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Abstract

Recent research has provided a better understanding of the power cepstrum, which has led to several applications in time series
clustering, classification, and anomaly detection. It has also provided a deeper understanding of the theoretical framework
that relates the power cepstrum with some system theoretic properties of the underlying dynamics. In this paper, we pursue
the intricate connections between the power cepstrum of a signal and the pole polynomial of the underlying generative model.
In this way, we develop a simple and extremely efficient method to identify an autoregressive (AR) system, starting from
the power cepstrum of its output signal. This general framework uses Newton’s identities to set up a system of elementary
symmetric polynomials over the cepstral coefficients and results in an identification algorithm that is independent of the length
of the power cepstrum, with computational complexity only linearly dependent on the order of the model. We provide several
numerical examples, first on synthetic time series, then on the classical Yule sunspot numbers modeling problem, and finally
on a contemporary application involving structural health monitoring. Subsequently, the novel system identification algorithm
is employed to provide insight in the results of weighted cepstral clustering, showing that the model estimated from the center
of a cluster provides a good estimator for the dynamics in that cluster.

Key words: system identification, signal processing, autoregressive systems, discrete-time systems, difference equations,
polynomials, classification.

1 Introduction

Given the steady increase in sensor data [32], compu-
tational capacity, and storage capabilities, interest in
the analysis of large time series has grown substantially
over the past decades. While scaleable data-driven
algorithms for pattern recognition exist, dynamical
system modeling on signals remains a laborious and
time-consuming task, often requiring expert knowledge.
Existing system identification techniques (for a good
overview of core concepts, see [25]) do not always scale
well for large datasets of long signals, though an impor-
tant line of research based on the covariance extension
method (see [26]) already mitigates this problem and
does feature high scalability. Novel system identification
techniques offering low computational complexity are
always of interest.

Email addresses: oliver.lauwers@esat.kuleuven.be
(Oliver Lauwers),
christof.vermeersch@esat.kuleuven.be (Christof
Vermeersch), bart.demoor@esat.kuleuven.be (Bart De
Moor).

Various novel technologies, such as smart meters [37],
wearables [21], and autonomous vehicles [15], only in-
crease the need for this type of new system identifica-
tion techniques. Existing approaches often apply black-
box machine learning methods, but do not provide in-
sight in the underlying dynamics of the problem. Results
from these algorithms lack interpretability, which can
be detrimental in an engineering context. Generating in-
sight in the results and transparency in the method of op-
eration should, therefore, be an important aspect of data
analysis in general, and especially in time series analy-
sis. Unsupervised learning, in particular, would benefit
tremendously from methods that can be explicitly linked
to the underlying dynamics or other fundamental prop-
erties of the signals, as the lack of labels or clear learning
goals can easily result in confusing, uninterpretable, and
sub-par results [38]. Time series clustering is a prime ex-
ample of such an unsupervised learning problem where
results from black-box techniques are opaque. Similarity
measures play a crucial role in providing interpretabil-
ity, whereas traditional methods come up short [31].

Earlier work [13,23] has mitigated this problem some-
what by proposing and extending a data-based distance
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measure, i.e., the weighted cepstral distance, that mim-
ics a model norm. While this provides some insight in
what a clustering algorithm considers to be similar time
series, it still fails to explicitly show what the resulting
clusters represent. In this paper, we address this issue
and develop a new system identification method that
provides this insight. Our main contributions are

• introducing an extremely efficient, novel system iden-
tification technique that relies on exact solutions of
a system of multivariate polynomial equations, which
relates the power cepstrum of a signal to the coef-
ficients of the pole polynomial of its generating lin-
ear model; when the power cepstrum is known, the
algorithm is independent of the length of the power
cepstrum and its computational complexity is only
linearly dependent on the order of the model (start-
ing from a signal with unknown power cepstrum, on
the other hand, the computation of the power cep-
strum dominates and the procedure has complexity
O(N logN), with N the signal length);
• interpreting the cluster centers from a cepstral clus-

tering problem as good estimators for the average dy-
namics of the signals present in these clusters;
• exploring synthetic, historical, and contemporary il-

lustrations and applications to corroborate the theo-
retical results of this paper with practical examples.

Note that the method presented in this text shares
its computational efficiency with covariance extension
methods [26], providing an exact solution, with a com-
putational complexity linearly dependent on the order
of the model, but now starting from the cepstrum rather
than from the spectrum of the signal.

The remainder of this paper proceeds as follows: Sec-
tion 2 introduces notation and model class assumptions,
and it explicitly defines the identification objective that
we meet in this paper. Section 3 provides relevant ele-
ments from the theory of symmetric polynomials, which
are used in Section 4 to develop the new system identifi-
cation algorithm. In Section 5, we give some background
on cepstral clustering and show how the identification
algorithm can be used to identify the representative dy-
namics of a cluster. Section 6 provides several numer-
ical examples, showing the theoretical results in prac-
tice. We show results on synthetic signals, the classical
Yule sunspot numbers time series, and structural health
monitoring data. All code used in the numerical exam-
ples is available on GitHub 1 . We conclude this paper
and introduce some ideas for future work in Section 7.
Appendix A shows how the input white noise hypothesis
can be relaxed, Appendix B relaxes the assumption of
stable models, and Appendix C elaborates on the com-
putational aspects of the power cepstrum.

1 The code used to generate the results of the numerical
examples can be found on https://github.com/Olauwers/
Cepstral-Identification-of-Autoregressive-Systems.

2 Notation & objective

2.1 Model class assumptions

Consider an n-th order autoregressive (AR) model,
which can be represented in the z-domain as

Y (z) =
1

a(z)
U(z), (1)

where Y (z) is the z-transform of the output signal, y(t),
U(z) is the z-transform of the white noise input signal,
u(t), and a(z) is the pole polynomial of the model,

a(z) = zn +

n∑
i=1

aiz
n−i =

n∏
j=1

(z − αj) , (2)

with ai the coefficients of the pole polynomial and αj the
(complex) roots of the pole polynomial, which are the
poles of the AR model. We also assume |αj | < 1, though
we relax this stability assumption in Appendix B.

We call H(z) = 1
a(z) the transfer function of the AR

model and define its power spectral density, Φh
(
eiω
)
, as

Φh
(
eiω
)

= H
(
eiω
)
H
(
eiω
)

=
∣∣H (eiω)∣∣2 , (3)

where · corresponds to the complex conjugate.

When we denote the Fourier transform as F , the model
(power) 2 cepstral coefficients, ch(k), with k the coeffi-
cient number, of a model with transfer functionH(z) are

F {ch(k)} = log
∣∣H (eiω)∣∣2 = log

(
Φh
(
eiω
))
. (4)

Similarly, we define the (power) cepstrum of a signal y(t)
as

F {cy(k)} = log |F {y(t)}|2 .
Computationally, we can employ the fast Fourier trans-
form (FFT), as shown in Figure 1, to obtain these coef-
ficients. A detailed discussion of the computational as-
pects can be found in Appendix C.

In the remainder of this paper, we work with the model
cepstral coefficients ch(k). When we assume white noise
inputs in Equation (1), we have that cy(k) = ch(k) [28].
However, we can even relax this assumption: as long as

2 In this paper, we use the terms power cepstrum and cep-
strum interchangeably. This name stems from the fact that it
is derived from the power spectral density of a signal. There
also exists a different notion, called the complex cepstrum,
which we introduce in Appendix B. We always explicitly in-
clude the complex part of the name when referring to that
notion.
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FFT
∗

y(t) 1
N log | · |2·

IFFT
+ +

cy(k)

Fig. 1. The (power) cepstrum, cy(k), of a signal y(t) of length N can be computed by calculating the fast Fourier transform
(FFT) of the signal, squaring its magnitude, dividing the subsequent logarithm by N , and applying the inverse fast Fourier
transform (IFFT) on the result. This procedure turns the convolutional structure of the time domain, through the multiplicative
structure of the frequency domain, into an additive structure in the log-frequency domain. The IFFT preserves this additive
structure in the (power) cepstral domain. For a more detailed discussion of the computational aspects, see Appendix C.

the input signal is stationary, so that its Fourier trans-
form is well-defined, we can find the model cepstrum us-
ing the results from Appendix A.

Combining Equations (1), (2), and (4), we can relate
the model cepstrum with the poles of the AR model as
in [28]:

ch(k) =

n∑
j=1

α
|k|
j

|k| , ∀k 6= 0, (5)

and ch(0) = g′, a constant that depends on the gain and
initial conditions of the system.

2.2 Identification objective

We pursue the following identification objective:

Identify the pole polynomial, a(z), from a
discrete-time model cepstrum, ch(k), gener-
ated by a linear time-invariant (LTI) system
with unknown transfer function H(z) = 1

a(z) .

In order to achieve this identification objective, we em-
ploy the model cepstrum, ch(k), and its relation to the
poles of the model. From this relation, we find explicit so-
lutions for the polynomial coefficients, using some well-
known results on symmetric polynomials. For the white
noise input signals considered here, the problem corre-
sponds to the identification of an AR system.

The computational complexity of traditional AR sys-
tem identification algorithms grows linearly with signal
length. However, once the model cepstrum is known,
the novel identification procedure proposed in this pa-
per very efficiently estimates a model from only n model
cepstral coefficients, with n the order of the model, and
is, therefore, independent of the length of the cepstrum.

The proposed system identification method is re-
lated to the covariance and cepstrum matching prob-
lem [16,29], which aims to estimate an autoregressive
moving-average (ARMA) filter from the covariances
and cepstral coefficients of a signal by solving a convex
optimization problem. There are, however, some impor-
tant differences between the traditional approaches to
this problem and the method proposed in this paper,
most notably that the latter approach does not need

an optimization routine, but rather provides an exact
analytical solution 3 , decreasing its computational cost.

Moreover, there are instances where we have only cep-
stral data available (e.g., the cluster centers in the cep-
stral clustering problems mentioned in the introduction
and discussed in detail in Section 5). Traditional covari-
ance and cepstrum matching approaches also need the
covariances, while the cepstral coefficients suffice for the
proposed method (the cost of this is that the estimated
model class is reduced to just AR models, rather than
ARMA models). Finally, in the traditional covariance
and cepstrum matching approaches, it is the MA part
of the model that is estimated from the cepstral coeffi-
cients. In this paper, we provide a method that is able to
identify an AR model, without needing the covariances.

Another class of system identification techniques, based
on the covariance extension method [26], bear some rela-
tion to the approach developed here, and work without
optimization routines. However, again, these covariance
extension based methods employ the covariances of the
signal, while the method in this text starts from the cep-
stral coefficients.

3 Symmetric polynomials

Symmetric polynomials are polynomials P (α1, . . . , αn)
in n variables (i.e., the n poles αj of the AR model), such
that, for any permutation σ of the subscripts {1, . . . , n}:

P
(
ασ(1), . . . , ασ(n)

)
= P (α1, . . . , αn) .

In this section, we exploit two special types of symmetric
polynomials, the elementary symmetric and power sum
polynomials, over the poles of an AR model. Well-known
relations between these two types of polynomials provide
us with a way to link the pole polynomial, a(z), and the
model cepstral coefficients, ch(k), of an AR model.

3 Traditional system identification methods using numerical
linear algebra (e.g., subspace methods) “may yield a solution
that is outside of the model class (e.g., non-stable models)”
[16]. The system identification method developed in this pa-
per suffers from no such problems and always returns stable
models (see Appendix B).
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We define the elementary symmetric polynomials 4 as

el (α1, . . . , αn) =
∑

1≤j1<...<jl≤n
αj1 · · ·αjl ,

with l ∈ N and el (α1, . . . , αn) = 0 when l > n.

Vieta’s theorem [5] expands the pole polynomial, a(z),
in terms of elementary symmetric polynomials, as

n∏
j=1

(z − αj) =

n∑
l=0

(−1)lel (α1, . . . , αn) zn−l. (6)

The coefficients ai of the pole polynomial are then noth-
ing more than the elementary symmetric polynomials of
the poles αj , up to their sign, or

ai = (−1)iei (α1, . . . , αn) .

Furthermore, the power sum polynomials are defined as

pl (α1, . . . , αn) =

n∑
j=1

αlj = lch(l), l ∈ N, (7)

where the last equality follows from Equation (5) and αj
denotes the poles of an AR model with model cepstral
coefficients ch(l).

The elementary symmetric and power sum polynomials
can be related to each other. These relations are known
as Newton’s identities [8] and are defined recursively.

Definition 1 Newton’s identities relate the elemen-
tary symmetric polynomials el and power sum polynomi-
als pl, over a set of variables (α1, . . . , αn), as

lel (α1, . . . , αn)

=

l∑
i=1

(−1)i−1el−i (α1, . . . , αn) pi (α1, . . . , αn) .

Solving these recursive relations equates the elementary
symmetric polynomials to combinations of power sum
polynomials (dropping the variables (α1, . . . , αn) to im-

4 For example, when n = 3, we distinguish four different
(non-zero) polynomials: e0 (x1, x2, x3) = 1, e1 (x1, x2, x3) =
x1 + x2 + x3, e2 (x1, x2, x3) = x1x2 + x1x3 + x2x3, and
e3 (x1, x2, x3) = x1x2x3.

prove readability):

e1 = p1,

e2 =
1

2

(
p21 − p2

)
,

...

el =
(−1)l

l!
Bl (−0!p1, . . . ,−(l − 1)!pl) ,

(8)

with Bl (x1, . . . , xl) the complete exponential Bell poly-
nomials [27], a type of polynomials that arises in com-
binatorics and encodes information on how a set can be
partitioned 5 .

4 Cepstral identification of AR systems

Using the results above, we can very efficiently identify
the pole polynomial of an AR model from its model cep-
stral coefficients.

Theorem 2 Given an n-th order stable AR model,
with pole polynomial a(z) and model cepstral coefficients
ch(k), we have

a(z) =

n∑
l=0

1

l!
Bl (−1!ch(1), . . . ,−l!ch(l)) zn−l, (9)

with Bl (x1, . . . , xl) the complete exponential Bell poly-
nomials [27].

PROOF. We start from the monic pole polynomial

a(z) =

n∏
i=1

(z − αj) ,

with αj , j ∈ {1, . . . , n}, the poles of the AR model. Ex-
panding in terms of elementary symmetric polynomials,
as in Vieta’s theorem in Equation (6), we get

a(z) =

n∑
l=0

(−1)lel (α1, . . . , αn) zn−l.

Using Equation (8), we can rewrite this expression in
terms of complete exponential Bell polynomials over
power sum polynomials:

a(z) =

n∑
l=0

1

l!
Bl (−0!p1, . . . ,−(l − 1)!pl) z

n−l.

5 For example, B3 (x1, x2, x3) = x31 + 3x1x2 + x3, as there
is one way to partition a set of 3 variables as 3 groups of 1
element each, three ways to partition 3 variables in 1 group
of 1 element and 1 group of 2 elements, and one way to
partition 3 variables as 1 group of 3 elements.
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Finally, the relation between the power sum polynomials
and the model cepstral coefficients in Equation (7) gives
us the result from the theorem,

a(z) =

n∑
l=0

1

l!
Bl (−1!ch(1), . . . ,−l!ch(l)) zn−l.

�
Using Theorem 2, we now have a system identification al-
gorithm, as described in Algorithm 1, fulfilling the iden-
tification objective set out in Section 2.2. As the model
cepstrum (Equation (5)) falls off exponentially, it con-
centrates the information contained in the signal in the
first few cepstral coefficients, hence we only need the first
n to identify the system. If the cepstral coefficients are
known, this algorithm is therefore of complexity O (n),
with n the order of the AR model. In cases where the
cepstrum is known, e.g., in cepstral clustering, which we
discuss in detail in Section 5, this algorithm is thus ex-
tremely efficient, with a computational complexity that
is independent of the length of the cepstrum! When the
model cepstral coefficients are not known, their compu-
tation dominates the computational complexity of the
identification algorithm. However, the complexity (or-
der O (N logN), with N the signal length) is still very
reasonable, and will generally not overextend resources.
We refer to Appendix C for the details of the computa-
tion of the cepstral coefficients.

The complete exponential Bell polynomials can be ex-
plicitly written out in terms of their arguments [27]:

Bn(x1, . . . , xn) =
n∑
k=1

∑
ji

n!

j1! · · · jn−k+1!

(x1
1!

)j1
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the second summation takes place over all se-
quences j1, . . . , jn−k+1, such that{

j1 + j2 + . . .+ jn−k+1 = k

j1 + 2j2 + . . .+ (n− k + 1)jn−k+1 = n
.

With this representation, Equation (9) is similar to the
results of [35], who arrived at explicit expressions link-
ing linear predictive coding (LPC) model parameters
and cepstral coefficients in a different way. This builds
on a body of literature in speech processing, where re-
cursive relations for this problem have been known for
quite some time. In [19], the authors mentioned that
these recursions should not be used to calculate model
parameters from cepstral coefficients, however, as this
might result in unstable systems. Employing the power
cepstrum, rather than the complex or real cepstrum,
alleviates this particular problem. The power spectral
density in Equation (3) does not take into account the
phase information of the transfer function. Two systems
H(z) and H(z−1) have the same power cepstrum. In the

expansion of the power cepstral coefficients in terms of
poles (see Equation (5)), we always get contributions as
if the poles are stable (see Appendix B), and a fortiori
the resulting model is stable.

5 Cepstral clustering

We can now use this novel cepstral system identifica-
tion technique to give an interpretation to time series
clustering results, where we have a natural framework
in which we only have access to a model cepstrum of a
system that we would like to explicitly identify. We start
in Section 5.1 with a short introduction to time series
clustering. We show how the cepstrum can be used to
define a distance measure between signals (Section 5.2)
and describe a clustering approach using this cepstral
distance measure (Section 5.3). Then, in Section 5.4, we
interpret the center of the resulting clusters in terms of
the geometric average of the power spectral densities of
all signals present in these clusters.

5.1 Time series clustering

Time series clustering is the unsupervised machine learn-
ing problem of partitioning a set of time series in groups
of signals that belong together in some sense. This be-
longing together is formalized in a distance measure,
which quantifies how dissimilar two time series are.

As time series naturally are high-dimensional data ob-
jects, they suffer from the curse of dimensionality. The
choice of distance measure is, therefore, extremely im-
portant and non-trivial, as high-dimensional spaces have
some counter-intuitive geometrical properties that make
defining a useful distance measure challenging. For a
thorough discussion, see [39]. Traditionally, shape-based
distance measures, e.g., the Euclidean distance or the
dynamic time warping (DTW) distance [20,23,31], are
used, which more or less treat the time series as a vector,
ignoring the natural correlation structure across its time
dimension. Alternatively, some features are selected, and
a distance measure based on these features is devised, ig-
noring all other information. An overview of time series
clustering approaches can be found in [24].

In many engineering applications, the underlying dy-
namics of the time series are of interest. Hence, the
shape-based or feature-based measures are seldom suffi-
cient [31]. Modeling each time series separately, on the
other hand, is often impractical and computationally
infeasible, especially in large-scale applications that in-
volve several thousands or more signals. The model cep-
strum, and its interpretation in model parameters in
Equation (5), allows for a model norm that can be cal-
culated directly from the data: the weighted cepstral dis-
tance (see [13,23] for a more in-depth discussion). In this
sense, it guarantees to quantify dissimilarity between
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Algorithm 1 Cepstral identification of AR systems

1: procedure cepstral sysid(ch(k),n)
2: Initialize a(n) = 1, with a ∈ Rn×1 the vector that will contain the n (= model order) coefficients of a(z).
3: For l = 1 : n do
4: a(n− l)← 1

l!Bl (−1!ch(1), . . . ,−l!ch(l))
5: End
6: return a

two time series based on their generative dynamics, with-
out the need to explicitly model these dynamics.

5.2 Weighted cepstral distance

Given two model cepstra, ch1(k) and ch2(k), belonging to
AR models with transfer functionsH1 (z) andH2 (z), we

define the weighted cepstral distance d (ch1(k), ch2(k))
2

as

d (ch1
(k), ch2

(k))
2

=

∞∑
k=1

k (ch1
(k)− ch2

(k))
2
.

Denoting the simple poles of H1 (z) as αi and H2 (z)
as βj , we can interpret this distance in terms of model
parameters:

d (ch1
(k), ch2

(k))
2

= log

p∏
i=1

q∏
j=1

∣∣1− αiβ̄j∣∣2
p∏

i,j=1

(1− αiᾱj)
q∏

i,j=1

(
1− βiβ̄j

) ,
with p and q the order ofH1 (z) andH2 (z), respectively.
We can thus compare differences between the generative
dynamics of the two time series by simply calculating
the weighted cepstral distance. For proofs of the above
statements and a more thorough discussion, see [13,23].

5.3 Clustering techniques

Starting from a weighted cepstral distance matrix (i.e.,
a matrix, D, containing the distance between the i-th
and j-th cepstrum at positionD[i, j]), we can cluster the
time series by using, for example, an agglomerative hi-
erarchical method. Here, each time series initially repre-
sents a cluster of its own. These clusters are then merged
iteratively, based on the shortest distance between dif-
ferent clusters, until the desired number of clusters is ob-
tained. Note that the weighted cepstral distance measure
is not restricted to this particular clustering technique:
any clustering technique that accepts a distance matrix
is viable. Clustering methods that use the Euclidean dis-
tance implicitly (e.g., k-means), could also be adapted
to work on weighted versions of the cepstra. For a more
in-depth description of clustering techniques, see [34].
Cepstral clustering using hierarchical clustering was ex-
plored by some of the authors in [23], but other cepstral
clustering techniques can be found in [1,6,40,43].

5.4 Dynamical interpretation of the cluster centers

Given m cepstra, ĉh,j(k), with j ∈ {1, . . . ,m}, in a clus-
ter, and assuming that they are different realizations
(i.e., coming from different input and output signals) of
the same system with transfer function H (z), we can
calculate the average of these cepstra as

c̃h(k) =
1

m

m∑
j=1

ĉh,j(k). (10)

Taking the Fourier transform of both sides, we find, from
Equation (4),

F {c̃h(k)} =
1

m

m∑
j=1

log
(

Φ̂h,j
(
eiω
))

= log

 m

√√√√ m∏
j=1

Φ̂h,j (eiω)


= log

(
Φ̃h
(
eiω
))
,

(11)

where Φ̃h
(
eiω
)

is the geometric mean over the power
spectral densities.

Given m estimates of such a power spectral density,
Φ̂h,j

(
eiω
)
, with j ∈ {1, . . . ,m}, this geometric mean

represents an estimator

Φ̃h
(
eiω
)

= m

√√√√ m∏
j=1

Φ̂h,j (eiω).

This estimator has been shown [4,33] to be less biased

than the Euclidean average over the different Φ̂h,j
(
eiω
)
.

The average of the cepstra c̃h(k) in Equation (10) then
represents the dynamics of the geometric mean of the dif-
ferent estimates of the power spectral density and char-
acterizes the dynamics with the same low-biased estima-
tor properties as noted for Φ̃h

(
eiω
)

in [33].

Algorithm 1 allows us to estimate an AR model from
the average cepstrum (i.e., cluster center) and use this
as representative dynamics of the cluster. Equation (11)
states that this is equivalent to estimating dynamical
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models for all signals in the cluster separately and ge-
ometrically averaging them afterwards, which is com-
putationally more complex, showing that using cepstral
techniques allows us to very efficiently identify represen-
tative dynamics.

6 Numerical examples

In this section, we illustrate the theoretical results ob-
tained in this paper. The numerical illustration in Sec-
tion 6.1 serves as a proof of concept, while the numerical
examples in Section 6.2, with synthetic data, investigate
the properties of the novel cepstral system identification
approach and show that the mean of a cepstral cluster
is a good estimate of the average dynamics. We then re-
peat the historical identification of Yule’s sunspot num-
bers in Section 6.3 and use the cepstrum to estimate AR
models that monitor structural health in Section 6.4.

We work only on the system outputs, and thus we assume
that the output cepstra correspond to the relevant model
cepstra 6 . We repeat once more that all the code used
during the numerical examples is available on GitHub 1 .

6.1 Numerical illustration

As a first practical acquaintance with cepstral system
identification, we consider a simple 3rd order AR system

H(z) =
1

z3 − 0.5z2 + 0.25z − 0.125
, (12)

which has three poles (α1 = 0.5, α2 = 0.5i, α3 = −0.5i).

To identify this system, we simulate the response, y(t),
to a Gaussian white noise input signal 6 , u(t), of length
N = 5 × 105. We calculate the model cepstrum, ch(k),
according to the computational details in Appendix C.
Algorithm 1 then yields a 3rd order AR model 7

Ĥ(z) =
1

z3 − 0.497z2 + 0.249z − 0.126
.

The poles and the transfer function of the identified
model Ĥ(z) closely resemble those of the original system
H(z), as is also visualized in Figure 2.

We assume in this paper that the order of the model
is a user-input to the algorithm. Since Algorithm 1 is
computationally very cheap once the cepstrum is known

6 The (power) cepstrum of a white noise signal is zero
everywhere except for in its 0th coefficient. In this case
cy(k) = ch(k), ∀k 6= 0. Therefore, we work only on the out-
put signals (see Appendix A).
7 The cepstral coefficients and exact model parameters de-
pend on the exact noise realization (i.e., the random seed).
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Fig. 2. The model identified via the cepstral system identifi-
cation algorithm closely resembles the original system H(z).
The original poles are α1 = 0.5, α2 = 0.5i, and α3 = −0.5i.

(and we only have to compute the cepstrum once, inde-
pendent of the model order), in practice, we could use a
simple grid search in combination with an error estima-
tor (e.g., the Akaike information criterion [2]) to find an
appropriate value for the model order n.

6.2 Synthetic data

We explore examples with synthetic data, where the un-
derlying systems generating the data are known.

6.2.1 Cepstral system identification

We consider again the 3rd order AR system in Equa-
tion (12), H(z), and numerically examine the con-
vergence behavior, noise robustness, and influence
of a wrong model order. Moreover, we compare the

7



estimation results of the cepstral system identifica-
tion technique with those of the well-known ordinary
least-squares regression approach, obtained by solving
the normal equations directly in time domain, Burg’s
lattice-based method, which solves the lattice filter
equations using the harmonic mean of forward and
backward squared prediction errors [11,14], and the
maximum entropy method [16].

Convergence behavior: A first experiment com-
pares the H2-error of the identified models for different
signal lengths N . The H2-error is the H2-norm [3] of

the error system E(z) = H(z)− Ĥ(z), which represents
the mismatch between the original system H(z) and

the identified model Ĥ(z). The cepstral, least-squares,
and Burg estimation approach are applied 100 times to
different responses of the same signal length N of the
system in Equation (12). Furthermore, in this particular
experiment, we compare the results with the maximum
entropy method [16], also called the linear predictive
coding (LPC) method, which interpoloates a set of
covariances with an AR model. Figure 3 shows how
the mean (over the 100 experiments) of the H2-error
decreases, as expected, for longer signal lengths. The
obtained results for the maximum entropy method are
similar to the results obtained via the Burg estimation
approach. Therefore, we do not include the maximum
entropy method in the numerical results that follow in
the next sections. As this convergence experiment sug-
gests, the cepstral estimation approach seems to cope
better with shorter time series than the other estima-
tion techniques (i.e., the results for the other methods
fall outside of one standard deviation of the error in
this experiment, though the cepstral estimation lies
inside one standard deviation of the error of the other
methods; further research on this topic is required).

Noise robustness: In Figure 4, we investigate the
influence of noise on the identification results. The re-
sponse y(t) simulated by the system in Equation (12) is
contaminated with additive white Gaussian noise of dif-
ferent magnitudes σ: ỹ(t) = y(t)+σn(t). For high signal-
to-noise ratios (SNRs), the identified transfer functions
behave almost exactly as the original one. Down to 10
dB, the results remain quite satisfactory. When the SNR
drops below 10 dB, the model estimated by the cep-
stral identification procedure deviates significantly from
the original. The least-squares and Burg estimation ap-
proach yield similar results.

Wrong model order: Now, we add a conjugate pair
of poles to the 3rd order AR system in Equation (12),
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Fig. 3. The cepstral, least-squares, Burg, and maximum en-
tropy estimation approach are applied 100 times to different
output signals of the same length N coming from H(z) in
Equation (12). The solid line shows how the mean of the
H2-error decreases for longer data lengths, while the dashed
lines represent the standard deviation. The cepstral system
identification procedure seems to cope better with shorter
time series than the other estimation techniques (i.e., the
results for the other methods fall outside of one standard de-
viation of the error in this experiment, though the cepstral
estimation lies inside one standard deviation of the error of
the other methods; further research on this topic is required).
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Fig. 4. A visualization of the influence of the signal-to-noise
ratio (SNR) on the identification results. For high SNRs,
the identified transfer functions behave almost exactly as
the original one. Down to 10 dB, the results remain quite
satisfactory. However, when the SNR drops below 10 dB,
the model estimated by the cepstral identification procedure
deviates significantly from the original system. The least-
-squares and Burg estimation approach yield similar results.

H(z), to obtain a 5th order AR system

G(z) =
H(z)

z2 + 0.5z + 0.125

=
1

(z − 0.5)(z2 + 0.25)(z2 + 0.5z + 0.125)
.

When we try to identify this 5th order system with mod-
els of different order, we notice a clear decrease in the
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Fig. 5. The 5th order model identified via the cepstral esti-
mation procedure closely resembles the original systemG(z),
while the other models deviate from the original system.
The original poles are α1 = 0.5, α2 = 0.5i, α3 = −0.5i,
α4 = −0.25 + 0.25i, and α5 = −0.25− 0.25i.

identification performance, which is of course to be ex-
pected. Figure 5 compares the resulting poles and trans-
fer functions for a 7th, 6th, 5th, 4th, and 3rd order
model. The correct model order (n = 5) clearly results
in decent identification results, while lower model orders
(n = 4 and n = 3) fail to capture all the system dy-
namics. Higher order models (n = 7 and n = 6) result
visually in close magnitude plots, although they do give
similar H2-errors as the lower order models in Figure 6.
Figure 6 also demonstrates that a longer signal length
N does not alleviate the model mismatch problem.

6.2.2 Mean of a cepstral cluster

We now turn our attention to the interpretation of the
average cepstrum in Equation (11), in the context of
cepstral clustering.
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Fig. 6. The cepstral estimation approach for different model
orders is applied 100 times to data coming from the original
system G(z) with different (same-length) realizations of the
white Gaussian input. The solid line shows the mean of the
H2-error for the 5th order estimation, decreasing with longer
data lengths. However, when the model order is different
from 5, longer signals do not improve the H2-error.

Consider two systems,

H1(z) = H(z) =
1

z3 − 0.5z2 + 0.25z − 0.125
,

as in Equation (12), and

H2(z) =
1

z3 − 0.4z2 + 0.3025z − 0.121
, (13)

with poles α1 = 0.4, α2 = 0.55i, and α3 = −0.55i.

We simulate each system 100 times with Gaussian white
noise input signals and denote the output signals of
H1(z) as y1,i(t), for i ∈ {1, . . . , 100}, with cepstra c1,i(k),
and those of H2(z) as y2,j(t), for j ∈ {1, . . . , 100}, with
cepstra c2,j(k). Two such output signals, one for each
system, are shown in Figure 7. The poles of these two
systems are purposely chosen close together, so that the
output signals are similar and the clustering challenge
is non-trivial. Performing cepstral agglomerative hierar-
chical clustering (see Section 5.3) on this data set, cut-
ting off at two clusters, exactly separates the signals
coming from each system. The first cluster, C1, contains
all cepstra c1,i(k), while the second cluster, C2, contains
all cepstra c2,j(k). Figure 8 shows the resulting labels.

Given a model cepstrum, we can identify, via Algo-
rithm 1, the corresponding pole polynomial and ob-
tain the power spectral density (PSD) of the identified
model very efficiently. Figure 9 shows PSDs obtained
in this way for various elements of cluster C1, to show
the variance on the dynamics present in the data set.
In Figure 10, we show, for cluster C1, the true PSD
(i.e., the PSD associated with the system H1(z)), the
geometric mean of all PSDs (i.e., first identify the PSD
for each signal in C1, by using the system identification

9
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Fig. 7. Two output signals, which are realizations of systems
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Fig. 8. Results of agglomerative hierarchical clustering, using
the weighted cepstral distance. The first 100 signals (0-99)
are outputs of H1(z) in Equation (12), the last 100 belong to
systemH2(z) in Equation (13). Cepstral clustering separates
them perfectly in two clusters, each representing one of the
two systems. Examples of signals belonging to both clusters
are shown in Figure 7.

technique from this paper to estimate the pole poly-
nomial, and then compute the frequency response; the
geometric average over all PSDs obtained in this way is
shown), and the PSD associated with the cluster center
(i.e., the system identification technique applied to the
cluster center, which itself is the average over all the
cepstra present in the cluster). We compare this with
the PSD of the Euclidean average over all the signals in
the cluster. It is clear that the cluster center provides a
good estimate for the average dynamics of the cluster,
and certainly a better one than the Euclidean average.
We can thus interpret the cluster centers obtained by
cepstral clustering as good estimates of the average dy-
namics present in their clusters. Instead of having to find
a model for each realization of the system and taking the
geometric mean, it suffices to model the cluster center.
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Fig. 9. Power spectral density (PSD) estimates of some of
the signals in y1,i(t), the output signals of system H1(z)
in Equation (12). The PSD estimates clearly exhibit some
variance.

6.3 Yule’s sunspot numbers

Already in 1927, Yule [44] proposed the structure that we
know today as an AR model. He introduced this statisti-
cal technique to describe the historical series of recorded
yearly sunspot numbers, a time series of visual sunspot
counts initiated in 1848 by the Swiss astronomer Jo-
hann Rudolf Wolf [42]. Yule, however, called this series
Wolfer’s sunspot numbers, in honor of Wolf’s successor
at the Zürich observatory, Alfred Wolfer. These sunspot
numbers are an important indicator for solar activity
and the only direct information available to retrace the
long-term evolution of the solar cycle, but also play a role
in more recent discussions, like climate change, space
flights, or telecommunication [12,42].

Although the quality of the original data is question-
able [42], especially the oldest observations, we repeat
this historical identification experiment on the same
data as Yule, including the initial detrending 8 (see Fig-
ure 11), with yearly sunspot numbers between 1749 and
1924, resulting in a time series of 176 sunspot numbers.

As expected, the cepstral, least-squares, and Burg ap-
proach (for n = 2) closely match Yule’s historical model
after the initial detrending (see numerical results in Ta-
ble 1). Figure 12 compares the results visually. Moreover,
the cepstrum seems to cope very well with the trend in
the original data. Figure 13 shows how the identifica-
tion results change when we do not detrend the time
series. The least-squares and Burg approach completely
fail, while the cepstral estimation results in a more or
less satisfactory model that captures most of the system
dynamics. This stems from the fact that the cepstrum
stores information on the scale of the problem in its 0th
coefficient, which is not used in the identification tech-
nique. Part of the detrending is thus done automatically.

8 The detrending removes the best straight-line fit linear
trend from the data.
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Fig. 10. Power spectral density (PSD) estimates for various quantities, compared to the actual PSD. All of these results are
for the output signals of system H1(z), in Equation (12). The geometric average PSD is the geometric average over the PSDs
belonging to all the output signals of system H1(z) (i.e., we identified a model for each signal, computed all their PSDs, and
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showing the merit of cepstral clustering over traditional approaches for the purpose of finding the average dynamics.
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Fig. 11. This figure visualizes Yule’s sunspot numbers before
and after detrending.

6.4 Structural health monitoring via AR models

Many civil and mechanical systems require close struc-
tural health monitoring (SHM) systems, both from an
economic and a safety perspective [36]. Damage identi-
fication based on changes in dynamic response to vibra-
tions is one of the few methods to monitor structural
health in a non-destructive way. One approach is the use
of AR models to identify damage in given structures. The

Table 1
Numerical results of the identification of Yule’s historical
sunspot data. The pole polynomials a(z) = z2 +a1z+a2 are
obtained via cepstral, least-squares, and Burg estimation on
the detrended and trended (indicated with *) time series.

Approach a1 a2

Yule’s historical model −1.3425 0.6550

Cepstral estimation −1.3317 0.6587

Cepstral estimation * −1.4678 0.7412

Least-squares estimation −1.3345 0.6517

Least-squares estimation * −1.4319 0.5444

Burg estimation −1.3368 0.6516

Burg estimation * −1.4381 0.5475

residuals [9,18] and the coefficients [36] of the AR models
fitted on motion measurements of vibrating structures
serve as important features to detect structural damage.

We apply this AR approach on the measured response
of a vibrating three-story frame structure (sketched in
Figure 14) and use the coefficients of the fitted models
to identify structural damage. The structure consists of
an aluminum frame with floor plates, connected through
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Fig. 12. The identification of Yule’s historic sunspot num-
bers via the cepstral, least-squares, and Burg approach. All
methods yield a close match to Yule’s model.
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Fig. 13. When we do not detrend the sunspot number data
before identification, the least-squares and Burg approach
fail completely to identify the system. However, the cepstral
estimation results in a rather satisfactory result that captures
most of the system dynamics.

bolted connections. In undamaged state, all bolts are
tightened properly. By loosening or removing some bolts,
structural damage is simulated. The frame is excited by
a shaker at its bottom. Several accelerometers measure
the movements of the different aluminium parts 9 .

We follow the approach as described in the paper of Sohn
et al. [36], where similar experiments are done on a bridge
structure. We identify the AR coefficients (order n = 3)
of non-overlapping windows (window length M = 50) of
the output of an accelerometer close to the defect, using
the cepstral identification approach in Algorithm 1. The
interested reader finds information about the influence

9 More information about the test setup or the data
set can be found on the website of Los Alamos Na-
tional Laboratory (https://www.lanl.gov/projects/
national-security-education-center/engineering/
software/shm-data-sets-and-software.php). The data
set used in this example is “Bookshelf Frame Structure –
DSS 2000”.
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Fig. 14. The three-story test setup of which we monitor the
structural health consists of an aluminum frame and four alu-
minum floor plates, connected through bolted connections.
In undamaged state, all bolted connections are tightened
properly. However, to simulate structural damage, we loosen
or remove some bolts. At its bottom, a shaker vibrates the
structure and several accelerometers measure the resulting
movements of the different aluminum parts.

of these design parameters on the structural damage de-
tection in [17].

Input data on the movement of the shaker was not avail-
able. We thus, again, have to make the assumption that
the dynamics contained in the output signal constitute
the dynamics of the relevant model. In the cepstral do-
main, this translates to assuming that cy(k) = ch(k).
Results are shown in Figure 15. The experiment was
done twice without damage, for different levels of exci-
tation. The first experiment drives 2 volts through the
shaker (undamaged 2V), the second one applies 5 volts
(undamaged 5V). We notice that the AR coefficients re-
main within the same range, for different levels of excita-
tion of the shaker. We then repeat the experiment with
structural damage (removal of the bolt named L1C). The
damaged AR coefficients in Figure 15 clearly differ from
those in the undamaged situation, especially for the sec-
ond and third coefficient (the first coefficient seems to
be less sensitive to damage, an observation that has also
been made by Sohn et al. [36]). These differences in AR
coefficients allow us to distinguish undamaged and dam-
aged structures.

Finally, we replicate the results with the least-squares
and Burg estimation approach. However, the differences
between the damaged and undamaged AR coefficients
are not as distinctive (see for example the third coef-
ficient in Figure 16). Perhaps the rather short window
length is to blame here, in accordance with the results
in Figure 3.
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Fig. 15. The AR coefficients of the 3rd order AR model fitted
on the output of an accelerometer clearly indicate whether
the frame contains some structural damage. Results of two
experiments without and one experiment with structural
damage are shown. Especially the second and third damaged
AR coefficients differ from their undamaged equivalent.

7 Conclusion and future research

In this paper, we developed a novel general framework
to identify the pole polynomial, a(z), of an unknown au-
toregressive (AR) system, exploiting the link between
the model power cepstrum and the poles of the model,
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Fig. 16. The 3rd AR coefficient for each window, now ob-
tained with Burg estimation. Results for the least-squares
approach are similar, and therefore omitted. The differences
of the AR coefficients are less distinctive for these two ap-
proaches. We suspect that the length of the non-overlapping
windows is the main culprit of this behavior, as this problem
seems to disappear with longer window sizes.

which resulted in analytic solutions for the coefficients
of a(z). The computation of the power cepstrum is the
main contributor to the computational complexity of
the system identification procedure presented in Algo-
rithm 1. This complexity is O(N logN), with N the sig-
nal length, resulting in a fast system identification tech-
nique that can be applied to large-scale problems. When
the power cepstrum is known, e.g., in cepstral clustering
problems, the procedure is independent of the length of
the power cepstrum and is of complexity O(n), with n
the model order.

Via numerical examples with synthetic data, we inves-
tigated the convergence speed and robustness (to mea-
surement noise and wrong model order selection) of the
identification procedure. The algorithm was applied to a
clustering problem, to show how the cepstral cluster cen-
ter provides a good estimator for the average dynamics of
the cluster (and therefore of the generative model of the
cluster). The classical example of Yule’s sunspot num-
bers and a contemporary challenge in structural health
monitoring corroborated the theoretical results. We also
compared our novel approach to the traditional least-
squares and Burg estimation approach.

In future work, we will explore several extensions of the
current framework, to include models with zeros as well
as poles (the zeros would enter with a minus sign in
the power sums in Equation (7), which offers a way to
separate the contributions of poles and zeros) and al-
low for multiple-input multiple-output models (using the
MIMO extension of the power cepstrum from [22]). We
will pursue ways to employ the information in higher
cepstral coefficients to improve parameter estimation,
model order selection, and robustness. We will also fur-
ther investigate theoretically the differences with the tra-
ditional least squares and Burg approach, to understand
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the differences in performance, for example for shorter
signals.
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20(1):25–48, 2013.

[32] Charith Perera, Arkady Zaslavsky, Peter Christen, and
Dimitrios Georgakopoulos. Context aware computing for the
internet of things: A survey. IEEE Communications Surveys
& Tutorials, 16(1):414–454, 2014.

[33] Rik Pintelon, Johan Schoukens, and Jean Renneboog. The
geometric mean of power (amplitude) spectra has a much
smaller bias than the classical arithmetic (RMS) averaging.
IEEE Transactions on Instrumentation and Measurement,
37(2):213–218, 1988.

[34] Lior Rokach and Oded Maimon. Clustering methods. In
Oded Maimon and Lior Rokach, editors, Data Mining and
Knowledge Discovery Handbook, pages 321–352. Springer,
Boston, MA, USA, 2005.

[35] Manfred R. Schroeder. Direct (nonrecursive) relations
between cepstrum and predictor coefficients. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
29(2):297–301, 1981.

[36] Hoon Sohn, Jerry A. Czarnecki, and Charles R. Farrar.
Structural health monitoring using statistical process control.
Journal of Structural Engineering, 126(11):1356–1363, 2000.

[37] Zahoor Uddin, Ayaz Ahmad, Aamir Qamar, and Muhammad
Altaf. Recent advances of the signal processing techniques
in future smart grids. Human-centric Computing and
Information Sciences, 8(1):1–15, 2018.
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A General inputs

All results in this paper hold for stationary inputs. How-
ever, Theorem 2 is written in terms of the model (power)
cepstrum. As long as we have access to these cepstral co-
efficients, we can use the theorem. In this appendix, we
describe how to obtain the model cepstrum in the case
of non-white noise inputs (i.e., ch(k) 6= cy(k)).

This notion of the cepstrum stems from the field of ho-
momorphic signal processing [28]. Equation (4) turns the
convolutional structure of the time domain, through the
Fourier transform and the logarithm, into an additive
structure. The inverse Fourier transform then turns this
back into a transformed version of the time domain. This
is known as quefrency alanysis and has given rise to a
lot of similar terms, such as liftering instead of filtering
and rhamonics instead of harmonics [7].

Formally, in time domain, taking the inverse Fourier
transform of the transfer function returns the impulse
response, h(t), and the following relation holds:

y(t) = h(t) ∗ u(t),

with y(t) and u(t) the time domain output and input
signals, respectively, and ∗ the convolution operator. In
light of this, it is easy to see that

ch(k) = cy(k)− cu(k). (A.1)

This model cepstrum can be interpreted as the cepstrum
of the impulse response, h(t). It can always be com-
puted when the Fourier transforms of the signals are
well-defined.

For example, when we simulate the system in Equa-
tion (12), H(z), with a non-white noise input signal
(e.g., the colored noise in Figure A.1), the model cepstral
coefficients, ch(k), no longer correspond to the output
cepstral coefficients, cy(k), and an identification using
only the output fails to capture the system dynamics.
However, if we know the input cepstrum, cu(k), Equa-
tion (A.1) gives us the correct model cepstral coefficients
and allows us to properly estimate the AR model (see
Figure A.2).

B On the assumption of stability

Because of the use of the power spectral density in Equa-
tion (4), the power cepstrum does not take into ac-
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Fig. A.1. The power spectral density (PSD) of the colored
(non-white) noise used in Figure A.2.

count any information about stability of the systems
(i.e., whether poles have magnitudes greater or smaller
than 1). For any unstable pole γ (i.e., |γ| > 1), the con-
tribution to the model power cepstral coefficient, ch(k),

∀k 6= 0, will be γ−k

k [28]. If we would then perform the
system identification procedure from this paper, we will
identify a pole γ−1, and always obtain a stable system.

If we want to allow unstable systems, we can instead
employ the complex cepstrum 10 , defined as

ĉh(k) = F−1
{

log
(
H
(
eiω
))}

,

and computed as

ĉy(k) = IFFT (log (FFT(y(t)))) .

Consider now a system

Y (z) =
1

b(z)c(z)
U(z), (B.1)

where b(z) contains the stable poles, |βi| < 1, and c(z)
the unstable poles, |γj | > 1. The question that we want
to answer now is whether we can, based on input-output
signal pairs only, determine whether the system is stable
or not and identify its pole polynomial a(z) = b(z)c(z).

We can calculate its model complex cepstrum, ĉh(k) =

10 The term complex cepstrum is a bit confusing, as the com-
plex cepstral coefficients are real numbers. Rather, the phase
information of the transfer function is retained in computing
the complex cepstrum, giving rise to its name.
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Fig. A.2. The model estimated via the cepstral system identi-
fication procedure closely resembles the original systemH(z)
when the colored (non-white) noise of Figure A.1 is taken
into account. However, when the non-white input is not taken
into account, the identification clearly misestimates the orig-
inal poles (z1 = 0.5, z2 = 0.5i, and z3 = −0.5i).

ĉy(k)− ĉu(k), and it is easily shown that

ĉh(k) =



q∑
i=1

βki
k
∀k > 0

log(g′) k = 0

−
s∑
j=1

γkj
k
∀k < 0

.

In other words, the complex cepstrum stores the cepstral
coefficients belonging to the stable poles in positive val-
ues of k and the coefficients belonging to the unstable
poles in negative values of k. We show an example of the
complex cepstrum in Figure B.1. We can run Algorithm 1
on the positive and negative sequences separately. This
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Fig. B.1. The first five positive and negative complex cepstral
coefficients of a stable system (poles at 0.9, 0.7, 0.4), an
unstable system (poles at 1/0.9, 1/0.7, 1/0.4) and a mixed
system (poles at 1/0.9, 0.7, 1/0.4), respectively. The 0th
cepstral coefficient has been artificially set to 0 in all three
cases to improve readability of the graph. This coefficient
can take on large (positive or negative) values, but is not
important for the discussion here.

gives us the pole polynomials b(z) and c(z−1) in Equa-
tion (B.1). We then only have to substitute z → z−1 for
the unstable part, multiply the two polynomials, to find

a(z) = b(z)c(z).

C Computational aspects

The (power) cepstrum of a signal y(t) can be straight-
forwardly computed as

cy(k) = IFFT
(
log
(
Φy
(
eiω
)))

,

with k = 1, . . . , N , and N the length of the fast Fourier
tranform (FFT). Both the implementation of the inverse
fast Fourier transform (IFFT) [10] and the logarithm are
straightforward in this case and are pre-implemented in
many commonly used scientific programming languages,
like MATLAB and Python. Computing a good estimate
of the power spectral density (PSD) Φy

(
eiω
)

is a lit-
tle more involved. For long enough signals (from about
N = 210 and beyond), we can employ the well-known
FFT as an approximation of the Fourier transform and
implement

Φy
(
eiω
)

=
1

N
|FFT(y(t))|2 .

The FFT has a computational complexity ofO(N logN).

The accuracy of the PSD estimate is very important
to our techniques. For shorter time series, we employ
Welch’s method [41], which divides the signal in over-
lapping windows, estimates the PSD of each of the win-

dows using the FFT, and averages them out. The re-
sult is a less noisy estimate. This technique is again of
O(N logN), and is what we use throughout this paper
(see Algorithm 2). For shorter time series (i.e., N < 27

), even more accurate estimation techniques exist (e.g.,
the Multitaper method [30]), but these are computation-
ally more expensive and are, therefore, to be avoided for
longer signals.

Algorithm 2 Power cepstrum computation

1: procedure power cepstrum(y(t))
2: Φy

(
eiω
)
←Welch(y(t))

3: Φ′y
(
eiω
)
← log(Φy

(
eiω
)
)

4: cy(k)← IFFT(Φ′y
(
eiω
)
)

5: return cy(k)
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