7 to 10 ms for the calculation of a new
input trajectory.

In Fig. 5 displays the inputs of both experiments. They
stay within the region defined by the constraints and only
at time 40 s and 120 s, the constraints are touched, but
not violated. An important difference is the different input
profile at the start of the experiment. The LabVIEW MPC
keeps the inputs to their steady state value, although the
measured temperature is far away from the desired tem-
perature. Consequently, the temperature evolves slower to
the set-point then possible. In fact, the set-point is never
reached due to model mismatch. To eliminate the steady
state error, the MPC problem needs to be reformulated
with an additional integrator to create a so-called aug-
mented system (see, i.e. Wang (2009)). The LabVIEW
MPC works with an augmented model. Another possibility
is to add an external integrator not incorporated into the
model. This keeps the model, and hence, the QP problem
smaller than with an incorporated integrator. This proce-
dure is followed for the CVXGEN MPC. Although a code
generator for MPC takes a lot of work out the hand of the
developer, only a properly designed problem formulation
can generate appropriate code.

5.4 FExperimental results with integrator

In this work the procedure described by Maciejowski
(2002), is implemented to eliminate the steady state error.
The reference temperature is replaced by the reference
corrected by the difference of the predicted and measured
temperature:

Yref,int = Yref — (ypredicted - ymeasured)- (11)
The result is displayed with a solid line in Fig. 6. Parame-
ter @ is selected by simulation and set to 5 as the controller
is less stable caused by the error correction. Experimental
results in simulation, as well as on the hairdryer set-up
resulted in an oscillatory behavior of the temperature with
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Fig. 5. An overview of the inputs. The controller parame-
ters @ and R are selected 15 and R = I respectively.

higher @, e.g., @ = 15, which is of course undesired. The
temperature at the start is the environmental temperature,
which is situated outside the working area of the model.
To reach the set-point temperature at the start, both
controllers introduce a large, but similar, overshoot. For
further set-point changes, only at the transition from 42°C
to 50°C a small overshoot is observed. Both MPC con-
trollers behave similar. There is an offset for each set-point
temperature and for the temperatures higher then 40°C,
small oscillations are observed for 50 s after a set-point
change. The offset of the LabVIEW controller increases
when the temperature decreases from 100-200 s. For all
other temperatures the offset is more or less constant. The
offset is never removed completely. For the CVX MPC
controller, this can be explained by the use of Eq. 11. For
the LabVIEW MPC controller the cause is not clear. Sim-
ulations make clear it is not the controller. Depending on
the needed heating power, the resistor is switched ON and
OFF during some periods the current sine wave. This way
of heating might disturb the MPC controller an maintain
the offset. The ripple seen after set-point changes, is caused
by the difference between the controller model and the real
system. The real temperature increase is faster than the
decrease and the linear model is a best fit model. A small
time shift is observed between both experiments. The peak
at the start is shifted one controller step behind the CVX
MPC controller. This is caused by the initialization of the
controller as the former control output is not available at
the start.

Fig. 7 plots the inputs for the experiment with integrator.
For CVXGEN MPC, the results are very similar to the
experiment without integrator: the controller saturates at
the constraint for time 40 s and 120 s. In this experiment,
the constraints are reached at the starting point of the
experiment, causing the large overshoot in the beginning
compared to overshoot further in the experiment. The
inputs calculated by the LabVIEW MPC vary less when
a set-point has the be kept. This is clearly seen at the
timeslots between 100-200 s and 300-400 s.

5.5 Conclusions and remarks

Implementing a new algorithm is only useful when the new
algorithm performs better than what is already available.
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Fig. 6. An overview of the measured temperature with in-
tegration in the controller. The controller parameters
Q@ and R are selected 5 and R = I respectively.

Better is relative and depends of course on what is needed
or wanted for a particular application. Code generators,
e.g., CVXGEN and ACADO, are continuously updated
and are equipped with the latest knowledge about fast QP
solvers. Is code generation worth the effort? For CVXGEN,
the limit of 2000 KKT matrix entries is restrictive, but
the practitioner get a state-of-the-art controller. The code
generation is fast and straightforward, but the practitioner
has to be aware of the time consuming process of incor-
porating the code into his/her own program. As a code
generator only provides code for the provided problem,
additional problems, i.e., incorporation of the integrator in
the controller for this problem, has to be done beforehand.
The LabVIEW MPC is very easy to implement and well
documented. A drawback is the complexity of this type of
controller.

6. CONCLUSION

This paper discusses the use of a code generator on a pro-
grammable automation system. It has been demonstrated
that the CVXGEN code generator delivers very reliable
code that can be implemented on a programmable automa-
tion controller system. However, to generate useful code
one needs to formulate the problem properly. The limit
of 2000 KKT matrix entries posed by the CVXGEN code
generator is restrictive, although this size should be suffi-
cient, even for (slow) processes that need long prediction
horizons. An advantage by using the code generator is the
perfect knowledge of the implementation as this generation
is close to the mathematical formulation. The LabVIEW
MPC is fast, easy to implement, but its complexity makes
it difficult to explain its behaviour.
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