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Abstract—We show that globally optimal least-squares iden-
tification of autoregressive moving-average (ARMA) models is
an eigenvalue problem. The first-order optimality conditions of
this identification problem constitute a system of multivariate
polynomial equations, in which most variables appear linearly.
This system is basically a multiparameter eigenvalue problem
(MEP), which we solve by iteratively building a so-called block
Macaulay matrix, the null space of which is block multi-shift-
invariant. The set of all stationary points of the optimization
problem, i.e., the n-tuples of eigenvalues and eigenvectors of the
MEP, follows from a standard eigenvalue problem (EP) related
to a multidimensional realization problem in that null space. At
least one of these n-tuples corresponds to the global minimum
of the original least-squares objective function. Contrary to
existing heuristic techniques, this approach yields the globally
optimal parameters of the ARMA model. We provide a numerical
example to illustrate the new identification method.

Index Terms—Linear systems, identification, optimization.

I. INTRODUCTION

E IGENVALUE problems prevail in nature and science.
More particularly, eigenvalues form the cornerstone of

systems and control: They characterize stability, controllabil-
ity, and observability of linear time-invariant (LTI) dynamical
systems [1], arise in the steady-state solutions to LQR control
and Kalman filtering problems [2], solve model reduction
problems like modal approximation [3], etc. In this letter, we
explore this intimate connection further and show that globally
optimal least-squares identification of autoregressive moving-
average models is an eigenvalue problem.

Autoregressive moving-average (ARMA) models regress an
observed output sequence on its own lagged values and on a
linear combination of unobserved, latent input samples [4].
In the statistical literature, this sequence of latent inputs is
often assumed to be a white Gaussian process [5]. Although
our results could be interpreted in an appropriate maximum
likelihood framework, we refrain ourselves from those a priori
assumptions. ARMA models emerge in a wide variety of
domains [4], e.g., in modeling industrial processes, financial
time series, or smart utility grid applications (electricity, water,
etc.). Moreover, their model structure is an important building
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block for more sophisticated models [6], e.g., autoregressive
moving-average models with exogenous inputs (ARMAX) and
autoregressive integrated moving-average models (ARIMA).
Already in 1927, Yule [7] proposed a pure autoregressive
(AR) process, which only considers a regression of the output
sequence on itself. The pure moving-average (MA) model was
introduced simultaneously by Yule [7] and Slutzky [8]. There
exists some dissonance about who was the first to combine
these two models, but Whittle [9] and Walker [10] have often
been cited as the founding fathers of ARMA modeling. Its
popularization, however, was clearly thanks to the famous
book by Box and Jenkins [4], who have really propagated
these models as a useful tool in time series analysis.

Although numerous nonlinear identification techniques for
ARMA models already exist, e.g., autocorrelation, penalty
function, and innovation regression methods (see Choi [5],
Ljung [6], or Brockwell and Davis [11]), most of them rely
on non-convex numerical optimization and do not guarantee
to find the globally optimal model parameters. Stochastic
subspace methods, on the other hand, provide a geometric
approach by means of projections, which work very good in
practice, but are not known to be optimal in any sense (see
for example Van Overschee and De Moor [12]). Batselier et
al. [13] have already approached globally optimal prediction
error method identification (and thus also the identification of
ARMA models) as an eigenvalue problem. However, they have
used the classical Macaulay matrix, which does not exploit the
available structure in the problem and scales terribly with the
number of output samples.

In this letter, we tackle and resolve this hiatus and find
the globally optimal least-squares ARMA model parameters
using the new block Macaulay matrix approach. The first-order
optimality conditions of this identification problem constitute
a system of multivariate polynomial equations, in which
most variables appear linearly. This system is basically a
multiparameter eigenvalue problem (MEP), which we solve
by iteratively building the so-called block Macaulay matrix,
the null space of which is block multi-shift-invariant. The
set of all stationary points of the optimization problem, i.e.,
the n-tuples of eigenvalues and eigenvectors of the MEP,
follows from a standard eigenvalue problem (EP) related to
a multidimensional realization problem in that null space. At
least one of the n-tuples corresponds to the global minimum
of the original least-squares objective function and thus yields
the globally optimal parameters of the ARMA model.

Our main contribution is two-fold: We claim and show that
globally optimal least-squares identification of ARMA models
is essentially an MEP, and we provide a new solution method
for this type of problems based on the block Macaulay matrix.



The remainder of this letter proceeds as follows: Section II
rigorously formulates the identification problem. In Section III,
we propose a globally optimal least-squares approach to find
the parameters of ARMA models. A numerical example is
given in Section IV. We draw several conclusions from this
work and point at challenges for future research in Section V.

II. PROBLEM DEFINITION

A scalar autoregressive moving-average (ARMA) model
combines a regression of the observed output variable yk ∈ R
on its own lagged values yk−i with a linear combination of
unobserved, latent inputs ek−j ∈ R [4]:

na∑
i=0

αiyk−i =

nc∑
j=0

γjek−j , (1)

where na and nc are the orders of the autoregressive and
moving-average part, respectively. The weighting factors αi ∈
R, i = 1, . . . , na, and γj ∈ R, j = 1, . . . , nc, in the
summations are the parameters of the ARMA model. To
avoid indeterminacy and without loss of generality, we fix the
leading parameters α0 = γ0 = 1.

Given a data sequence of N observed output samples
y ∈ RN (not necessarily generated by an ARMA model), we
want to find the parameters that satisfy the model structure
of (1) and minimize the squared 2-norm of the unobserved,
latent input vector e ∈ RN−na+nc , on which we put no a
priori unverifiable constraints (like for example whiteness or
Gaussianity). For this problem, the model structure of (1)
results in

Tay = Tce, (2)

where the two model matrices Ta ∈ R(N−na)×N and Tc ∈
R(N−na)×(N−na+nc) are banded Toeplitz matrices of appro-
priate dimensions (the elements not shown are zero):

Ta =


αna

· · · α1 1
αna · · · α1 1

. . . . . . . . .
αna

· · · α1 1



Tc =


γnc

· · · γ1 1
γnc

· · · γ1 1
. . . . . . . . .

γnc
· · · γ1 1

 .
This identification problem corresponds to a multivariate

polynomial optimization problem in which we minimize the
sum of squares of the latent inputs σ2 = ‖e‖22, subject to the
ARMA model structure of (2):

min
a,c,e
‖e‖22

subject to Tay = Tce,
(3)

where the unknown vectors a ∈ Rna and c ∈ Rnc contain the
parameters αi and γj , respectively.

III. GLOBALLY OPTIMAL LEAST-SQUARES ARMA MODEL
IDENTIFICATION

This section shows that globally optimal least-squares iden-
tification of ARMA models is an eigenvalue problem and
provides an identification algorithm based on the new block
Macaulay matrix. The first-order optimality conditions con-
stitute a system of multivariate polynomial equations that
defines the set of stationary points of the original least-squares
objective function σ2 (Subsection III-A). Subsection III-B
shows that this system is basically a (nonlinear) multipa-
rameter eigenvalue problem. Next, we solve this problem by
iteratively building the so-called block Macaulay matrix (Sub-
section III-C) and exploiting the block multi-shift-invariant
structure of its null space to set up a standard eigenvalue
problem (Subsection III-D). At least one of the eigentuples
corresponds to the globally optimal parameters of the ARMA
model. Finally, Subsection III-E interprets this new algorithm
in a system theoretic setting.

A. First-order optimality conditions

If the vectors a and c were known, (2) would be a set of
underdetermined linear equations, the minimum norm solution
of which is

e = T †c Tay,

where T †c is the pseudoinverse of the matrix Tc. This rela-
tionship between the unobserved, latent input vector e and the
observed output vector y helps to remove the latent inputs
from the least-squares objective function

σ2 = ‖e‖22 = eTe = yTT T
a T
†T
c T †c Tay. (4)

Since the model matrix Tc is of full row rank, its pseudoinverse
equals T †c = T T

c

(
TcT

T
c

)−1
. The objective function in (4) then

reduces to
σ2 = yTT T

a

(
TcT

T
c

)−1
Tay,

which has to be minimized over the parameters αi and γj in a
and c. To simplify the notation, we introduce the symmetric,
positive definite, banded Toeplitz matrix Dc =

(
TcT

T
c

)
∈

R(N−na)×(N−na), so that

σ2 = yTT T
aD
−1
c Tay.

The objective function σ2 is clearly nonlinear in the parameters
αi and γj . Typically, in the literature, this type of problems is
solved via numerical nonlinear optimization methods. How-
ever, these methods are heuristic and can get stuck in local
optima. Therefore, we propose a new approach based on the
null space of the so-called block Macaulay matrix, which starts
from the first-order optimality conditions.

The first-order optimality conditions of the objective func-
tion σ2, ∀i = 1, . . . , na and ∀j = 1, . . . , nc, are:

∂σ2

∂αi
= yTT T

aD
−1
c Tαi

a y + yTTαiT
a D−1c Tay = 0

∂σ2

∂γj
= −yTT T

aD
−1
c Dγj

c D
−1
c Tay = 0,

(5)

with the matrices Tαi
a = ∂Ta

∂αi
and D

γj
c = ∂Dc

∂γj
. By in-

troducing an auxiliary vector f = D−1c Tay ∈ RN−na ,



we partially linearize the optimization problem. The vectors
fαi = D−1c Tαi

a y ∈ RN−na and fγj = −D−1c D
γj
c f ∈ RN−na

are the partial derivatives of the vector f , with respect to
the unknown parameters αi and γj , respectively. With these
definitions, we rewrite (5) and obtain

∂σ2

∂αi
= yTT T

a f
αi + yTTαiT

a f = 0

∂σ2

∂γj
= yTT T

a f
γj = 0.

(6)

Finally, the first-order optimality conditions in (6), together
with the definitions of the vectors f , fαi , and fγj , constitute
the system of multivariate polynomial equations that defines
the set of stationary points of the original least-squares objec-
tive function σ2:

yTT T
a f

αi + yTTαiT
a f = 0 ∀i = 1, . . . , na

yTT T
a f

γj = 0 ∀j = 1, . . . , nc
Dcf

αi − Tαi
a y = 0 ∀i = 1, . . . , na

D
γj
c f +Dcf

γj = 0 ∀j = 1, . . . , nc
Dcf − Tay = 0

. (7)

At least one of the common roots of this system corresponds to
the global minimum of the original multivariate optimization
problem in (3), i.e., to the globally optimal least-squares
parameters of the ARMA model.

B. Multiparameter eigenvalue problems

Equation (7) consists of (N − na)(na + nc + 1) + na + nc
cubic multivariate polynomial equations in (N−na)(na+nc+
1)+na+nc variables, of which (N−na)(na+nc+1) variables
appear linearly in the problem, a structure that becomes more
apparent when we isolate these linear variables:

I ⊗ gT 0
{
gαiT

}
i

0
0 I ⊗ gT 0 0

I ⊗Dc 0 0 {gαi}i
0 I ⊗Dc

{
D
γj
c

}
j

0

0 0 Dc g


︸ ︷︷ ︸

A(αi,γj)


{fαi}i
{fγj}j
f
−1


︸ ︷︷ ︸

z

= 0,

with the vectors g = Tay ∈ RN−na and gαi = Tαi
a y ∈

RN−na . The operator ⊗ represents the Kronecker product and
the curly brackets {Mi}i indicate a vertical stack of matrices
Mi over the index i, e.g., for i = 1, 2, {Mi}i =

[
MT

1 MT
2

]T
.

The matrix A is only a function of the known output
samples yk and the unknown parameters αi and γj . This
system of multivariate polynomial equations is basically a
(nonlinear) multiparameter eigenvalue problem (MEP), where
the nonlinear variables (the parameters αi and γj) constitute
the (na + nc)-tuples of eigenvalues and the linear variables
(the vectors f , fαi , and fγj ) generate the eigenvectors z. In
order to support this claim, we rewrite the system Az = 0 asA1 −

∑
ω 6=1

Aωω

 z = 0, (8)

with the matrices Aω (e.g., A1 or Aα1
) containing the co-

efficients of the monomial ω = αk11 . . . α
kna
na γl11 . . . γ

lnc
nc with

degrees ki and lj in the matrix A. Consequently, it is easy to
restate (8) in the classical form of an MEP (see for example
Atkinson [14] or De Moor [15]), namely

A1z =
∑
ω 6=1

Aωωz. (9)

Indeed, this additive structure closely resembles that of a
standard eigenvalue problem (EP), where Az = λz (with
eigenvalues λ) is equal to (A− Iλ) z = 0, which has a
nontrivial solution, i.e., an eigenvector z 6= 0, if and only
if the characteristic polynomial χ (A) = det (A− Iλ) = 0.

To solve this type of problems, we introduce in the next sub-
section the so-called block Macaulay matrix, which iteratively
linearizes the MEP [15].

C. Null space of the block Macaulay matrix
The next step in the identification procedure is to tackle the

MEP of (9) and to find the stationary points of the original
least-squares objective function σ2 as the (na + nc)-tuples of
eigenvalues and eigenvectors of this MEP.

For didactic reasons, we start our exposition with a first-
order ARMA(1,1) model, which has only two unknown pa-
rameters, i.e., α1 and γ1. Then, the system of (7) consists of
3N − 1 cubic multivariate polynomial equations in 3N − 1
variables, of which 3N − 3 variables, i.e., f , fα1 , and fγ1 ,
appear linearly in the problem. We can rewrite this MEP as

yTT T
a 0 yTTα1T

a 0
0 yTT T

a 0 0
Dc 0 0 Tα1

a y
0 Dc Dγ1

c 0
0 0 Dc Tay



fα1

fγ1

f
−1

 = 0, (10)

where the parameters constitute the 2-tuples of eigenvalues
and the linear variables generate the eigenvectors z. To solve
the MEP, we introduce the matrices Aω ∈ R(3N−1)×(3N−2),
as in (8), which contain the coefficients of the monomials
ω = αk1γ

l
1 with degrees k and l in the matrix A, and obtain

(A1 +Aα1
α1 +Aγ1γ1 +Aα2

1
α2
1 +Aα1γ1α1γ1

+Aγ2
1
γ21)z = 0.

(11)

Next, we construct the so-called block Macaulay matrix,
which extends the classical Macaulay matrix (see for example
Dreesen et al. [16], [17]) and exploits the structure of MEPs.
The initial block Macaulay matrix starts with (11) and has
degree d0 = 3 (because of the cubic polynomials). In a first
iteration, we multiply (11) with shifts of first total degree (α1

and γ1). Subsequently, in a second iteration, we use shifts of
second total degree (α2

1, α1γ1, and γ21 ). We continue these
iterations with monomials of increasing total degrees until the
quasi-Toeplitz block Macaulay matrix M reaches the desired
degree d ≥ d∗ (see below how we define d∗):
A1 Aα1

Aγ1 Aα2
1

Aα1γ1 Aγ2
1
· · ·

0 A1 0 Aα1
Aγ1 0 · · ·

0 0 A1 0 Aα1 Aγ1 · · ·
...

...
...

...
...

...
. . .


︸ ︷︷ ︸

M



z
zα1

zγ1
zα2

1

zα1γ1
zγ21

...


︸ ︷︷ ︸

K

= 0.



For simplicity, let us assume that all solutions are affine and
simple (see below for solutions at infinity and with multiplicity
larger than one). Then, the vectors k in the multivariate block
Vandermonde basis K of the null space, one for every solution,
span the (right) null space of the block Macaulay matrix M .
It is clear that the null space of this matrix M has a special
structure. We will exploit this structure in the next subsection
and show how it yields the solutions of this quadratic MEP.

But first, we treat the general na > 1 and nc > 1 case.
The block Macaulay matrix for general-order ARMA(na,nc)
models extends the structure of the above-described matrix.
Let us reorder again the system of (7) as in (10), but this time
for more than two parameters. The vector z has now a more
general structure, namely[

fα1T · · · fαnaT fγ1T · · · fγncT fT −1
]T
.

We also introduce matrices Aω , as in (8), and obtain(
A1 +Aα1

α1 +Aα2
α2 + · · ·+Aα2

1
α2
1 + · · ·

)
z = 0. (12)

The parameters αi and γj generate the (na + nc)-tuples of
eigenvalues and the vectors z are again the eigenvectors of
this nonlinear MEP. The block Macaulay matrix starts initially
with (12) and grows in every iteration with shifts of increasing
total degrees. These iterations with monomials of increasing
total degrees generate a special structure in the null space,
which we will now exploit to solve the MEP.

D. Multidimensional realization theory in block multi-shift-
invariant subspaces

In this subsection, we will use the special structure of the
null space of the block Macaulay matrix, which we call block
multi-shift-invariant, to solve the MEP and obtain the param-
eters of the ARMA model. This block multi-shift-invariant
structure of the null space will lead to the formulation of an EP
that yields the (na+nc)-tuples of eigenvalues and eigenvectors
of the MEP. This approach is similar to the eigenvalue problem
formulation of Stetter [18] in multivariate polynomial system
solving and the shift trick of Ho and Kalman [19] in systems
and control.

Recall that, for simplicity, we consider an MEP with only
ma affine and simple solutions. We will cover the more
general problem below. In the previous subsection, the null
space of the block Macaulay matrix appeared to have a block
multi-shift-invariant structure. This structure can easily be
understood using the multivariate block Vandermonde basis
K: If we select a block1 of a multivariate block Vandermonde
vector k and multiply (or shift) it by one of the eigenvalues,
i.e., the parameters αi and γj , we find another block of that
same vector k. Hence, the null space is block multi-shift-
invariant2. Note that this structure is a property of the null
space as a vector space and not of the specific basis [17].

1We define a block as the rows corresponding to the eigenvector z or one
of its shifts (e.g., zα2

1). A degree block, on the other hand, is the collection
of all blocks of the same total degree d (e.g., zα2

1, zα1γ1, and zγ21 ).
2Contrary to the classical Macaulay matrix, every shift during the construc-

tion of the block Macaulay matrix adds a block of rows to the null space.
The null space is consequently block multi-shift-invariant instead of multi-
shift-invariant and exploits the available structure of the MEP.

Example 1: To clarify, one could apply this rationale to
the simple first-order ARMA(1,1) model. Take a multivariate
block Vandermonde vector k of degree d = 2, i.e.,

k =


z
zα1

zγ1
zα2

1

zα1γ1
zγ21

 ,
and multiply the rows of the first three blocks by α1. The
multiplied rows form again three blocks of the same vector: z

zα1

zγ1

  zα1

zα2
1

zα1γ1

.
α1

This can alternatively be written, using row selection matrices
S1 and S2, as S1kα1 = S2k, with (I is the identity matrix)

S1 =

I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0


and

S2 =

0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0

 .
The multiplication does not have to be with a simple

eigenvalue. Any polynomial g (αi, γj) in the given eigenvalues
results in a valid multiplication (or shift). This multiplicative
relationship can be repeated for every column of the basis K,
i.e., for all ma affine solutions, which yields

S1KDg = S2K, (13)

where Dg is a diagonal matrix with as its elements the eval-
uations of the polynomial g (αi, γj) in the different solutions.
We recognize in (13) a generalized EP, with as the matrix of
eigenvectors the identity matrix. Remark that in order to ensure
that this generalized EP is not degenerate, the matrix S1K
needs to be of full column rank, which requires the selection
matrix S1 to include ma linearly independent rows. Therefore,
we have to increase the degree of the block Macaulay matrix at
least until its nullity equals ma (degree d∗). Since, in practice,
the solutions are not known in advance, the multivariate block
Vandermonde basis K cannot be used and we work with a
numerical basis Z, obtained for example via the singular value
decomposition. There exists a relationship between both bases,
namely K = ZT , with T ∈ Rma×ma a non-singular matrix,
which reduces (13) to

(S1Z)TDg = (S2Z)T,

and rephrases the MEP as a standard EP:

TDgT
−1 = (S1Z)

†
(S2Z) .

The matrix of eigenvectors T relates both bases, by means
of K = ZT , and can be used to find the multivariate block
Vandermonde basis K. From this basis K, we can determine
the (na + nc)-tuples of eigenvalues and eigenvectors of the
MEP, and thus we obtain, via this EP, the stationary points of
the original least-squares objective function σ2.



d = 3 d∗ = 4 d = 5

gap

d = 6

gap

compressed null space

Fig. 1. The null space of the block Macaulay matrix grows as its degree
increases. At a certain degree d∗, the nullity stabilizes at the Bézout number
mb. From that degree on, some linearly independent rows (corresponding
to the affine solutions) stabilize, while the other linearly independent rows
(corresponding to the solutions at infinity) move to higher degree blocks. A
gap separates these rows. The influence of the solutions at infinity can be
removed via a column compression. The affine procedure can then be applied
straightforwardly on the compressed null space.

Solutions at infinity and with multiplicity larger than one:
Due to algebraic relationships among the coefficients of the
polynomials, solutions at infinity can emerge [17]. The total
number of solutions in the projective space (both affine and at
infinity) is given by the Bézout number mb =

∏n
i=1 di, where

di is the total degree of every polynomial (see for example
Cox et al. [20]). After sufficient iterations, the nullity of the
block Macaulay matrix stabilizes at the Bézout number (degree
d∗). In that null space, we find not only linearly independent
rows that remain at a certain position (corresponding to the
affine solutions), but also linearly independent rows that move
to higher degree blocks if the degree d of the block Macaulay
matrix increases (corresponding to the solutions at infinity).
This behavior actually helps to separate the affine solutions
from the solutions at infinity and to remove the influence of
the solutions at infinity via a column compression of the null
space (see for example Fig. 1 and [17]). Afterwards, the above-
described affine procedure can be applied straightforwardly.

In addition to solutions at infinity, multiple solutions may
also occur. Dreesen [16] explains how the above-mentioned
algorithm deals with these multiplicities.

E. System theoretic interpretations

Just as for the classical Macaulay matrix (see Dreesen et
al. [16], [17]), a basis of the null space of the block Macaulay
matrix (after stabilization, i.e., d > d∗) can also be interpreted
as a multidimensional observability matrix Γ. In that setting,
it is possible to view globally optimal least-squares ARMA
model identification as an exact multidimensional realization
problem in that null space. To clarify, we consider the block
column echelon basis H . Dreesen et al. [17] showed that H
can always be computed via a transformation of the numerical
basis Z. The null space consists of three zones and this basis
allows for a natural system theoretic interpretation of these
zones:

H =

H(1)
R 0

H
(2)
R 0
× HS

 ← regular zone
← gap zone
← singular zone

The three zones can be discovered by checking the rank of
the basis row-wise from the top to the bottom:

1) Zone I (regular zone): In the first zone, the rank increases
with at least one per degree block (i.e., all the rows
corresponding to monomials of the same total degree),
up to the number of affine roots ma.

2) Zone II (gap zone): Then, the rank does not increase
anymore (a generalization of Cayley–Hamilton for sets
of commuting matrices). All the rows in this zone are
linearly dependent on some rows of the first zone. There
is a so-called gap of linearly dependent rows.

3) Zone III (singular zone): Finally, the rank starts to
increase again, with at least one per degree block, until
it reaches the nullity mb of the block Macaulay matrix.

Example 2: Let us specify this block column echelon basis
H of the null space for a simple first-order ARMA(1,1) model:

H =



CR 0
CRAα1 0
CRAγ1 0
CRA

2
α1

0
CRAα1Aγ1 0
CRA

2
α1

0
CRA

3
α1

0
...

...
CRA

n
α1

0
...

...
× CSE

m−1
α1

...
...


The regular columns of this block column echelon ba-

sis H , i.e., the ma left-most columns corresponding to the
affine solutions, and the singular columns, i.e., the remaining
(mb −ma) right-most columns corresponding to solutions at
infinity, determine two observability matrices ΓR and ΓS ,
which are generated by a multidimensional descriptor system,
as described by Dreesen et al. [17]. Contrary to the null
space of the classical Macaulay matrix, CR and CS are
output matrices instead of vectors, which is a block extension
of the observability matrix in [17]. In this multidimensional
observability matrix, we find the multidimensional realization
problems that yield us the EPs to solve the MEP. Indeed, if
one selects two blocks of H , for example Sα1

H = CRAα1

and Sα1,γ1H = CRAα1Aγ1 , we recognize the multiplicative
relationship, which is a property of the null space,

Sα1
HAγ1 = Sα1,γ1H,

or
Aγ1 = (Sα1H)

†
(Sα1,γ1H) .

The eigenvalues of all these system matrices Aω correspond
to the different (na + nc)-tuples of eigenvalues of the MEP.

IV. NUMERICAL EXAMPLE

In order to illustrate the new algorithm presented in this
letter, this section provides a numerical proof-of-concept. We
show that the block Macaulay matrix approach is able to
identify the globally optimal least-squares parameters of an
ARMA model.



TABLE I
THE DIFFERENT MODEL PARAMETERS OF THE NUMERICAL EXAMPLE AND
THE SUM OF SQUARES OF THEIR LATENT INPUTS ‖e‖22 . THE MEP RESULTS

IN THE GLOBALLY OPTIMAL PARAMETERS OF THE ARMA MODEL.

Method α1 γ1 ‖e‖22
Original parameters 0.5000 0.5000 0.0431
System id. toolbox −0.8929 0.9474 0.0150

Block Macaulay approach −0.7307 −0.6078 0.0053

Consider a first-order ARMA(1,1) model with parameters
α1 = 0.5 and γ1 = 0.5. This model generates an output
sequence

yk = ek + γ1ek−1 − α1yk−1.

Let us consider a sequence of N = 5 output samples

y =


0.2000
0.0739
0.0935
0.0812
0.0838

 ,
which are generated by the ARMA model and a random latent
input (without any a priori assumptions).

Then, the system of (7) consists of 14 polynomial equations
in 14 variables, of which 12 variables appear linearly in
the problem. A block Macaulay matrix of degree d = 30
suffices to find the gap in its null space. Since the first
zone contains 48 linearly independent rows, the system of
multivariate polynomial equations (or the MEP) has ma = 48
affine solutions. From these linearly independent rows, we
construct the EP (S1Z)

†
(S2Z), which yields the 48 affine

solutions, i.e., the different 2-tuples of the MEP. The affine
solution with the smallest sum of squares of the latent inputs
‖e‖22 corresponds to the globally optimal least-squares ARMA
model parameters for this given vector of output samples y.
These parameters result in a smaller ‖e‖22 than the original
parameters and the solution found by the armax function of
the MATLAB system identification toolbox3 (see Table I).

V. CONCLUSIONS AND FUTURE WORK

In this letter, we showed that globally optimal least-squares
identification of ARMA models is essentially an eigenvalue
problem and proposed a first usable algorithm to find these
optimal parameters. This new approach translates the ARMA
identification problem, via the first-order optimality condi-
tions, into a system of multivariate polynomial equations, in
which most variables appear linearly. This system is basically
a (nonlinear) multiparameter eigenvalue problem (MEP) and
we showed that we can solve this type of problems via an exact
multidimensional realization problem in the block multi-shift-
invariant null space of the so-called block Macaulay matrix.
The n-tuples of eigenvalues and eigenvectors of this MEP
correspond to the set of all stationary points of the optimization
problem, of which at least one gives us the globally optimal

3The armax function minimizes the prediction errors in order to find the
model parameters. It uses a nonlinear optimization algorithm as described in
the book of Ljung [6, Chapter 7].

parameters of the ARMA model. We provided a proof-of-
concept with a numerical example in which we identified the
parameters of an ARMA(1,1) model using this new approach.

As the orders of the model and the number of observed
output samples increase, the set of stationary points grows
rapidly. Hence, solving the MEP and evaluating all solutions
rapidly becomes impractical. Therefore, one of our current
research efforts is to adapt the algorithm so that it only
calculates the optimal n-tuple of eigenvalues. Furthermore, in
future work, we will also report rigorously on the properties
of this new block Macaulay matrix. Even though we did not
tackle large practical problems, the mathematical claim that
globally optimal least-squares identification of ARMA models
is an MEP and the proposed solution approach for these MEPs
are important contributions to the field of systems and control.
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