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1 Introduction

Autoregressive moving-average (ARMA) models regress an
observed output sequence on its own lagged values and on a
linear combination of unobserved, latent input samples [1].
They emerge in a wide variety of domains, e.g., in mod-
eling industrial processes, financial time series, or smart
utility grid applications (electricity, water, etc.). More-
over, the ARMA model structure is an important building
block for more sophisticated models, e.g., ARMA models
with exogenous inputs (ARMAX) and autoregressive inte-
grated moving-average models (ARIMA). Although numer-
ous identification techniques already exist, most of them rely
on nonlinear numerical optimization and do not guarantee to
find the global optimum. We tackle and resolve this hiatus
and identify ARMA models exactly, i.e., find the globally
optimal least-squares ARMA model parameters, by solving
an eigenvalue problem.

2 Research methodology

An ARMA model combines a regression of the output sam-
ple yk ∈ R on its own lagged values yk−i with a linear com-
bination of unobserved, latent inputs ek− j ∈ R [1]:
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γ jek− j, (1)

where na and nc are the orders of the autoregressive and
moving-average part, respectively. Without loss of general-
ity, we fix α0 = γ0 = 1. The identification of ARMA models
corresponds to a multivariate polynomial optimization prob-
lem and searches, for given data y∈RN , the unknown model
parameters αi and γ j, ∀i = 1, . . . ,na and ∀ j = 1, . . . ,nc.
Hence, it minimizes the squared 2-norm of the unknown la-
tent input vector e ∈RN−na+nc , subject to the ARMA model
structure:

min
a,c,e
‖e‖2
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s.t. Tay = Tce
(2)

The model matrices Ta and Tc are banded Toeplitz ma-
trices of appropriate dimensions in the parameters αi and
γ j. Although typically solved via nonlinear numerical opti-
mization techniques, we approach this optimization problem
from a linear algebra point of view and find the globally op-
timal model parameters by solving an eigenvalue problem.

After rewriting the cost function, we obtain, via the first
order optimality conditions, a system of multivariate poly-
nomial equations, in which most variables appear linearly.
This system corresponds to a multiparameter eigenvalue
problem (MEP), which we solve using the block Macaulay
matrix (an extension of the ordinary Macaulay matrix for
MEPs). Its null space is a multidimensional observability
matrix with a multi-shift-invariant structure (see Dreesen et
al. [2]). We apply multidimensional realization theory to
exploit this structure and to set up an eigenvalue problem in
that null space, of which the eigenvalues correspond to the
roots of the system, hence, giving us the globally optimal
least-squares model parameters.

3 Presentation outline

In our presentation, we will explain how we can find the sys-
tem of multivariate polynomial equations and set up, using
the new block Macaulay matrix, the eigenvalue problem, of
which one of the eigenvalues corresponds to the globally op-
timal least-square model parameters. Furthermore, the pre-
sentation will elaborate on this block Macaulay matrix and
the multi-shift-invariant structure of its null space.
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