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Abstract: This paper describes the identification of a binary distillation column in view
of introducing an MPC system. Since the intension is to exploit only Programmable Logic
Controllers (PLCs), which are commonly used in practice but have a limited computational
power, accurate but also simple (linear) models have to be constructed. Hereto, several types of
linear black-box MIMO models (i.e., ARX, ARMAX, output error) are identified and reduced
based on a Hankel Singular Value decomposition. Models are derived for two data sampling
rates, one with 5 s and one with 60 s. It has been observed that (i) only ARX and ARMAX
models are able to predict the column’s behavior accurately and that (ii the best prediction in
validation is obtained for the ARMAX models.

1. INTRODUCTION

In a world where economic and environmental issues be-
come more and more important, efficient control systems
have become indispensable. When dealing with complex
processes, Model Predictive Control (MPC) is one of the
possible control strategies. According to Piche et al. [2000]
more than 2000 MPC controllers are used in industry.
Most of these industrial MPC applications use linear
empirical models [Qin and Badgwell, 2003]. In practice,
current linear and non-linear MPC algorithms require
powerful computers. However, since Programmable Logic
Controllers (PLCs) with less computational power are used
a lot in industry for control, it might be interesting to
explore the possibilities and limitations of these devices
for MPC. As an industrial example, a pilot scale binary
distillation column, is selected. The column is currently
controlled by PI controllers, but the goal is to upgrade
the control system with a linear MPC running on a PLC.
However, before a model based controller can be used on
a PLC, an accurate (but simple) process model has to
be constructed. Hence, the aim of this paper is to derive a
black-box Multiple Input Multiple Output (MIMO) model
for the column, but we limit ourself to linear parametric
models (e.g., ARX, ARMAX, and output error).

The paper is structured as follows. Section 2 describes the
binary distillation column. Section 3 presents the identifi-
cation procedure covering data collection and preparation,
model selection and validation. The resulting identified
models and the validation results are reported in Section 4.
Finally, Section 5 summarises the main conclusions.

2. DISTILLATION COLUMN SET-UP

The experimental set-up involves a computer controlled
packed distillation column (see Figures 1 and 2). The
column is about 6 m high and has an internal diameter
of 6 cm. The column works under atmospheric conditions
and contains three sections of about 1.5 m with Sulzer
CY packing (Sulzer, Winterthur) responsible for the sep-
aration. This packing has a contact surface of 700 m2/m3

and each meter packing is equivalent to 3 theoretical trays.
The feed stream containing a mixture of methanol and
isopropanol is introduced into the column between the
packed sections 2 and 3. The temperature of the feed can
be adjusted by an electric heater of maximum 250 W. At
the bottom of the column a reboiler is present containing
two electric heaters of maximum 3000 W each. In the
reboiler, a part of the liquid is vaporised while the rest
is extracted as bottom stream. At the column top a total
condensor allows to condense the entire overhead vapour
stream, which is then collected in a reflux drum. A part of
the condensed liquid is fed back to column as reflux, while
the remainder leaves the column as the distillate stream.

In this set-up the following four variables can be manipu-
lated: the reboiler duty Qr (W), the feed rate Fv (g/min),
the duty of the feed heater Qv (W) and the distillate
flow rate Fd (g/min). Measurements are available for the
distillate flow rate Fd (g/min), the feed flow rate Fv
(g/min) and nine temperatures, i.e., the temperature at
the top of the column T t (◦C), the temperatures in the
center of every packing section (Ts1 (◦C), Ts2 (◦C) and
Ts3 (◦C), respectively), the temperature between section 1
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Fig. 1. Diagram of the pilot scale distillation column.

Fig. 2. Pictures of the pilot scale distillation column:
condenser (left), packed section and feed introduction
(centre), and reboiler (right).

and 2 Tv1 (◦C), the temperature between section 2 and 3
Tv2 (◦C), the temperature in the reboiler of the column
Tb (◦C), and the temperatures of the feed before and after
heating (Tv0 (◦C) and Tv (◦C), respectively). All actua-
tors and sensors are connected to a Compact Fieldpoint
(National Instruments, Austin) with a controller interface
cFP-2100 and I/O modules cFP-AIO-610 and cFP-AI-
110. A Labview (National Instruments, Austin) program
is developed to control the actuators and to register the
variables. There is no online measurement of the concen-
trations in the distillate and bottom stream, but they can
be inferred from the temperatures.

3. MODEL IDENTIFICATION

For linear MPC, a linear model is required. Therefore, a
parametric model is fitted following the Box-Jenkins mod-
elling procedure. In order to construct the model following
steps are performed: (i) Experiment, (ii) Data prepara-
tion, (iii) Model selection and Parameter estimation, and
(iv) Validation. The processing is performed using the
Matlab System Identification Toolbox [Ljung, 2008].

3.1 Experiment

Before the experiment is started, the column is kept for
two hours at a constant operating point to ensure the
column is in steady state. The nominal steady state values
of the different manipulated variables are: a distillate flow
rate Fd of 70 g/min, a feed flow rate Fv of 150 g/min, a
feed heater duty Qv to maintain a feed temperature Tv of
40 ◦C and a reboiler power Qr of 4400 W. These nominal
values are known to yield an appropriate operating point
for the column. When the column has reached steady state,
Pseudo Random Binary Noise (PRBN) test signals are
applied. These PRBN test signals are passed either to
the setpoints of the different PI controllers in the system
or directly to the manipulated variables as shown on the
schematic overview of the column’s loops and measuring
points in Figure 3.

When the PRBN signals are applied, all manipulated
variables switch between 2 values. The distillate flow rate
Fd varies between 60 and 80 g/min, the feed flow rate Fv
changes between 120 and 180 g/min, the feed heater duty
Qv is manipulated to obtain feed temperatures Tv of 35
and 45 ◦C, and the reboiler power Qr switches between
3900 and 4900 W. The ambient temperature cannot be
manipulated and is considered as a disturbance input of
the system. The data are recorded with a sample period of
20 ms, which is also the time between two program loops
of the Labview program controlling the column.

The outputs of the system are five temperatures along the
column, i.e., the top temperature T t, the temperature in
the middle of the first Ts1, second Ts2 and third packing
Ts3 and the bottom temperature Tb.

3.2 Data preparation

The original dataset, which is recorded at the same rate
as the control of the column, i.e., 50 Hz, is reduced to a
dataset with a sampling period of 5 s (dataset A), and a
dataset with a sampling period of 60 s (dataset B). This
reduction is done by simply taking the recorded value
every 5 or 60 s without averaging or (pre)filtering. In
literature, e.g., in Qin and Badgwell [2003], is indicated
that MPC algorithms work with interval times of one
minute or higher, so the model extracted from dataset
B will probably be used. However, if technically possible,
the model from dataset A with a sampling interval of
5 s will be employed. Before the identification process is
started, the data are detrended and normalised. Finally,
the recorded data are split into two parts: the first 2/3
are used to identify the model and will be referred to as
dataset X1, while the rest is exploited for validation and
will be referred to as dataset X2, where X is A or B.

3.3 Model selection and parameter estimation

The aim is to construct linear MIMO black-box models for
the distillation column. Hereto, different polynomial mod-
els are tried, e.g., ARX, ARMAX, and output error (OE),
which can all be represented for nu control variables and
ny output variables by the following general formulation
[Ljung, 2008]:
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Fig. 3. Diagram of the column’s control loops (i.e., three PI-controllers) and measuring points.

A(q)y(t) =

nu
∑

i=1

Bi(q)

Fi(q)
ui(t − nki

) +
C(q)

D(q)
e(t). (1)

Here, A(q), Bi(q), C(q), D(q) and Fi(q) are matrix poly-
nomial expressions in the shift operator q−1 which shifts
samples back in time. The order of the polynomial expres-
sions is indicated by respectively na, nb, nc, nd and nf . nk

introduces for the control an additional shift back in time
in order to incorporate system delays. For the MIMO ARX
model, only the matrix polynomial expressions A(q) and
Bi(q) have to be fitted in Equation (1).

To identify a MIMO ARX model for dataset A1, models
are constructed with different values for parameters na,
nb, and nk. na and nb are allowed to change from 1 to 25,
nk is fixed and set equal to 1 due to the fact that some
variables change faster than the sample period of 5 s. For
dataset B1, the parameters na and nb are adapted between
1 and 20 while nk is set again equal to 1. Higher values for
nk lead to less accurate models for both datasets.

For ARMAX models, polynomials A(q), Bi(q), and C(q)
have to be estimated in Equation (1), while for OE models
the polynomials Bi(q) and Fi(q) have to be estimated.
Direct identification of MIMO ARMAX and OE models is
currently not possible with the system identification tool-
box. Nevertheless, a MIMO state space (re)formulation of
these models can be identified [Ljung, 2008]:

x(kT + T ) = Ax(kT ) + Bu(kT ) + Ke(kT ) (2)

y(kT ) = Cx(kT ) + Du(kT ) + e(kT )

with parameter matrices A, B, C, D, and K. The mea-
surements are sampled at time instants t = kT , with
k = 1, 2, . . . . To estimate the equivalent (re)formulation
of an MIMO OE model, parameter K in Equation (2) is
defined 0. When K is estimated too, actually a MIMO
ARMAX model is created. The parameters in the general
formulation (Equation (2)) are identified using the sub-
space identification method [Van Overschee and De Moor,
1996]. The model order for identification of the equivalent
state space models is varied between 5 and 30.

To compare different models and to derive the correct
model order, the Akaike Information Criterion (AIC)
[Akaike, 1974, Ljung, 1999] is adopted. A lower value of
AIC indicates a more accurate model. AIC is defined as:

AIC = log(V ) +
2d

N
(3)

where V is the loss function, d the number of estimated
parameters, and N the number of values in the estimation
data set. The loss function V is equal to the determinant
of the covariance matrix of the prediction error:

V = det

(

1

N

N
∑

1

ǫ(t, θN ) (ǫ(t, θN ))
T

)

. (4)

The model order of the model, selected based on the min-
imal AIC value, is converted to its minimal realisation by
pole-zero cancellation to improve numerical performance.
Then, the Hankel Singular Values, representing the state
energy of the different states, are determined. States with
a state energies lower than 0.3 are neglected in view of an
additional model reduction.

3.4 Validation

As model validation, the prediction of dataset A2 and B2
is compared with the data based on a fit measure:

fit = 100%

(

1 −
|ŷ(t) − y(t)|

|y(t) − ȳ(t)|

)

(5)

where ŷ(t) is the predicted output, y(t) the measured
output and ȳ(t) the mean of the measured output.

To have an idea of the model accuracy, one month later,
with a different ambient temperature, a new experiment
has been performed. The derived models are used to
predict the outputs of this new dataset. Dataset C contains
the data resampled to 5 s and dataset D consists of the
data resampled to 60 s. Datasets C and D are prepared
in the same way as datasets A and B respectively, except
that the mean value and standard deviation needed for
normalisation are taken from datasets A and B.

4. RESULTS

This section describes the results for ARX and ARMAX
models according to the procedure described above. Iden-
tification of OE models has resulted in inaccurate models
with very high order and is therefore not discussed.

4.1 ARX model identification

The AIC index of every model is calculated and compared.
For dataset A1, the model with the lowest AIC index is
a model with na = 9, nb = 5 and nk = 1, referred to as
arx951. As can be noticed in Figure 4, the AIC index is



hardly changing for varying na and nb, where na is larger
than 2. This observation allows the use of different na and
nb values with AIC values close to the proposed model.
The reason for this flat surface can be a too fast sampling
rate or in other words: new samples do not always contain
new information.

State space conversion of this model results in a 70th
order model. To improve numerical performance a model
reduction based on pole-zero cancellation is performed,
which results in a model with 49 states. The Hankel
Singular Value calculation indicates that a lot of states
contribute less to the dynamics of the column. So, states
with a state energy lower than 0.3 will be neglected. This
results in a stable model (arx951r) with 10 states. Ten
zeros exists and seven are located outside the unit circle
causing non-minimal phase behavour.

For dataset B1, AIC proposes a model with na = 4, nb

= 2 and nk = 1 (arx421). This time, a clear minimum
can be seen in Figure 5 for the AIC values of different
ARX models. After conversion to a state space formulation
and pole-zero cancellation, the original 30 states model
is reduced to a 20th order state space model. Removing
states with energy higher than 0.3 results in a 6th order
stable model (arx421r). Six zeros exist and four of them
are located outside the unit circle.

4.2 ARMAX - State Space model identification

As mentioned before, state space (re)formulations of
MIMO ARMAX models are identified. In the top plot of
Figure 6, the AIC values of different state space model
orders for dataset A1 are depicted. As can be noticed,
a minimum is reached for a model order 16 which will
we referred to n4s16. For model orders increasing until
16, a steep decent is witnessed while for higher model
orders only a slight increase is observed. Also this time
a too fast sample rate can be the reason. Despite the
shallow minimum for the AIC, a model order of 16 has
been chosen to fit. A threshold of 0.3 for the state energy
of the Hankel Singular Values, results in a reduced model
with order 9 (n4s16r). Nine zeros exists and seven of them
are located outside the inner circle, which leads to non-
minimum phase behaviour.

In the bottom plot of Figure 6, a clear minimum for the
AIC index for dataset B1 is reached for a model order of
13. This model is referred to as n4s13. Model reduction
with Hankel Singular Value decomposition results in a 6th
order model (n4s13r) with 6 poles and 6 zeros with 5 of
them lie outside the unit circle.

4.3 Model validation on original data

For the identification of the models, each time the first
part of every dataset has been used. For the model
validation, however, the last part, i.e., dataset A2 and
B2, are employed. Due to space limitations, only the
resulting comparative plots of the two most important
outputs are depicted. These outputs are, from the chemical
point of view, the top temperature T t and the bottom
temperature Tb. A prediction horizon of 105 minutes is
proposed because it takes the column approximately 90
minutes to reach steady state. For dataset A and B, these
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Fig. 4. Dataset A1: AIC values for ARX models with na
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horizons correspond to 1260 and 105 steps respectively.
On all plots, only predictions with reduced models are
depicted.

For dataset A1, the general behaviour of the top tempera-
ture is predicted well as can be seen on Figure 7. However,
the behaviour of the measured signal is not followed well
in the peaks. The best performing reduced model is the
state space model (n4s16r). This model approaches the
measured signal the closest.

In Figure 8, it can be seen that the prediction for the
reboiler temperature covers almost all the time the mea-
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Fig. 7. Dataset A2: top temperature prediction.
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Fig. 8. Dataset A2: reboiler temperature prediction.

sured signal. The measured signal varies only 0.9 ◦C and
becomes noisy due to normalisation. Both the ARX model
(arx951) and the reduced state space model of this model
(arx951r) deviate from the measured output at some peaks
resulting in an offset during the second part of the predic-
tion.

For dataset B similar conclusions can be drawn. The top
temperature (see Figure 9) suffers from the same problem
as in dataset A, i.e., the dynamics at the peaks are not
fitted well, but the general shape is correct. The reboiler
temperature (Figure 10) is predicted well but shows again
an offset in the second part of the prediction.

Table 1 prints the fit values according to Equation (5).
All reduced models have slightly lower fit values than
the original models. Only for the reduced ARX model
for dataset A (arx951) this is not the case. The higher
values are caused by numerical issues, but also show there
is room for further reduction. In both datasets the overall
performance of the reduced ARMAX models is better than
the reduced ARX models. So, these models, i.e., n4s16r
and n4s13r, are the preferred model for prediction. The fit
values of the corresponding models for dataset A and B are
most of the time higher for dataset A. The table also shows
that the best fitted temperatures is Ts2 or Ts3, followed
by the reboiler temperature and the temperatures at the
top of the column.

To conclude, the preferred model for both datasets is the
ARMAX model in state space formulation.
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Fig. 9. Dataset B2: top temperature prediction.
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Fig. 10. Dataset B2: reboiler temperature prediction.

Table 1. Fit values for dataset A2 and B2 (%).

Fit dataset A Fit dataset B
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Tt 69.5 69.6 76.0 72.3 73.4 68.0 72.4 62.4
Ts1 78.9 79.0 78.0 75.7 71.0 65.6 78.0 70.0
Ts2 85.6 85.8 85.2 81.5 79.8 72.2 82.8 76.8
Ts3 82.1 82.1 83.9 82.6 74.0 63.3 81.9 73.5
Tb 76.8 76.8 83.2 81.4 73.8 67.9 81.9 74.3

4.4 Model validation on new data

In priciple, the models validated in the previous subsection
can be implemented. However, to have an idea of the
influence of the measured and unmeasured disturbances,
new data are recorded and predictions are depicted in
Figures 11 to 14. These plots show a higher deviation
from the measured value than the plots with the validation
in the old data. Nevertheless, the general trend is still
followed.

Based on the fit values presented in Table 2, the state space
models still perform the best for all the temperatures,
except the reboiler temperature, in both datasets. The
significant deviation seen in the plots shows that not all
influences are captured in the model. Possible unmeasured
disturbances are the humidity and composition, i.e., the
slow evaporation of the lowest boiling component out of
the (closed) pilot scale column. Another step in the ame-
lioration of the models can be taken by combining parts
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Fig. 11. Dataset C: top temperature prediction.
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Fig. 12. Dataset C: reboiler temperature prediction.

Table 2. Fit values for dataset C and D (%).

Fit dataset C Fit dataset D
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Tt 47.2 45.2 54.1 53.6 55.0 54.5 62.4 59.6
Ts1 21.4 21.9 34.6 33.9 19.9 17.2 24.0 18.9
Ts2 30.3 19.6 43.2 41.8 33.5 31.1 35.6 31.0
Ts3 45.2 43.5 43.4 42.8 34.8 33.2 52.9 49.1
Tb 36.3 33.5 30.8 30.4 43.2 42.0 30.9 28.2

of dataset A and C into a new set used for identification.
This is currently not performed. The authors believe that
an MPC controller can deal with these imperfections of
the model via the repeated updates and feedback.

Currently, the ARMAX models, i.e., n4s16r and n4s13r,
for sampling period of 5 s and 60 s, respectively, will be
used in further work to control the temperatures of the
column.

5. CONCLUSION

In this paper, two dynamic black-box MIMO models of a
distillation column have been succesfully derived in view
of an implementation of an MPC on PLC hardware. ARX,
ARMAX and OE models have been identified and reduced
to low order MIMO models in state space formulation.
The best performing models, one with a sample rate of 5 s
and one with a sample rate of 60 s, are both state space
ARMAX models. Although not perfect, these models will
be used in further research, since the authors are convinced
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Fig. 13. Dataset D: top temperature prediction.
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Fig. 14. Dataset D: reboiler temperature prediction.

these models are both accurate and simple enough to
perform well in an MPC scheme on PLCs.
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