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Abstract. Pancreatic cancer is one of the leading causes of cancer-related death 
in the industrialized countries and it has the least favorable prognosis among 
various cancer types. In this study we aim to facilitate early detection of the 
pancreatic cancer by finding minimal set of genetic biomarkers that can be used 
for establishing diagnosis. We propose a genetic algorithm and we test it on 
gene expression data of 36 pancreatic ductal adenocarcinoma tumors and 
matching normal pancreatic tissue samples. Our results show that a minimum 
group of genes are able to constitute a high reliability pancreatic cancer 
predictor.  
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1   Introduction 

In present, pancreatic cancer is considered as one of the most lethal of common 
cancer types [1]. At this moment, pancreatic cancer holds the eighth most common 
cause of cancer related deaths with survival rate of less than 5%, five years after the 
diagnosis. Its lethality is largely due to the fact that is diagnosed at a later stage, 
which significantly decreases the chance of patient’s survival. The most common type 
of pancreatic cancer, accounting for 95% of these tumors, is adenocarcinoma or 
PDAC. An additional problem is that PDAC has an extremely poor prognosis, as it 
seems that pancreas emits few clues to signal the carcinogenic process. 

During the last years, several research teams have tried to detect molecular markers 
that facilitate early detection of the disease so that appropriate treatment could be 
applied timely [2-3]. There are several cases where such a set of biomarkers has been 
proposed, but none of them has been shown to be robust enough to constitute a 
diagnosis classifier [4]. Additionally, given the biomarker discovery problem, it is 



rather difficult to extract knowledge from high throughput data as it suffers from 
curse of dimensionality and high level of noise [5]. 

In this contribution we apply a genetic algorithm on an publically available gene 
expression dataset (from GEO database [6] by [7]) and we try to obtain the minimum 
set of biomarkers that can be used for detection of pancreatic cancer. Due to the non-
deterministic nature of the genetic algorithms, we performed extensive experiments 
and we show that the each time selection of biomarkers produces a classifier with a 
relatively robust performance. We also formed a list out of the most “popular” genes 
presented in the final results of each run and show the biological relevance of them 
for pancreatic cancer. Finally, we provide numerous performance metrics such as F-
measure and accuracy. For these we obtain high values for almost all runs proving the 
efficiency of the proposed method.  

The remaining of the paper is organized as follows: section 2 introduces the 
proposed genetic algorithm relative to chromosome encoding, initialization 
procedure, fitness function and genetic operators. Also, more information about the 
dataset used in our experiments is given. Section 3 presents our results and gives a 
overview of the biological significance of the biomarkers found. Finally, in the last 
section, we present our conclusions and directions for future work. 

2   Methods 

2.1   Microarray gene expression data for pancreatic cancer  

The dataset used in our experiments contains pairs of normal and tumor tissue 
samples which were obtained at the time of surgery from resected pancreas of 36 
pancreatic cancer patients [8]. All the patients were suffering from PDAC. Gene 
expressions were obtained using Affymetrix U133 plus 2.0 whole genome 
microarrays. Also, 6 control samples (3 normal and 3 tumor) were present in dataset, 
which were used to test the quality of the rest obtained samples. In total, this dataset 
includes 19898 genes and 78 genechip hybridizations have been performed. This 
dataset is freely available at GEO database where the reader can find more 
information (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15471). 

2.2   The proposed Genetic Algorithm (GA) 

The efficiency of GAs has been proved by successful applications in many different 
scientific fields, including bioinformatics [9, 10], where they surpassed other 
algorithmic strategies for optimization and search. The GAs are stochastic algorithms 
that simulate the process of natural evolution. Based on this model, all GAs use three 
simple operators, which allows them to evolve and reach near optimal solutions [11, 
12]. These are the Selection, Crossover and Mutation operators. 

Initially, we randomly divided the expression dataset to 70% training (53 samples) 
and 30% test (25 samples) data. For the chromosome encoding we chose a one 



dimensional binary array representation where each position corresponds to biological 
gene (Figure 1) to be included as a biomarker. We chose this representation because it 
gave us the opportunity to perform experiments with different mutation and crossover 
operators. In the end, as there were no significant changes in the performance of the 
GA, we chose to use the single point crossover and uniform mutation. 

 
Fig. 1. Chromosome Encoding. 

As a selection operator we chose to use a stochastic universal [13]. In the fitness 
function, which is the heart of each GA, we tried to achieve balance between the F-
measure of a classifier and the size of the corresponding solution, penalizing solutions 
that contain many genes. Following is the formal expression of the fitness function 
used to evaluate each chromosome: 

 
where the size_of_chromosome is the number of genes that are used as biomarkers in 
the chromosome and mean_size_of_initial_population is the mean number of genes 
that are used as biomarkers in the initial population of the GA, across all 
chromosomes. This particular form of fitness function pushes GA to select solutions 
that contain a small number of genes and are as accurate as possible. We 
experimented with different weights in order to boost one metric over the other but 
we obtained similar results, just with slower convergence. The F-measure metric has 
been preferred as it is geometric average of the precision and recall, both being of 
great interest when designing diagnostics tests. The efficiency of this strategy is 
clearly shown in the next section were our experimental results are presented in more 
detail. To classify samples given biomarkers selected in each chromosome of the 
population, we used a Support Vector Machine (SVM) with Gaussian Radial Basis 
Function (RBF) kernel function [14]. This also adds two parameters in the system that 
has to be tuned: the sigma and the penalty parameter c. These two parameters were 
represented, as the additional chromosome for each individual solution, constituted of 
7 bits per each parameter, which were also tuned as the by-product of GA evolution.   

The structure and operation of the proposed algorithm is presented in Figure 2. In 
the initialization procedure, a random population was created, where the 10% of the 
bits that represents the gene panel and 50% of the bits that represents the SVM 
parameters were set to 1. This way, an initial generated chromosome contains around 
200 genes in average. We reassured that the individuals that constitute the first 



generation were spread in the whole search space of possible solutions in order to 
avoid local optima solutions. In the next step, each chromosome is evaluated by the 
fitness function. Then, if the maximum number of generations is not reached, the 
three operators (selection, crossover and mutation) were applied consequently to 
create the new population. When the maximum number of generations is reached, the 
GA outputs the best solution generated throughout its execution. In all the performed 
experiments, the probability of was 0.7, while that of mutation was equal to 10-4 per 
bit, for all bits and all chromosomes. This means that in average two bits per 
chromosome were changing during the mutation. The size of the population has been 
set to 500 and the maximal number of generations to 500 (the number of generations 
was used as termination criterion). 

 
Fig. 2. Structure and operation of the proposed GA. 

3   Results and Discussion 

As the GAs are essentially stochastic, each run produced slightly different list of 
biomarkers. However, after performing 100 runs of the algorithm using the same 
operators and parameters, all the generated results had similar performance, achieving 
high values for performance metrics. Additionally, the number of genes that were 
selected in each run was approximately stable (around 16 with a deviation of 2). 
These values of the GA’s parameters were selected by trial-and-error method after 
performing additional experiments. 

The convergence of our algorithm and the reduction of the number of genes taking 
part in the best chromosome of each generation were similar in all our experiments, 
following the pattern presented in Figure 3. It is clear that the performance of the 
algorithm stabilizes approximately after 200 generations, and it remains literally 



unchanged approximately after the 300th generation. After the training process, we use 
the best chromosome produced to classify the test data using a SVM classifier. Note 
that during the training process, the parameters of a SVM the also optimized.  

 
Fig. 3. Fitness function value and size of best chromosome during GA evolution. Most of our 

experiments followed the same pattern. 

 
Fig. 4. Box plot presenting the variance of the evaluation metrics. 

In order to evaluate the classification results, we used well-established metrics for 
classification such as F-measure, Prediction, Recall and Accuracy [15]. As it can be 
seen in Figure 4, the GA algorithm achieves on average 88% for F-measure and 
Accuracy metrics. 



Even the list of biomarkers generated by the GA varies for every execution of the 
algorithm, one could expect that the genes that are somehow functionally related to 
pancreatic cancer should be present most of the times in results. To examine this, we 
counted genes that were present in solutions with corresponding fitness values higher 
than the average in the last generation of the GA. We repeated this procedure for 
every run of the algorithm. The 20 most “popular” genes are presented in Figure 5. 

 
Fig. 5. The first 20 most popular genes in 100 different GAs runs. 

We assessed the functional characteristics of the resulting set of genes using the 
Ingenuity Pathway Analysis suite. Out of the top 15 genes 7 genes were found to be 
associated with cancer (MMP7, NOTCH3, PDZK1IP1, NDUFAF4, CLDN1, 
NALCN, PNMA2). The top ranking gene, MMP7, has previously been reported to be 
overexpressed in pancreatic ductal adenocarcinomas and not in normal pancreatic 
tissue [16-17] and is believed to apply apoptotic pressure to epithelial cells. The 
second best ranking gene, NOTCH3, is part of the Notch signaling pathway, which is 
well studied in carcinogenesis of many different types of cancer [18-19]. NALCN, 
together with other genes involved in axon guidance, has recently been shown by 
Blankin et al. to show a significant higher number of aberrations in pancreatic cancer 
compared to control [20]. The remaining cancer-related genes (PDZK1IP1, 
NDUFAF4, CLDN1, PNMA2) were associated with non-pancreatic cancers or 
involved in apoptosis and/or cell proliferation pathways.  



4   Conclusions and Future Work 

In this manuscript a GA has been proposed, developed and applied on PDAC data 
to classify tissue samples. Our benchmark shows that the method results in robust 
classifiers for pancreatic cancer. In addition, the algorithm provides a list of 
biomarkers that play the most important role in this lethal disease as a by-product. 
However, due to stochastic nature of the GA, we decided to statistically measure the 
importance of the genes by measuring their appearances on “good” solutions 
generated by the GA in all our experiments, which is also suggested procedure if one 
should use the method for biomarker mining. Our results were verified by the 
biological significance of these genes in specific biological functions in human 
organism. 

Our future plans include the optimization of the classification process of tissue 
samples by using the generated “popular” gene list as biomarkers and trying to 
optimize different kind of classifiers through a new genetic algorithm. Moreover, to 
further examine robustness of the method we are going to apply the resulting 
classifier on additional gene expression datasets on this type of cancer.  
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