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We consider two algorithms that use the block Macaulay 
matrix to solve (rectangular) multiparameter eigenvalue prob-
lems (MEPs). On the one hand, a multidimensional realization 
problem in the null space of the block Macaulay matrix con-
structed from the coefficient matrices of an MEP results in 
a standard eigenvalue problem (SEP), the eigenvalues and 
eigenvectors of which yield the solutions of that MEP. On 
the other hand, we propose a complementary algorithm to 
solve MEPs that considers the data in the column space of 
the sparse and structured block Macaulay matrix directly, 
avoiding the computation of a numerical basis matrix of the 
null space. This paper generalizes, in a certain sense, tradi-
tional Macaulay matrix techniques from multivariate polyno-
mial system solving to the block Macaulay matrix in the MEP 
setting.
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1. Introduction

Many natural and scientific phenomena exhibit intrinsic system dynamics that can 
be captured in a standard eigenvalue problem (SEP). The eigenvalues and eigenvec-
tors that correspond to those phenomena describe the proper (the prefix eigen- is 
adopted from the German word eigen, which means proper and was presumably first 
coined by Hilbert [29]) evolution of the system dynamics along the eigenvector direc-
tions. For some phenomena, however, a single spectral parameter does not capture the 
system dynamics entirely and multiple spectral parameters, or eigentuples of eigen-
values, come into the picture, for instance in partial differential equations. Histori-
cally, multiparameter spectral theory has its roots in the classical problem of solving 
boundary-value problems for partial differential equations by the method of separa-
tion of variables [3,43,47]. For example, the vibration problem of an elliptic membrane 
in two ellipsoidal coordinates, i.e., the two-dimensional Helmholtz equation, leads to 
the study of a pair of ordinary differential equations, both of which share two spec-
tral parameters. This corresponds to a two-parameter eigenvalue problem [43,47]. The 
presence of multiple spectral parameters (eigentuples instead of eigenvalues) links the 
evolution of the different ordinary differential equations obtained from the separation 
of variables in an elementary fashion. Recently, we have shown that the least-squares 
identification of linear time-invariant systems is, in essence, also a (rectangular) multi-
parameter eigenvalue problem [20,21,50]. Despite their applicability and natural relation 
to SEPs, multiparameter eigenvalue problems (MEPs) have not yet been widely diffused 
among the general scientific community. The literature about solving one-parameter 
eigenvalue problems, i.e., SEPs, GEPs (generalized eigenvalue problems), and PEPs 
(polynomial eigenvalue problems), is vast and mature. PEPs are usually linearized 
into larger GEPs [28,49] and the resulting matrix pencils are solved via one of the 
many available, efficient SEP or GEP solvers. Techniques to solve MEPs, on the con-
trary, have been explored much less. We make a distinction between algorithms to solve 
square MEPs and algorithms to solve rectangular MEPs, although both problems are 
related.

Classical square MEPs, on the one hand, are typically solved via simultaneous trian-
gularization of the associated coupled GEPs [30,35,42,48]. This approach works for any 
number of spectral parameters and retrieves all the solutions, but is limited by the size 
of the coupled GEPs. Also iterative nonlinear optimization algorithms can be used to 
retrieve one (or some) of the solutions, e.g., gradient descent techniques [8,9,12], minimal 
residual quotient iterations [7], or Newton-based methods [10], but these optimization 
approaches are heuristic (they depend on an initial guess) and result in numerical approx-
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imations of the eigentuples and eigenvectors. In the last two decades, a renewed interest 
in the topic has led to several efficient homotopy continuation algorithms [22,41,44]
and subspace approaches [30,31,33,34,45] to overcome scalability and convergence is-
sues. These algorithms can also solve polynomial square MEPs, either directly or after 
a linearization step [32,44].

In our earlier work [20,21,50], on the other hand, we have introduced the block 
Macaulay matrix, which allows us to solve rectangular MEPs via a multidimensional 
realization problem in the null space of that matrix. We consider in this paper the com-
plementarity between the null space and column space of the block Macaulay matrix in 
order to develop a new, complementarity algorithm that works on the data in the columns 
directly. This observation stems from a similar complementarity in multivariate polyno-
mial system solving, in which the null space and column space of the traditional Macaulay 
matrix both give rise to a root-finding algorithm [51]. We use well-established tools from 
numerical linear algebra, such as the singular value decomposition or QR-decomposition, 
to solve rectangular MEPs (which are essentially disguised systems of multivariate poly-
nomial equations with some variables that only appear “linearly”). In contrast to the 
classical MEPs with square coefficient matrices, we consider in our research rectangular 
MEPs, which arise, for example, in system identification problems [20,21,50] or mul-
tiparameter generalizations of the Heine–Stieltjes spectral problem [46]. We can even 
transform quite a few classical square MEPs into equivalent rectangular MEPs (see Sec-
tion 2). In that sense, the two block Macaulay matrix algorithms of this paper also 
supplement the set of existing algorithms to solve classical square problems.

Outline and main contributions The remainder of this paper proceeds as follows: Sec-
tion 2 defines the rectangular MEP and Section 3 introduces the block Macaulay matrix, 
which is constructed from the coefficient matrices of a rectangular MEP. The (right) null 
space of this block Macaulay matrix has a special (backward block multi-)shift-invariant 
structure, which allows us to find the eigentuples and eigenvectors of the rectangular 
MEP via a multidimensional realization problem in that null space. We revisit this ex-
isting null space based algorithm to solve rectangular MEPs in Section 4. Our main 
contributions are (i) the observation that the complementarity between the null space 
and column space of the block Macaulay matrix results in an equivalent multidimen-
sional realization problem in the column space and (ii) a second block Macaulay matrix 
algorithm to solve polynomial rectangular MEPs, using only numerical linear algebra 
“work horses” like the singular value decomposition and QR-decomposition. We develop 
this column space based algorithm in Section 5. Several numerical examples illustrate 
both algorithms in Section 6. Finally, we summarize this paper and point at ideas for 
future research in Section 7. Appendix A covers the structure of backward scalar/block 
single/multi-shift-invariant finite dimensional subspaces, like the affine part of the null 
space of the block Macaulay matrix, in more depth.
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Notation We denote scalars by lowercase letters, e.g., a, and tuples/vectors by boldface 
lowercase letters, e.g., a. Matrices are characterized by boldface uppercase letters, e.g., A. 
When a matrix contains one or more parameters, for example, the combined coefficient 
matrix of an MEP, we use a bold calligraphic font, e.g., A (a) with parameter a. We use 
a subscript to indicate an element or submatrix of a tuple/vector or matrix, e.g., a1 is 
the first element of the vector a.

2. Multiparameter eigenvalue problems

Multiparameter eigenvalue problems (MEPs) naturally extend the typical structure 
of standard eigenvalue problems and involve eigentuples λ = (λ1, . . . , λn) of eigenvalues 
instead of single eigenvalues λ. Several manifestations of MEPs appear in the literature, 
e.g., the classical square problems by Atkinson [1], Carmichael [13,14,15], Plestenjak 
et al. [43], Volkmer [52] and the rectangular problems in this paper and by Shapiro and 
Shapiro [46], De Moor [21], Vermeersch and De Moor [50]. Therefore, we start by defining 
the (rectangular1) MEP within our block Macaulay matrix framework.

For example, 
(
A000 + A100λ1 + A025λ

2
2λ

5
3
)
z = 0 contains n = 3 spectral parameters, 

combined in eigentuples (λ1, λ2, λ3) with corresponding eigenvectors z, and three coef-
ficient matrices Aω. The integer multi-index ω = (ω1, . . . , ωn) ∈ Nn labels the powers 
of the eigenvalues in the monomial λω =

∏n
i=1 λ

ωi
i = λω1

1 · · ·λωn
n and indexes the asso-

ciated coefficient matrices Aω = A(ω1,...,ωn). The total degree of a monomial is equal 
to the sum of its powers, denoted by |ω| =

∑n
i=1 ωi, and the highest total degree of 

all the monomials determines the degree dS of the MEP. Hence, an integer multi-index 
ω = (0, 2, 5) labels the monomial λ2

2λ
5
3 (with total degree 7) and indexes the associated 

coefficient matrix A025. To keep the notation unambiguous, we use the degree negative 
lexicographic ordering to order different (multivariate) monomials [5,17]. However, the 
remainder of this paper remains valid for any graded multivariate monomial ordering.

Definition 1 (Degree negative lexicographic ordering). If we consider two n-tuples α, β ∈
Nn and |α| < |β| or |α| = |β| where in the element-wise difference β − α ∈ Zn the 
left-most non-zero element of the tuple is negative, then two monomials are ordered 
λα < λβ by the degree negative lexicographic ordering.

Example 1. The degree negative lexicographic ordering orders the monomials in n = 3
variables as

1 < λ1 < λ2 < λ3 < λ2
1 < λ1λ2 < λ1λ3 < λ2

2 < λ2λ3 < λ2
3 < λ3

1 < λ2
1λ2 < . . .

1 In the remainder of this paper, we no longer mention the qualification rectangular explicitly. We always 
consider rectangular problems, except when denoted otherwise (for example, during the comparison with 
classical square problems).
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Table 1
Within our block Macaulay matrix framework, we observe 
four different types of MEPs, organized according to the 
structure of the monomials in the combined coefficient ma-
trix M (λ1, . . . , λn).

Spectral parameter(s) Linear Polynomial

Eigenvalues (n = 1) Type I Type II
{1, λ} λω

SEP/GEP PEP

Eigentuples (n > 1) 
(i = 1, . . . , n)

Type III Type IV
λi

∏n
i=1 λωi

i

linear MEP polynomial MEP

Definition 2 (Multiparameter eigenvalue problem). Given coefficient matrices Aω ∈
Rk×l (with k ≥ l+n −1), the multiparameter eigenvalue problem M (λ1, . . . , λn) z = 0
consists in finding all n-tuples λ = (λ1, . . . , λn) ∈ Cn and corresponding vectors 
z ∈ Cl×1 \ {0}, so that

M (λ1, . . . , λn) z =

⎛
⎝∑

{ω}
Aωλ

ω

⎞
⎠ z = 0, (1)

where the summation runs over all the multi-indices ω of the monomials λω =
∏n

i=1 λ
ωi
i

and coefficient matrices Aω = A(ω1,...,ωn). The n-tuples λ = (λ1, . . . , λn) and (non-zero) 
vectors z are the eigentuples (with eigenvalues λ1, . . . , λn) and eigenvectors of the MEP, 
respectively.

The size condition on the coefficient matrices is a necessary (but not a sufficient) 
condition in order to have zero-dimensional solution set: there are k equations and 1
non-triviality constraint on z (e.g., ‖z‖2 = 1) in l + n unknowns (l elements in the 
eigenvectors and n eigenvalues), thus k + 1 ≥ l + n. The matrix M (λ1, . . . , λn) is 
the combined coefficient matrix of the MEP and is a multivariate polynomial in the 
eigenvalues λ1, . . . , λn with matrix coefficients Aω. Table 1 summarizes the different 
types of problems that we cover with Definition 2, organized according to the structure 
of the monomials in M (λ1, . . . , λn), i.e., single eigenvalues versus eigentuples and linear 
appearance versus polynomial appearance. Examples 2, 3, 4, and 5 (below) each illustrate 
one of the four types of MEPs. The block Macaulay matrix algorithms in this paper 
provide an elegant, unifying approach to solve all the problems in Table 1.

Example 2 (Type I – SEP/GEP). The standard eigenvalue problem (SEP) A0z = zλ, 
or (A0 − Iλ) z = 0, and the generalized eigenvalue problem (GEP) A0z = A1zλ, or 
(A0 −A1λ) z = 0, are MEPs with n = 1.

Example 3 (Type II – PEP). Polynomial eigenvalue problems (PEPs) of degree dS also 
fit perfectly in Definition 2, with n = 1, as
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⎛
⎝∑

{ω}
Aωλ

ω

⎞
⎠ z =

(
dS∑
i=0

Aiλ
i

)
z = 0.

For example, a PEP of degree dS = 4 has five coefficient matrices Ai ∈ Rk×l (k ≥ l) and 
is given by

(
A0 + A1λ + A2λ

2 + A3λ
3 + A4λ

4) z = 0.

Example 4 (Type III – linear MEP). Often, the eigenvalues appear “linearly” in the 
monomials of the MEP, for example, a linear two-parameter eigenvalue problem (linear 
2-EP)

(A00 + A10λ1 + A01λ2) z = 0,

with three coefficient matrices Aω ∈ R3×2,

A00 =
[2 6

4 5
0 1

]
,A10 =

[1 0
0 1
1 1

]
, and A01 =

[4 2
0 8
1 1

]
.

Example 5 (Type IV – polynomial MEP). As a final example, we consider a (multivari-
ate) polynomial MEP of degree dS = 2 with two parameters and four monomials,

(
A00 + A10λ1 + A11λ1λ2 + A02λ

2
2
)
z = 0,

which has four coefficient matrices Aω ∈ R3×2,

A00 =
[1 2

3 4
3 4

]
,A10 =

[2 1
0 1
1 3

]
,A11 =

[3 4
2 1
0 1

]
, and A02 =

[1 2
4 2
2 1

]
.

Link between the square and rectangular MEP In the literature, one often encounters 
the classical square MEP, in which n matrix equations with square coefficient matrices 
are combined into a multiparameter system [2,41,52]. A linear 2-EP in this classical form 
is written as {

W1 (λ1, λ2)x = (A1 + B1λ1 + C1λ2)x = 0
W2 (λ1, λ2)y = (A2 + B2λ1 + C2λ2)y = 0

, (2)

where (λ1, λ2) are the eigentuples and the tensor products z = x⊗y = vec
(
yxT), with 

‖x‖2 = 1 and ‖y‖2 = 1, are defined as the corresponding eigenvectors.2 The coefficient 

2 The vectorization vec (·) is a linear transformation that converts a matrix into a column vector, by 
stacking the columns of the matrix on top of one another.
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matrices A1, A2, B1, B2, C1, and C2 are square matrices. Square linear 2-EPs that are 
regular (i.e., Δ0 = B1 ⊗ C2 − C1 ⊗ B2 is a non-singular matrix) can be transformed 
into an equivalent rectangular linear 2-EP via Kronecker products, as the next example 
illustrates.

Example 6. On the first page of his book, Volkmer [52] used the following problem to 
introduce several aspects of multiparameter spectral theory (a classical square linear 
2-EP as in (2)):

A1 =
[4 0 0

0 0 0
0 0 0

]
,B1 =

[1 0 0
0 6 0
0 0 1

]
,C1 =

[0 1 0
1 0 1
0 1 0

]
,

A2 =
[
20 0
0 0

]
,B2 =

[
0

√
3√

3 0

]
, and C2 =

[
7 0
0 1

]
.

As shown by Atkinson [1], this regular linear square 2-EP is equivalent with the coupled 
GEPs {

Δ1z = Δ0λ1z

Δ2z = Δ0λ2z
, (3)

with ‖z‖2 = 1, Δ0 = B1 ⊗ C2 − C1 ⊗ B2, Δ1 = A1 ⊗ C2 − C1 ⊗ A2, and Δ2 =
B1 ⊗A2 −A1 ⊗B2 (Δi ∈ R6×6). Via these equivalent coupled GEPs, we can transform 
the linear square 2-EP into its equivalent rectangular form:([

Δ1
Δ2

]
−
[
Δ0
0

]
λ1 −
[

0
Δ0

]
λ2

)
z = 0. (4)

Note that this transformation leads to a linear rectangular MEP where the number of 
rows k is strictly larger than the necessary l + n − 1. The two block Macaulay matrix 
algorithms that we present in this paper can also be used to solve this type of problems. 
Since the Kronecker products typically result in large coefficient matrices, this approach 
should only be applied to small problems. Furthermore, we need to be careful in the 
case of singular problems (i.e., Δ0 is a singular matrix), where the equivalence between 
the square problem and the coupled GEPs is not straightforward, as discussed by Košir 
and Plestenjak [36], Muhič and Plestenjak [40]. We do not elaborate any further on this 
connection.

3. Block Macaulay matrix

In earlier work [20,21,50], we have introduced the block Macaulay matrix in order 
to solve MEPs that arrive in the context of system identification. It is a block matrix 
extension of the traditional Macaulay matrix [37,38], a sparse and structured matrix 
primarily used to solve systems of multivariate polynomial equations [4–6,23–25,51].



184 C. Vermeersch, B. De Moor / Linear Algebra and its Applications 654 (2022) 177–209
The MEP M (λ1, . . . , λn) z = 0 in (1) constitutes the so-called seed equation and its 
corresponding block Macaulay matrix is obtained via block forward multi-shift recursions 
(block FmSRs): we generate “new” matrix equations 

{∏n
i=1 λ

di
i

}
M (λ1, . . . , λn) z = 0

by multiplying the seed equation (i.e., the generating MEP) with different monomials ∏n
i=1 λ

di
i of increasing total degree dR =

∑n
i=1 di, and we organize the coefficient matrices 

of these matrix equations as the block rows of the block Macaulay matrix.

Example 7. For example, if we start with a quadratic two-parameter eigenvalue problem 
(Type IV),

(
A00 + A10λ1 + A01λ2 + A20λ

2
1 + A11λ1λ2 + A02λ

2
2
)
z = 0,

and multiply it by the two eigenvalues λ1 and λ2, then we obtain two “new” matrix 
equations:

λ1
(
A00 + A10λ1 + A01λ2 + A20λ

2
1 + A11λ1λ2 + A02λ

2
2
)
z = 0

λ2
(
A00 + A10λ1 + A01λ2 + A20λ

2
1 + A11λ1λ2 + A02λ

2
2
)
z = 0.

We can continue this process with monomials of increasing total degree dR, i.e.,

λ1, λ2︸ ︷︷ ︸
dR=1

, λ2
1, λ1λ2, λ

2
2︸ ︷︷ ︸

dR=2

, λ3
1, λ

2
1λ2, . . .︸ ︷︷ ︸

dR≥3

and arrange the resulting coefficient matrices in a block Macaulay matrix (seed equation 
in red):

z λ1z λ2z λ2
1z λ1λ2z λ2

2z λ3
1z

1
λ1
λ2
λ2

1

⎡
⎢⎢⎢⎢⎢⎢⎣

A00 A10 A01 A20 A11 A02 0 · · ·
0 A00 0 A10 A01 0 A20 · · ·
0 0 A00 0 A10 A01 0 · · ·
0 0 0 A00 0 0 A10 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦ .

When we further enlarge the block Macaulay matrix via block FmSRs with monomials 
of increasing total degree dR, we obtain a sparse and structured matrix, as visualized in 
Fig. 1.

Definition 3 (Block Macaulay matrix). Given the MEP M (λ1, . . . , λn)z = 0 of degree 
dS, which serves as the seed equation, the block Macaulay matrix M(d) ∈ Rp(d)×q(d)

of degree d contains the coefficient matrices of the seed equation and the matrix 
equations generated by the block FmSRs with monomials of increasing total degree 
dR = 1, . . . , (d− dS), i.e.,
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Fig. 1. An example of a block Macaulay matrix M ∈ R60×84 (degree d = 6) of a quadratic two-parameter 
eigenvalue problem (Aω ∈ R4×3 and dS = 2). The elements of the seed equation, i.e., the generating MEP, 
are indicated in red, while the elements of the “new” matrix equations obtained by invoking block FmSRs 
of total degree dR ≥ 1 are indicated in blue (the elements not shown are zero). Vertical lines indicate the 
different degree blocks, while horizontal dashed lines separate block FmSRs with monomials of different 
total degree dR. (For the interpretation of the colors in this figure, we refer the reader to the web version 
of this paper.)

M(d) =
�{

n∏
i=1

λdi
i

}
M (λ1, . . . , λn)z

�
,

where �·� denotes the arrangement of the shifted coefficient matrices Aω of the matrix 
equations (not the associated eigenvalues or eigenvectors). These shifted coefficient ma-
trices are indexed both in row (different block FmSRs) and column (different associated 
monomials) direction by the different monomials in the eigenvalues of total degree at 
most d. The number of rows p(d) and columns q(d) of M(d) are given by

p(d) = k

(
d− dS + n

n

)
= k

(d− dS + n)!
n!(d− dS)! and q(d) = l

(
d + n

n

)
= l

(d + n)!
n!d! .

The actual structure of the block Macaulay matrix depends on its multivariate monomial 
ordering.

Consequently, we can rewrite the MEP and the “new” matrix equations obtained 
via block FmSRs as a matrix-vector product of the generated block Macaulay matrix 
M(d) ∈ Rp(d)×q(d) and a structured vector v(d) ∈ Cq(d)×1:

M(d)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

zλ1
...

zλn

zλ2
1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

We increase the degree d of the block Macaulay matrix M(d) until it is large enough and 
reaches the desired degree d > d∗, a concept on which we elaborate in Section 4.2. The 
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vector v(d) is a vector in the (right) null space of M(d) and has a block multivariate 
Vandermonde structure, which is enforced by the consecutive block FmSRs that generate 
the block rows of M(d). In the structure of both the null space (Section 4) and the column 
space (Section 5) of M(d) lies the key to solving its generating MEP. To alleviate the 
notational complexity in this paper, we no longer specify the degree d explicitly, but we 
assume it to be large enough (i.e., d > d∗).

Remark 1. Note that we make a distinction between block rows/columns and degree 
blocks. A block row (column) gathers all the rows (columns) that correspond to one 
monomial (e.g., all the rows that belong to λ2

1), while a degree block contains all the 
block rows/columns that correspond to monomials of the same total degree (e.g., all 
the rows that belong to λ2

1, λ1λ2, and λ2
2). A degree block thus contains multiple block 

rows/columns (except when the total degree is zero or the number of variables is equal 
to one). We separate different degree blocks in matrices and vectors with horizontal and 
vertical lines, as shown in Fig. 1.

4. Null space based approach

We now exploit the structure of the null space of the block Macaulay matrix in order 
to find the solutions of its seed equation, i.e., the MEP that we want to solve. We show 
that a multidimensional realization problem in the structured null space yields the affine 
solutions of the MEP (Section 4.1). Afterwards, we explain the concept of a large enough
degree and show how to deal with the solutions at infinity (Section 4.2). Finally, we 
summarize the different steps of the null space based algorithm (Section 4.3).

4.1. Multidimensional realization theory

We start our explanation with the block multivariate Vandermonde basis matrix (we 
assume that we know all the solutions), but we generalize it afterwards to any (numerical) 
basis matrix of the null space of the block Macaulay matrix.

4.1.1. Block multivariate Vandermonde basis matrix (theoretical multidimensional 
realization problem)

We consider, for didactic purposes, an MEP M (λ1, . . . , λn)z = 0 that only has ma

simple (i.e., algebraic multiplicity is one), affine (i.e., non-infinite), and isolated solutions 
(i.e., the solution set is zero-dimensional). If we build a block Macaulay matrix M of 
large enough degree d > d∗ (see Section 4.2), then there exists a block multivariate 
Vandermonde vector v|(j) (j = 1, . . . , ma) in the null space of M for every solution 
of the MEP and, together, these basis vectors span the entire null space of M . They 
naturally form the block multivariate Vandermonde basis matrix V ∈ Cq×ma of degree 
d > d∗ (same degree as M):
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V =
[
v|(1) · · · v|(ma)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z|(1) · · · z|(ma)

(λ1z)|(1) · · · (λ1z)|(ma)
...

...
(λnz)|(1) · · · (λnz)|(ma)(
λ2

1z
)∣∣

(1) · · ·
(
λ2

1z
)∣∣

(ma)
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The structured V does presume that the (affine) null space of the block Macaulay matrix 
has a “special shift structure”. Mathematically, we can write this “special shift structure” 
as (when we shift some (block) rows with the first eigenvalue λ1)

S1V︸ ︷︷ ︸
before shift

Dλ1 = Sλ1V︸ ︷︷ ︸
after shift

,

where the diagonal matrix Dλ1 ∈ Cma×ma contains the different solutions for the eigen-
value λ1 and the row selection matrices S1 and Sλ1 select the (block) rows before and 
after the shift, respectively. We say that the rows in Sλ1V are hit by the shift with λ1. 
This “special shift structure” does not restrict itself to the first eigenvalue, but applies 
to all eigenvalues. It even holds for any shift polynomial g (λ1, . . . , λn) in the eigenvalues 
of the MEP.3 For example, when we shift the first three block rows of V with 2λ1 +3λ4

2:

⎡
⎢⎣ z|(1) · · · z|(ma)

(λ1z)|(1) · · · (λ1z)|(ma)
(λ2z)|(1) · · · (λ2z)|(ma)

⎤
⎥⎦

︸ ︷︷ ︸
before shift

⎡
⎢⎢⎣
(
2λ1 + 3λ4

2
)∣∣

(1) · · · 0
...

. . .
...

0 · · ·
(
2λ1 + 3λ4

2
)∣∣

(ma)

⎤
⎥⎥⎦ =

2

⎡
⎢⎣ (λ1z)|(1) · · · (λ1z)|(ma)(

λ2
1z
)∣∣

(1) · · ·
(
λ2

1z
)∣∣

(ma)
(λ1λ2z)|(1) · · · (λ1λ2z)|(ma)

⎤
⎥⎦+ 3

⎡
⎢⎣
(
λ4

2z
)∣∣

(1) · · ·
(
λ4

2z
)∣∣

(ma)(
λ1λ

4
2z
)∣∣

(1) · · ·
(
λ1λ

4
2z
)∣∣

(ma)(
λ5

2z
)∣∣

(1) · · ·
(
λ5

2z
)∣∣

(ma)

⎤
⎥⎦

︸ ︷︷ ︸
after shift

.

Hence, we obtain the expression

(SgV ) = (S1V )Dg, (6)

3 Shifting with a polynomial instead of a simple eigenvalue can be interesting in some practical situations: 
consider the case where the solutions of the MEP characterize the stationary points of a polynomial objective 
function in the eigenvalues, then the smallest evaluation of this polynomial objective function (i.e., the 
smallest diagonal element of Dg) corresponds to the minimum of the underlying optimization problem. 
Conversely, we want to limit the total degree of the shift polynomial from a computational point of view 
(and use only linear shift polynomials), as a higher total degree of the shift polynomial requires a larger 
degree of the block Macaulay matrix (see Section 4.2 to understand why the degree d has to be large 
enough).



188 C. Vermeersch, B. De Moor / Linear Algebra and its Applications 654 (2022) 177–209
where the diagonal matrix Dg ∈ Cma×ma contains the evaluations of the shift poly-
nomial g (λ1, . . . , λn) in the different solutions of the MEP. In order for this expression 
to cover all the affine solutions, the row selection matrix S1 ∈ Rma×q has to select 
ma linearly independent rows from V (then S1V is square and non-singular). Actually, 
from algebraic geometry and from earlier work on the traditional Macaulay matrix, it 
follows that these linearly independent rows correspond to the (affine) standard mono-
mials [4,17,23]. The row combination matrix4 Sg ∈ Rma×q, on the other hand, simply 
selects the linear combinations of rows hit by the shift with g (λ1, . . . , λn).

4.1.2. Numerical basis matrix (practical multidimensional realization problem)
In practice, we do not know the block multivariate Vandermonde basis matrix V

in advance, since it is constructed from the unknown solutions of the MEP. We work 
instead with a numerical basis matrix Z ∈ Cq×ma of the null space of the block Macaulay 
matrix M , for example obtained via the singular value decomposition. Before translating 
the theoretical multidimensional realization problem into a practical one, we make this 
“special shift structure” more concrete.

Proposition 1 (Backward block multi-shift-invariance – Appendix A). The (affine) null 
space of the block Macaulay matrix is backward block multi-shift-invariant. This means 
that if we select a block row of a basis matrix of the null space and multiply/shift this 
block row with one of the eigenvalues, then we obtain another block row of that basis 
matrix (when the degree is large enough).

Backward block multi-shift-invariance is a property of the null space as a vector space 
and not of a specific basis matrix (see Appendix A), hence we can also use a numerical 
basis matrix Z. There exists a linear transformation T between both basis matrices, 
namely V = ZT , with T ∈ Cma×ma a non-singular transformation matrix, which 
transforms (6) into a solvable GEP,

(SgZ)T = (S1Z)TDg, (7)

where T contains the eigenvectors and Dg the eigenvalues of the matrix pencil 
(SgZ,S1Z). Alternatively, we can also consider the SEP

(S1Z)−1 (SgZ)T = TDg. (8)

We can then use the matrix of eigenvectors T to obtain V (via V = ZT ), and hence, 
find the affine solutions of the MEP. The null space of the block Macaulay matrix can 
be interpreted as the column space of a multidimensional observability matrix [25,50]. 

4 When the shift is merely a monomial of (some of the) eigenvalues, the row combination matrix Sg is a 
row selection matrix because every shift only hits one row.
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In that setting, it is possible to view this null space based solution approach as an exact 
multidimensional realization problem in that null space (see Appendix A).

Influence of affine solutions with a multiplicity larger than one When all solutions are 
simple, we find one column in the block multivariate Vandermonde basis matrix V of the 
null space for every solution of the MEP and every solution/column contributes to the 
nullity of the block Macaulay matrix. However, if multiple (affine and isolated) solutions 
prevail, the null space of the block Macaulay matrix no longer contains only the block 
multivariate Vandermonde solution vectors, but also linear combinations of the partial 
derivatives of these solution vectors, i.e., we have a confluent block multivariate Van-
dermonde basis matrix (Dayton et al. [18] and Möller and Stetter [39] give an elaborate 
exposition in the case of systems of multivariate polynomial equations). The SEP in (8)
is defective and a proper analysis requires the Jordan normal form and the confluent 
block multivariate Vandermonde matrix [6]. In practice, since we work with floating-
point algorithms to compute the SEP in (8), we still find numerical approximations of 
the multiple eigentuples and eigenvectors, but we experience a loss of numerical accu-
racy in computing them [27]. Alternatively, we can consider n different shift polynomials 
gi (λ1, . . . , λn), e.g., shifting with every eigenvalue λi, and use n Schur decompositions 
to accurately obtain the different components of the eigentuples [6,16].

4.2. Concept of a large enough degree

One central question remains unanswered in the above-described approach: “When 
is the degree d large enough?” When we increase the degree d by invoking more block 
FmSRs, we notice that the nullity of the block Macaulay matrix M (i.e., the dimension 
of its null space) stabilizes at the total number of solutions mb in the case of a zero-
dimensional solution set. It is possible to monitor this behavior by checking the nullity 
of M for increasing d. When the degree d = d∗, any basis matrix of the null space has 
mb linearly independent columns and, when checking the rank of this basis matrix from 
top to bottom, at least one linearly independent row per degree block. The structure of 
a basis matrix for d > d∗ depends on whether the MEP has only affine solutions or affine 
solutions and solutions at infinity (see Fig. 2).

Only affine solutions When the MEP only has affine solutions (mb = ma), these linearly 
independent rows correspond to the affine standard monomials. For larger degrees d >
d∗, they remain stable at their respective positions and new degree blocks contain no 
additional linearly independent rows (see Fig. 2a). We identify two zones in the basis 
matrix: a regular zone that contains the linearly independent rows related to the affine 
standard monomials and a gap zone without additional linearly independent rows.

Affine solutions and solutions at infinity An MEP can also have solutions at infinity, 
due to the singularity of some higher degree coefficient matrices. The nullity of the block 
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Fig. 2. A basis matrix of the null space of a block Macaulay matrix M , which grows by invoking more block 
FmSRs (increasing d). At a certain degree d∗ (in this example d∗ = 4), the nullity stabilizes at the total 
number of solutions mb. In the situation with only affine solutions (Fig. 2a), the linearly independent rows 
of the basis matrix, checked from top to bottom, correspond to the affine standard monomials and stabilize 
at their respective positions (indicated by dashed lines). New degree blocks contain no additional linearly 
independent rows when d > d∗. When the MEP has solutions at infinity (Fig. 2b), the linearly independent 
rows of the basis matrix that correspond to the standard monomials related to the solutions at infinity 
(also indicated by dashed lines) move to higher degree blocks when d > d∗. A gap in the rows emerges that 
separates these two types of linearly independent rows, and the influence of the solutions at infinity can be 
deflated via a column compression.

Macaulay matrix after stabilization corresponds to the total number of solutions mb

of the MEP, which is now the sum of the affine solutions and the solutions at infinity 
(mb = ma +m∞). Every solution spans one basis vector in this null space, hence all the 
columns of the numerical basis matrix are linear combinations of affine solutions and 
solutions at infinity. Next to the affine standard monomials, also linearly independent 
rows related to the standard monomials that correspond to solutions at infinity appear 
in the basis matrix. When we increase the degree (d > d∗), the linearly independent rows 
that correspond to the affine standard monomials remain again stable at their respective 
positions, but the standard monomials that correspond to the solutions at infinity move 
to higher degree blocks when the block FmSRs proceed (see Fig. 2b). Eventually, a gap 
in the rows emerges that separates both types of linearly independent rows. This gap 
grows when we keep increasing the degree d > d∗. Now, we observe three zones in the 
basis matrix: a regular zone, a gap zone, and a singular zone that contains the linearly 
independent rows related to the standard monomials that correspond to the solutions at 
infinity. Via a column compression [23], we can deflate the solutions at infinity and use 
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the affine null space based approach as if no solutions at infinity are present (we simply 
replace Z in (7) by W 11).

Definition 4 (Column compression). A numerical basis matrix Z =
[
ZT

1 ZT
2
]T of the 

null space of the block Macaulay matrix M is a q×mb matrix, which can be partitioned 
into a s ×mb matrix Z1 (that contains the regular zone and gap zone) and a (q−s) ×mb

matrix Z2 (that contains the singular zone), with rank (Z1) = ma < mb. Furthermore, 
let the singular value decomposition of Z1 = UΣQT. Then, W = ZQ is called the
column compression of Z and can be partitioned as

W =
[
W 11 0
W 21 W 22

]
,

where W 11 is the s ×ma compressed numerical basis matrix of the null space.

When we want to shift the linearly independent rows that correspond to the affine 
standard monomials in (6) with a shift polynomial g (λ1, . . . , λn) of degree dg, the gap 
zone needs to be able to accommodate this shift, which means that the rows that corre-
spond to the monomials with the highest total degree hit by the shift must be present 
in the gap zone. Hence, the degree d of the block Macaulay matrix is large enough when 
d ≥ d∗ + dg.

4.3. Null space based algorithm

Algorithm 1 Null space based approach.
1: Recursively enlarge the block Macaulay matrix M until its nullity has stabilized and the gap can 

accommodate the (user-defined) shift polynomial, i.e., the degree d is large enough (Section 4.2).
2: Compute a numerical basis matrix Z of the null space of M .
3: Determine the gap and the number of affine solutions ma via row-wise rank checks from top to bottom 

in Z (Section 4.2).
4: Use Definition 4 to obtain the compressed numerical basis matrix W 11 of the null space.
5: For a (user-defined) shift polynomial g (λ1, . . . , λn) and W 11 that can accommodate the shift (i.e., 

d ≥ d∗ + dg), solve the GEP

(SgW 11)T = (S1W 11)TDg,

where the matrices S1, Sg, T , and Dg are defined as in (7).
6: Retrieve the solutions from the (affine) block multivariate Vandermonde basis matrix V = W 11T .

Remark 2. Since we only select linearly independent rows and not block rows from the nu-
merical basis matrix Z, we do not fully exploit the backward block multi-shift-invariance 
of the null space. Furthermore, row-wise rank checks from top to bottom to identify the 
linearly independent rows are numerically not very robust. However, instead of selecting 
ma linearly independent rows of Z, the row selection matrix S1 ∈ Rm×q can also se-
lect entire block rows of Z (but needs to contain at least ma linearly independent rows 
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to cover all the affine solutions). Because of the block multi-shift-invariance, the row 
combination matrix Sg ∈ Rm×q also selects entire block rows of Z. Mathematically, we 
consider a rectangular matrix pencil (SgZ,S1Z) or use the pseudo-inverse (.†) to obtain 
a solvable SEP

(S1Z)† (SgZ)T = TDg.

Shifting entire block rows (or degree blocks) replaces the row-wise rank checks by more 
efficient (degree) block row-wise rank checks.

5. Column space based approach

In this section, we consider the column space of the block Macaulay matrix instead 
of its null space. The intrinsic complementarity between both fundamental subspaces 
(Section 5.1) enables a new, complementary algorithm to solve MEPs, which works 
directly on the sparse and structured data (Section 5.2). We summarize the different 
steps of the column space based algorithm, but we do not elaborate in detail on exploiting 
the sparsity and structure (Section 5.3).

5.1. Complementarity between the null space and the column space of a matrix

The null space and column space of an arbitrary matrix share an intrinsic comple-
mentarity. We give the following lemma without proof [23, p. 41]:

Lemma 1 (Complementarity of linearly independent rows and columns). Consider a 
matrix M ∈ Rp×q, with rank (M) = r < min (p, q). Let Z ∈ Cq×(q−r) be a full column 
rank matrix, the columns of which generate a basis matrix of the null space of M : MZ =
0. Using a row permutation matrix P , reorder the rows of Z into PZ =

[
ZT

A ZT
B

]T, 
where the submatrix ZA contains exactly q − r linearly independent rows, and partition 
the columns of the matrix M accordingly with P−1 so that MP−1 = [MA MB ]: 
MZ = MP−1PZ = MAZA + MBZB = 0. Then

rank (MB) = r ⇔ rank (ZA) = q − r.

The choice of the row permutation matrix P is not unique, there exist many pos-
sibilities to identify q − r linearly independent rows in Z. This lemma expresses a 
complementarity for maximal sets of linearly independent rows in Z with respect to maxi-
mal sets of linearly independent columns in M . Obviously, we have MAZA = −MBZB , 
such that MA = MB

(
ZBZ

−1
A

)
expresses the linearly dependent columns of M as a 

linear combination of the linearly independent ones and ZB = − 
(
M †

BMA

)
ZA ex-

presses the linearly dependent rows of Z as a linear combination of the selected linearly 
independent ones. This lemma leads to an important observation: when we index the 
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linearly independent rows of Z (row-wise from top to bottom), it turns out that the 
“corresponding” columns of M are linearly dependent columns on the other columns of 
M (column-wise from right to left), as the next example illustrates.

Example 8. We consider a matrix M ∈ R4×7 and a basis matrix of its null space Z ∈
C7×3:

MZ =

⎡
⎢⎣

2 0 0 1 0 3 −3
4 −6 0 2 0 0 0

−4 0 2 0 −6 0 0
2 0 0 0 2 6 −6

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1
0 1 1
0 9 −1
0 3 −2
0 3 −1

−1 0 0
−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ = 0.

The linearly independent rows of Z, checked from top to bottom, are indexed as {1, 2, 6}. 
On the other hand, the linearly dependent columns of M , checked from right to left, are 
also indexed as {1, 2, 6}, in accordance to Lemma 1.

We can now apply Lemma 1 to the block Macaulay matrix and any basis matrix of its 
null space. Observe that we can replace Z by a linear transformation ZT , so Lemma 1
is independent of the choice of basis matrix of the null space. The solutions of the MEP 
give rise to standard monomials, which are visible in both the null space and the column 
space of the block Macaulay matrix. When we check the rank of the basis matrix row-
wise from top to bottom, every linearly independent row corresponds to exactly one 
standard monomial. Similarly, every linearly dependent column of the block Macaulay 
matrix, checked from right to left, also corresponds to exactly one standard monomial. 
Fig. 3 visualizes the complementarity between both fundamental subspaces. Note that 
the gap in the basis matrix of the null space is a gap of linearly dependent rows, while 
the gap in the block Macaulay matrix is a gap of linearly independent columns.

5.2. Equivalent column space realization theory

We consider again a block Macaulay matrix M ∈ Rp×q, with large enough degree 
d ≥ d∗ + dg, and a numerical basis matrix W ∈ Cq×mb of its null space after a col-
umn compression (see Definition 4). When we shift the linearly independent rows of the 
compressed basis matrix W 11 with a shift polynomial g (λ1, . . . , λn), we obtain again

(SgW 11)T = (S1W 11)TDg, (9)

where the matrices S1, Sg, T , and Dg are defined as in (7). Next, we define two new 
matrices B and C. The matrix B ∈ Cma×ma contains all the linearly independent rows 
of the matrix W 11, which corresponds to the selection S1W 11, and is partitioned so 
that each of its top mh = ma −mc rows (denoted by B1) only hits rows inside B after 
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Fig. 3. If we check the rank of a basis matrix Z of the null space of the block Macaulay matrix M row-
wise from top to bottom, every linearly independent row corresponds to one standard monomial (indicated 
by dashed lines). Because of the complementarity between the null space and column space, the linearly 
dependent columns of M (also indicated by dashed lines), checked column-wise from right to left, correspond 
to the same standard monomials.

shifting with g (λ1, . . . , λn) and each of its bottom mc rows (denoted by B2) hits at least 
one row not in B. We gather the mc linear combinations of rows hit by shifting the rows 
of B2 in the matrix C ∈ Cmc×ma and rewrite (9) as a matrix pencil (A,B),

[
S′

gB

C

]
︸ ︷︷ ︸

A

T =
[
B1

B2

]
︸ ︷︷ ︸

B

TDg,

where shifting the rows in B1 leads to linear combinations of rows only in B (B1 → S′
gB) 

and shifting the rows in B2 leads to linear combinations of rows in B and/or not in B
(B2 → C), with S′

g the mh×ma row combination matrix that selects the mh = ma−mc

linear combinations of rows in B hit by shifting the rows of B1. For example, if we shift 
the τth row of B2 and g (λ1, . . . , λn) hits the μth row of B (bμ) and the νth row of W
(wν – not in B), then the τth row of C is equal to cμbμ + cνwν (the coefficients cμ
and cν come from the shift polynomial). The matrix Dg is again a diagonal matrix that 
contains the evaluations of the shift polynomial g (λ1, . . . , λn) in the different eigenvalue 
solutions. We can extract the matrix B from the column matrix in the left-hand side, 
after which an SEP appears (with BT as its matrix of eigenvectors):

[
S′

g

CB−1

]
BT = BTDg. (10)

The matrix B is invertible because it contains ma linearly independent rows by con-
struction (the rows that correspond to the affine standard monomials). In the remainder 
of this section, we translate (10) to the column space via Lemma 1, avoiding the com-
putation of a numerical basis matrix of the null space.

The matrices B and C contain rows (or linear combinations of rows) of the matrix 
W 11. We define the matrix D ∈ Cmr×ma (with mr = s −ma −mc) as the matrix that 
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contains the remaining rows of W 11, such that every row of W 11 is represented once in 
B, C, or D. For example, if a row in C contains a linear combination of multiple rows 
of W , then that row of C represents only one of those rows in the linear combination. 
The other rows of the linear combination need to be represented by other rows of C, or 
they are included in B or D. Consequently, we can rearrange the basis matrix W as

PW =

⎡
⎢⎣

B 0
C 0
D 0

W 21 W 22

⎤
⎥⎦ ,

where the matrix P is a q × q row combination matrix that is invertible (because it is 
square and of full column rank by construction) and does not alter the rank structure 
of W (because it takes linear combinations of rows that already depend linearly on the 
rows in B). Using Lemma 1, we can rearrange the columns of the block Macaulay matrix 
in accordance to the rearranged basis matrix of the null space and obtain

[N1 N2 N3 N4 ]︸ ︷︷ ︸
N

⎡
⎢⎣

B 0
C 0
D 0

W 21 W 22

⎤
⎥⎦ = 0, (11)

where every matrix N i ∈ Rp×qi corresponds to a subset of the columns (or linear 
combinations of columns) of M . We call N = MP−1 ∈ Rp×q the rearranged block 
Macaulay matrix. Now, we apply a backward QR-decomposition5 on N , which yields

Q

⎡
⎢⎣
R14 R13 R12 R11
R24 R23 R22 0
R34 R33 0 0
R44 0 0 0

⎤
⎥⎦
⎡
⎢⎣

B 0
C 0
D 0

W 21 W 22

⎤
⎥⎦ = 0,

or, if we pre-multiply both sides by Q−1 = QT (the labels denote the number of 
rows/columns of the different blocks6),

5 Essentially, the backward QR-decomposition triangularizes the rearranged matrix N as the traditional 
forward QR-decomposition, but starts with the last column of N and iteratively works towards the first 
column of N . Its result is similar to the result of the traditional forward QR-decomposition of the matrix 
with all its columns flipped.
6 A closer analysis of the upper triangular matrix R reveals two special cases. Firstly, W 21 and W 22

are absent from W when there are no solutions at infinity. As a consequence, (11) no longer contains N4
and q − s = 0, which means that we can ignore the first block row and last block column of R (see the 
numerical example in Section 6.1). Secondly, the size of the block Macaulay matrix M determines the size 
of R44: when p > q the matrix R44 is tall, when p < q the matrix R44 is wide, and when p = q − ma

the matrix R44 is absent (see the numerical example in Section 6.2). Note that it can even happen that 
p = q − mb < q − ma when the MEP has solutions at infinity: then we need to use a larger degree d or 
remove the linearly dependent columns in N4, which correspond to the standard monomials related to the 
solutions at infinity, to ensure that p ≥ q − ma and to obtain the structure of R as presented in (12) (see 
the numerical example in Section 6.4).
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⎡
⎢⎢⎢⎣

ma mc mr q − s

q − s R14 R13 R12 R11

mr R24 R23 R22 0
mc R34 R33 0 0

p− q + ma R44 0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣

B 0
C 0
D 0

W 21 W 22

⎤
⎥⎦ = 0. (12)

We notice that R33C = −R34B, which means that

CB−1 = −R−1
33 R34,

because R33 is always of full rank (since the rows of C depend linearly on the rows of 
B and the complementarity of Lemma 1). Note that R44 is always a zero matrix for the 
same reasons (since the rows of B are linearly independent and the complementarity of 
Lemma 1). This relation helps to remove the dependency on the null space in (10) and 
yields a solvable SEP in the column space (with H = BT ),

[
S′

g

−R−1
33 R34

]
H = HDg,

or a GEP (to avoid the computation of the inverse of R33),[
S′

g

−R34

]
H =
[
Imh

0
0 R33

]
HDg, (13)

with Imh
∈ Nmh×mh the identity matrix. The matrix of eigenvector H = BT corre-

sponds to the partitioned linearly independent rows of the (affine) Vandermonde basis 
matrix V , because the non-singular transformation matrix T relates the rows of the 
numerical basis matrix W 11 (or B) to the rows of V . Consequently, the eigenvalues in 
Dg and eigenvectors in H yield the solutions of the MEP. Note that this complemen-
tary column space based approach does not require a column compression to deflate the 
solutions at infinity, because the backward (Q-less) QR-decomposition already separates 
them implicitly.

5.3. Column space based algorithm

Remark 3. Note that, when the shift polynomial g (λ1, . . . , λn) is merely a monomial of 
(some of the) eigenvalues, the row combination matrix P is a row permutation matrix 
(every hit consists of only one row), and its inverse P−1 is equal to its transpose PT. 
Applying PT to the block Macaulay matrix M corresponds to reordering the columns 
of M in accordance to PW , which is quite easy to implement.

Remark 4. Contrary to the null space based approach where we retrieve the different 
components of the solutions from the (affine) block multivariate Vandermonde basis 
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Algorithm 2 Column space based approach.
1: Recursively enlarge the block Macaulay matrix M until its nullity has stabilized and the gap can 

accommodate the (user-defined) shift polynomial, i.e., the degree d is large enough (Section 4.2).
2: Determine the linearly dependent columns via rank checks from right to left and rearrange M as in (11).
3: Compute the (Q-less) backward QR-decomposition of the rearranged block Macaulay matrix N .
4: For a (user-defined) shift polynomial g (λ1, . . . , λn), solve the GEP

[
S′

g

−R34

]
H =

[
Imh

0
0 R33

]
HDg,

where the matrices S′
g, Imh

, R33, R34, and Dg are defined as in (13).
5: Retrieve the solutions from the eigenvalues in Dg and the eigenvectors in H (see Remark 4).

matrix V , the matrix H in the column space based approach does not necessarily contain 
all the components of the solutions. Therefore, we need to choose one or multiple shift 
polynomials gi (λ1, . . . , λn) so that the matrices Dgi yield the remaining components 
(see the numerical example in Section 6.2). One strategy is to always shift with the n
different eigenvalues, which results in n GEPs that yield the n different components of 
the (affine) solutions. Note that, in order to obtain accurate solutions in the presence of 
multiplicities, we can also apply this strategy in the null space based approach [16,6].

6. Numerical examples

In this section, we present several numerical examples to illustrate the column space 
based algorithm and to compare it with its null space based counterpart.

6.1. Linear two-parameter eigenvalue problem with affine solutions only

In our first numerical example, we consider the linear 2-EP from Example 4 and 
use a shift polynomial g (λ1, λ2) = 4λ3

2 for didactic purposes. In both algorithms, we 
recursively build a block Macaulay matrix M for increasing degree d = 1, . . . , 4:

d size nullity standard monomials
d∗ → 1 3 × 6 3 z1, z2 |λ1z1

2 9 × 12 3 z1, z2 |λ1z1
3 18 × 20 3 z1, z2 |λ1z1

d∗ + dg → 4 30 × 30 3 z1, z2 |λ1z1

For this easy example, we notice via rank checks that the nullity of M has already 
stabilized for degree d = 1. Because we want to shift with a shift polynomial of degree 
dg = 3, the degree d of M is large enough to accommodate the shift when d ≥ d∗+dg = 4. 
Via a singular value decomposition, we compute a numerical basis matrix Z ∈ C30×3 of 
its null space. The first three rows of Z, which correspond to the variables z1, z2, and 
λ1z1, are linearly independent (we obtain this information via row-wise rank checks of 
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Z from top to bottom) and correspond to the standard monomials. As the nullity is 3, 
there are no solutions at infinity. The row selection matrix S1 ∈ R3×30 selects these three 
linearly independent rows of Z, and the row combination matrix Sg ∈ R3×30 selects the 
rows that correspond to the monomials hit by shifting these standard monomials with 
g (λ1, λ2) = 4λ3

2, namely the 19th (λ3
2z1), 20th (λ3

2z2), and 27th (λ1λ
3
2z1) row:

S1 =

⎡
⎢⎣

1 2 3 4 30
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎤
⎥⎦ and

Sg =

⎡
⎢⎣

1 18 19 20 21 26 27 28 29 30
0 · · · 0 4 0 0 · · · 0 0 0 0 0
0 · · · 0 0 4 0 · · · 0 0 0 0 0
0 · · · 0 0 0 0 · · · 0 4 0 0 0

⎤
⎥⎦.

After constructing S1 and Sg, we set up the GEP in (7), and we compute the diagonal 
matrix Dg that contains the evaluation of the shift polynomial g (λ1, λ2) = 4λ3

2 in the 
different solutions and the non-singular transformation matrix T that leads to the block 
Vandermonde basis matrix V = ZT , from which we can retrieve the mb = ma = 3 affine 
solutions:

Dg =

⎡
⎢⎣4 λ3

2
∣∣
(1) 0 0

0 4 λ3
2
∣∣
(2) 0

0 0 4 λ3
2
∣∣
(3)

⎤
⎥⎦ and V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z|(1) z|(2) z|(3)
(λ1z)|(1) (λ1z)|(2) (λ1z)|(3)
(λ2z)|(1) (λ2z)|(2) (λ2z)|(3)(
λ2

1z
)∣∣

(1)

(
λ2

1z
)∣∣

(2)

(
λ2

1z
)∣∣

(3)
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

When we repeat this numerical example via the column space based approach, we start 
by identifying the linearly dependent columns (from right to left) of M . We find that the 
first three columns are linearly dependent on the other columns (from right to left) and 
correspond to the standard monomials. We build the inverted row combination matrix 
P−1 ∈ R30×30 as in Section 5.2 (Is ∈ Ns×s is the identity matrix):

P =

⎡
⎢⎢⎢⎢⎣
I3 0 0 0 0 0
0 0 4I2 0 0 0
0 0 0 0 4I1 0
0 I15 0 0 0 0
0 0 0 I6 0 0
0 0 0 0 0 I3

⎤
⎥⎥⎥⎥⎦ and P−1 =

⎡
⎢⎢⎢⎢⎢⎣

I3 0 0 0 0 0
0 0 0 I15 0 0
0 1

4I2 0 0 0 0
0 0 0 0 I6 0
0 0 1

4I1 0 0 0
0 0 0 0 0 I3

⎤
⎥⎥⎥⎥⎥⎦ ,

where the first three rows of P select the linearly independent rows of B, the next three 
rows of P create the linear combinations of rows of C, and the remaining rows of P
result in D. We do not multiply Z by P , but we use P−1 to rearrange the columns 
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Table 2
The numerical solutions (and residual errors) of Exam-
ple 4 obtained via the column space based algorithm. 
The residual error is determined by substituting the nu-
merical solution in the linear 2-EP and calculating the 
norm of the residual vector ‖e‖2 = ‖M(λ∗

1 , λ∗
2)z∗‖2.

λ1 λ2 z1 z2 ‖e‖2

0.9338 −1.3750 0.7848 0.6197 2.8 × 10−14

1.3683 0.0552 0.8623 −0.5065 6.0 × 10−15

3.6026 −0.4183 0.7958 −0.6056 2.6 × 10−14

of M into the matrices N1, N2, and N3 (since there are no solutions at infinity, we 
do not have a matrix N4). The backward (Q-less) QR-decomposition of N = MP−1

results in the matrices R33 and R34 of (13) (see Footnote 6 for the structure of R when 
the matrix N4 is absent). The GEP yields the matrices Dg and H, from which we can 
again retrieve the three affine solutions of the linear 2-EP:

Dg =

⎡
⎢⎣ 4λ3

2
∣∣
(1) 0 0

0 4λ3
2
∣∣
(2) 0

0 0 4λ3
2
∣∣
(3)

⎤
⎥⎦ and H =

⎡
⎢⎣ z1|(1) z1|(2) z1|(3)

z2|(1) z2|(2) z2|(3)
λ1z1|(1) λ1z1|(2) λ1z1|(3)

⎤
⎥⎦ .

The residual error7 of all solutions obtained via the column space based approach is 
smaller than 2.8 ×10−14 and the maximum absolute difference with the null space based 
approach is equal to 2.2 × 10−13. Table 2 contains the numerical solutions (and residual 
errors) obtained via the column space based algorithm.

6.2. Linear three-parameter eigenvalue problem with shift issues

In the previous example, any shift polynomial with a power of λ2 yields a perfectly 
reconstructable solution. But as mentioned in Remark 4, the situation is sometimes more 
difficult.

Example 9. Let us consider the following linear three-parameter eigenvalue problem (lin-
ear 3-EP)

(A000 + A100λ1 + A010λ2 + A001λ3) z = 0,

with four coefficient matrices Aω ∈ R4×2,

A000 =

⎡
⎢⎣

2 3
2 5
0 1
1 1

⎤
⎥⎦ ,A100 =

⎡
⎢⎣

1 0
0 1
1 1
2 1

⎤
⎥⎦ ,A010 =

⎡
⎢⎣

4 2
2 3
3 1
3 1

⎤
⎥⎦ , and A001 =

⎡
⎢⎣

1 2
1 4
2 1
4 2

⎤
⎥⎦ .

7 We calculate the residual error by substituting the computed eigentuples (λ∗
1 , . . . , λ

∗
n) and eigenvec-

tors z∗ in the MEP and determining the norm of the residual vector ‖e‖2 = ‖M (λ∗
1 , . . . , λ

∗
n) z∗‖2. The 

maximum absolute difference corresponds to the maximum difference between all the corresponding affine 
eigenvalues 

∣∣∣λ∗
i,null − λ∗

i,column

∣∣∣, for i = 1, . . . , ma.
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Table 3
The numerical solutions (and residual errors) of Example 9 obtained 
via the column space based algorithm. The residual error is determined 
by substituting the numerical solution in the linear 3-EP and calcu-
lating the norm of the residual vector ‖e‖2 = ‖M(λ∗

1 , λ∗
2 , λ∗

3)z∗‖2.

λ1 λ2 λ3 z1 z2 ‖e‖2

−0.8534 1.1686 −1.5469 −0.4647 0.8854 1.2 × 10−14

2.8123 −0.6635 −1.2924 0.7251 0.6886 2.3 × 10−14

−1.3941 0.3207 0.2656 −0.8886 0.4588 9.4 × 10−14

0.1653 −2.0595 0.1933 −0.1236 −0.9923 1.5 × 10−15

We start with a block Macaulay matrix M ∈ R16×20 of degree d = 2 > d∗ (see 
Footnote 6 for the structure of R when M is not tall). When we check the columns 
of M from right to left, we observe that the first four columns (which correspond to 
the variables z1, z2, λ1z1, and λ1z2) are linearly dependent on the other columns. Thus, 
the matrix H contains references to the variables z1, z2, λ1z1, and λ1z2 evaluated in 
each of the affine solutions, but no references to λ2 or λ3. Hence, not one, but two shift 
polynomials (with references to λ2 and λ3) are required to find all the components of the 
solutions via the eigenvalues of two different GEPs. We shift in this numerical example 
with g1 (λ1, λ2, λ3) = λ2 and g2 (λ1, λ2, λ3) = λ3 to obtain also the two remaining eigen-
values in Dg1 and Dg2 . As mentioned in Remark 3, a shift with a monomial results in a 
row permutation matrix P , which we can implement via column selections: for the shift 
g1 (λ1, λ2, λ3) = λ2, the inverse row selection matrix P−1 gathers the first four columns 
in N1 (which are the columns that correspond to the affine standard monomials), the 
5th (λ2z1), 6th (λ2z2), 11th (λ1λ2z1), and 12th (λ1λ2z1) column in N2 (which are the 
columns hit by the shift), and the remaining columns in N3 (a similar column selection 
exists for the shift g2 (λ1, λ2, λ3) = λ3). In order to match the different eigenvalues λ2

and λ3, we can use the matrix of eigenvectors H in both GEPs or work with the Schur 
decomposition [6,16]. Table 3 contains the solutions obtained via the column space based 
approach. The maximum residual error and maximum absolute difference with the null 
space based approach (both calculated as in the first numerical example7) are equal to 
9.4 × 10−14 and 1.0 × 10−13, respectively.

6.3. Volkmer’s square two-parameter eigenvalue problem

In Example 6, we show how to transform the regular linear square 2-EP into a linear 
rectangular 2-EP. To demonstrate that our algorithms can also solve this transformed 
problem with overdetermined coefficient matrices (i.e., k = 2l > l+n −1), we solve (4) via 
the null space and column space based approach. A block Macaulay matrix M ∈ R36×36

of degree d = 2 > d∗ suffices to compute the same eigenvalues as in [52]. Table 4 contains 
the results of the column space based algorithm (maximum residual error7 is 2.7 ×10−13), 
which are identical to the results of the null space based algorithm (maximum absolute 
difference7 is 1.4 × 10−14). Note that our results agree with the results obtained by the
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Table 4
The numerical solutions (and residual errors) of Example 6 obtained via the column space based 
algorithm. The residual error is determined by substituting the numerical solution in the linear 2-EP 
and calculating the norm of the residual vector ‖e‖2 = ‖M(λ∗

1 , λ∗
2)z∗‖2.

λ1 λ2 z1 z2 z3 z4 z5 z6 ‖e‖2

−5.0000 −5.0000 −0.4811 0.8333 0.0962 −0.1667 −0.0962 0.1667 2.7 × 10−13

−1.0000 −3.0000 0.2611 −0.1508 0.2611 −0.1508 −0.7833 0.4523 1.4 × 10−13

−4.1089 1.6171 0.2210 0.9726 0.0149 0.0655 0.0059 0.0258 1.2 × 10−14

1.4422 −3.1410 0.1832 0.1457 0.3175 0.2525 0.6915 0.5499 1.1 × 10−13

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0 × 10−16

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0 × 10−16

MultiParEig toolbox [42], which solves (3) via the QZ-algorithm and results in a maximum 
residual error of 6.3 × 10−14.

6.4. Polynomial two-parameter eigenvalue problem with solutions at infinity

Next, we revisit the polynomial MEP with two parameters from Example 5 and use 
a shift polynomial g (λ1, λ2) = λ1. We recursively build the block Macaulay matrix M
for increasing degree d = 2, . . . , 5:

d size nullity standard monomials

2 3 × 12 9 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ2
1z1, λ

2
1z2, λ1λ2z1

3 9 × 20 11 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ2
1z1, λ

2
1z2, λ1λ2z1 |λ3

1z1, λ
3
1z2

d∗ → 4 18 × 30 12 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ2
1z1, λ

2
1z2, λ1λ2z1 |λ3

1z1 |λ4
1z1, λ

4
1z2

d∗ + dg → 5 30 × 42 12 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ2
1z1, λ

2
1z2, λ1λ2z1 |gap|λ4

1z1 |λ5
1z1, λ

5
1z2

A degree d = 5 block Macaulay matrix M suffices to solve this MEP via both the null 
space and column space based approach. In the null space based algorithm, we need to 
compute a numerical basis matrix Z ∈ C42×12 of the null space (since we have mb = 12
solutions) and determine the gap via row-wise rank checks from top to bottom. The 
gap indicates that this problem has ma = 9 affine solutions and m∞ = 3 solutions 
at infinity. At this degree, the linearly independent rows related to the affine standard 
monomials have stabilized. We notice an analogue behavior in the column space of M . 
However, because of the backward (Q-less) QR-decomposition, we do not need to deflate 
the solutions at infinity via a column compression. Note that for degree d = 5 the block 
Macaulay matrix is not yet tall, i.e., p < q (see Footnote 6 for the structure of R when 
p = q −mb < q −ma). We can alleviate this problem by using a larger degree d or by 
removing the linearly dependent columns in N4. We choose in this numerical example 
the latter option and remove the 21st (λ4

1z1), 31st (λ5
1z1), and 32nd (λ5

1z2) column from 
M when splitting into N1, N2, N3, and N4. Algorithm 2 obtains the affine solution of 
Table 5. The maximum residual error of the column space based algorithm is 4.8 ×10−13, 
while the maximum absolute difference with the null space based results is equal to 
1.7 × 10−12 (both calculated as in the first numerical example7).
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Table 5
The affine numerical solutions (and residual errors) of Example 5 obtained via the column space 
based algorithm. The residual error is determined by substituting the numerical solution in the 
polynomial 2-EP and calculating the norm of the residual vector ‖e‖2 = ‖M(λ∗

1 , λ∗
2)z∗‖2.

λ1 λ2 z1 z2 ‖e‖2

1.4027 ± 0.3941i −1.3835 ∓ 0.8431i 0.4676 ∓ 0.5024i −0.6678 ± 0.2881i 5.1 × 10−14

−0.9699 ± 0.7168i −0.1113 ± 0.5741i 0.4140 ∓ 0.5713 0.2080 ± 0.6775i 1.1 × 10−14

0.8543 + 0.0000i −0.9341 + 0.0000i −0.7644 + 0.0000i 0.6448 + 0.0000i 2.8 × 10−15

0.2737 + 0.0751i −0.1917 ∓ 0.2408i 0.8272 ± 0.0000i −0.5617 ∓ 0.0171i 1.0 × 10−14

−0.4497 ± 0.0662i 0.6094 ∓ 1.0534i 0.1726 ∓ 0.5241i 0.4176 ± 0.7219i 7.6 × 10−14

6.5. System identification problem

Finally, we consider the identification of the globally optimal parameters of an ARMA 
model via the MEP methodology described by Vermeersch and De Moor [50]. We consider 
a first-order ARMA(1, 1) model, which combines a regression of the observed output 
variable yk ∈ R on its own lagged value yk−1 with a linear combination of unobserved, 
latent inputs lk and lk−1 ∈ R [11]:

yk + αyk−1 = lk + γlk−1, (14)

where the weighting factors α and γ are the model parameters of this ARMA model. 
For a given series of N output samples y ∈ RN×1, we search the model parameters that 
minimize the sum of squares of the latent inputs σ2 = ‖l‖2

2, subject to the ARMA(1, 1)
model structure of (14), which corresponds to

min
l,α,γ

‖l‖2
2

subject to yk + αyk−1 = lk + γlk−1,

for all data points yk (k = 2, . . . , N) in the given series of output samples y. 
Vermeersch and De Moor [50] have shown that the globally optimal solution to 
this identification problem is given by a quadratic two-parameter eigenvalue problem (
A00 + A10α + A01γ + A02γ

2) z = 0. The exact construction of the (3N − 1)×(3N − 2)
coefficient matrices Aω can be found in [50]. We apply this approach on a sequence of 
N = 7 output samples (without any a priori assumptions)

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.5000
−0.3591

0.1129
0.5449

−0.0790
0.1143
0.1368

⎤
⎥⎥⎥⎥⎥⎥⎦ . (15)

We now use both block Macaulay matrix algorithms to solve the quadratic two-
parameter eigenvalue problem (with 20 × 19 coefficient matrices Aω) that yields the 
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Table 6
The identified real parameters α and γ of the 
ARMA(1, 1) model given by the data in (15), com-
puted via the column space based algorithm. The 
value of the objective function σ2 in the identified 
minimum is smaller than in the saddle points.

Stationary point α γ σ2

Saddle point −0.1172 −0.7597 0.5750
Saddle point 0.1136 0.8416 0.4699
Minimum 0.2097 0.1611 0.3531

Fig. 4. The contour plot of the objective function of the ARMA(1, 1) model given by the data in (15) for 
the model parameters α and γ in the unit interval [−1, 1]. The value of the objective function σ2 in the 
minimum (�) identified via the column space based approach is smaller than in the saddle points (× ×).

optimal model parameters. The solution set of this problem is positive-dimensional at 
infinity, which means that the nullity of the block Macaulay matrix does not stabilize 
(there are an infinite number of solutions). Instead of checking the nullity of the block 
Macaulay matrix for a growing degree d, we monitor the standard monomials and look 
for the emergence of a gap zone, which we observe for a degree d = 37 block Macaulay 
matrix with size 13320 × 14079. Afterwards, a column compression (null space based 
approach) or a backward (Q-less) QR-decomposition (column space based approach) 
deflates the positive-dimensional solution set at infinity and we find ma = 77 affine solu-
tions for the MEP. Only three solutions are real, and hence interesting in this practical 
setting: we find one minimum and two saddle points (see Table 6). When we compare 
this identified minimum with a visualization (Fig. 4) of the objective function σ2, we 
observe that we indeed have a global minimum within the unit domain [−1, 1]× [−1, 1]. 
One immediately notices that the matrices involved in this identification problem quickly 
grow much larger than in our previous numerical examples. Realistic problems fuel the 
search for more efficient implementations that exploit the sparsity and structure of the 
block Macaulay matrix.
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7. Conclusion and future work

In this paper, we exploited the complementarity between the null space and column 
space of the block Macaulay matrix to propose a new algorithm that considers the 
column space of the block Macaulay matrix. Contrary to the existing null space based 
approach, this column space based algorithm does not require an explicit computation 
of a numerical basis matrix of the null space, but considers the data in the columns 
of the block Macaulay matrix directly and removes the influence of the solutions at 
infinity implicitly via a backward (Q-less) QR-decomposition. We also provided several 
numerical examples to illustrate both block Macaulay matrix algorithms and to test our 
new column space based approach.

Our last numerical example, the globally optimal least-squares identification of an 
ARMA model, has fueled several new research ideas. When the coefficient matrices grow, 
the computational complexity of both the null space and column space based algorithm 
increases rapidly. In particular the rank checks to determine the linearly independent 
rows of the basis matrix or the linearly dependent columns of the block Macaulay ma-
trix are computationally expensive. The backward (Q-less) QR-decomposition, which 
constitutes the core of the column space based approach, has created several algorith-
mic opportunities. We want to improve the column space based algorithm by exploiting 
the sparsity and structure of the block Macaulay matrix, by considering block columns 
instead of columns (i.e., by taking fully advantage of the backward block multi-shift-
invariance), by looking into rank-revealing QR-decompositions, and by developing recur-
sive techniques. Furthermore, the complementarity between both fundamental subspaces 
may even yield more useful properties in the column space. Together with a better un-
derstanding of MEPs, these advances will give us the machinery to tackle much larger 
problems in the future.
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Appendix A. Backward scalar/block single/multi-shift-invariant subspaces

The algorithms in this paper strongly rely on the concept of backward (block multi-) 
shift-invariance. Shift-invariance of a subspace is usually defined for infinite matrices, 
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i.e., operators [26]. De Cock and De Moor [19] have adapted in their paper the definition 
of backward scalar/block single/multi-shift-invariance to finite dimensional subspaces.8

Definition 5 (Backward scalar single-shift-invariance). Let R (G) be the range of a matrix 
G ∈ Cm×n with full column rank. R (G) is backward scalar single-shift-invariant if and 
only if

R
(
G
)
⊆ R (G) ,

where G and G (with full column rank) are the matrix G without its first and last row, 
respectively.

The backward scalar single-shift-invariance of R (G) can also be expressed as

∃Γ ∈ Cn×n : GΓ = G,

where R 
(
G
)

= R (G) if Γ is non-singular (and otherwise R 
(
G
)
� R (G)). We can 

rewrite these row selections via row selection matrices S1 and S2, similar to the math-
ematical formulation in other parts of this paper. The property above can then be 
expressed as

∃Γ ∈ Cn×n : (S1G)Γ = (S2G) , (A.1)

where S1 and S2 select all the rows of the matrix G except the last one and the first one, 
respectively. Note that shift-invariance is a property of the vector space, and not of the 
specific basis matrix of this vector space. If we consider a second basis matrix H ∈ Cm×n, 
then there exists a basis transformation via a non-singular matrix T ∈ Cn×n, such that 
G = HT . Consequently, we can rewrite (A.1) as

(S1H)Λ = (S2H) , with Λ = TΓT−1.

Clearly, the matrices Γ and Λ are similar, and hence have the same spectrum. This 
property allows us to interpret the basis matrices of backward shift-invariant column 
spaces as observability matrices of multidimensional systems. In that regard, we can 
see the null space based solution approach, where we search for the spectrum of Γ (or 
Λ), as a multidimensional realization problem. Then, the full rank condition of G is 
equivalent with the system being observable and the full rank condition of G is the 
partial realization condition, required for a unique solution [19,25].

8 Note that sometimes ambiguity arises when considering the shift operator. In this paper, we adopt the 
convention of Garcia et al. [26], and we define the backward shift operator as S {f(z)} = f(z)−f(0)

z , or, in 
terms of Taylor coefficients {ai}i≥0 of f(z), as S {(a0, a1, . . .)} = (a1, a2, . . .).
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Example 10 (Backward scalar single-shift-invariance). When we consider a univariate 
Vandermonde matrix V U ∈ C(d+1)×n (with n distinct variables and a degree d), we 
observe an example of this shift-invariance9:

⎡
⎢⎢⎣

1 · · · 1
α1 · · · αn

...
...

αd−1
1 · · · αd−1

n

⎤
⎥⎥⎦

︸ ︷︷ ︸
S1V U

⎡
⎣α1 · · · 0

...
. . .

...
0 · · · αn

⎤
⎦

︸ ︷︷ ︸
Γ

=

⎡
⎢⎢⎢⎣

α1 · · · αn

...
...

αd−1
1 · · · αd−1

n

αd
1 · · · αd

n

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S2V U

.

Definition 5 covers backward scalar single-shift-invariance: scalar meaning that we 
shift row-wise and single-shift meaning that only one shift is possible in the subspace. 
We can extend this definition and consider backward block single-shift-invariant, backward 
scalar multi-shift-invariant, and backward block multi-shift-invariant subspaces.

Example 11 (Backward block single-shift-invariance). While the column space of the 
matrix V U is backward scalar single-shift-invariant, some subspaces are backward block 
single-shift-invariant, which means that we can shift entire block rows of the basis ma-
trix, e.g., R (S1G) ⊆ R (S2G), where the row selection matrices S1 and S2 select the 
entire matrix G without the first and last block row, respectively. A block univariate 
Vandermonde matrix V B ∈ C(d+1)s×n (with a vector zi ∈ Cs×1, i = 1, . . . , n) exhibits 
this property:

⎡
⎢⎢⎣

z1 · · · zn

α1z1 · · · αnzn

...
...

αd−1
1 z1 · · · αd−1

n zn

⎤
⎥⎥⎦

︸ ︷︷ ︸
S1V B

⎡
⎣α1 · · · 0

...
. . .

...
0 · · · αn

⎤
⎦

︸ ︷︷ ︸
Γ

=

⎡
⎢⎢⎢⎣

α1z1 · · · αnzn

...
...

αd−1
1 z1 · · · αd−1

n zn

αd
1z1 · · · αd

nzn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S2V B

.

Example 12 (Backward scalar multi-shift-invariance). In the previous examples, we only 
consider shifts with one variable. Now, we look at subspaces with multiple shifts and 
consider the backward scalar multi-shift-invariance of a subspace. An example is the 
bivariate Vandermonde matrix V M ∈ C(2d+1)×n,

V M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · 1
α1 · · · αn

β1 · · · βn

α2
1 · · · α2

n
...

...
βd

1 · · · βd
n

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

9 In this appendix, we abuse the notation for readability: αj = α|(j), βj = β|(j), and zj = z|(j)
(j = 1, . . . , n).
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which can be shifted by both variables α and β. As an example, we shift the first three 
rows of V M :

[ 1 · · · 1
α1 · · · αn

β1 · · · βn

]
︸ ︷︷ ︸

S1V M

⎡
⎣α1 · · · 0

...
. . .

...
0 · · · αn

⎤
⎦

︸ ︷︷ ︸
Γα

=
[

α1 · · · αn

α2
1 · · · α2

n
α1β1 · · · αnβn

]
︸ ︷︷ ︸

S2V M[ 1 · · · 1
α1 · · · αn

β1 · · · βn

]
︸ ︷︷ ︸

S1V M

⎡
⎣β1 · · · 0

...
. . .

...
0 · · · βn

⎤
⎦

︸ ︷︷ ︸
Γβ

=
[

β1 · · · βn

α1β1 · · · αnβn

β2
1 · · · β2

n

]
︸ ︷︷ ︸

S3V M

,

where the row selection matrices S2 and S3 select the rows of the bivariate Vandermonde 
matrix after a shift of the first three rows (the matrix S1) by α (the matrix Γα) and by 
β (the matrix Γβ), respectively.

Example 13 (Backward block multi-shift-invariance). Backward block multi-shift-
invariance is a natural extension of the previous types of shift-invariant subspaces. This 
property appears multiple times in this paper, since the (affine) null space of the block 
Macaulay matrix is backward block multi-shift-invariant. As an example, we shift the 
first three block rows of the block multivariate Vandermonde matrix (compare to (5)
with λ = (α, β)):

[
z1 · · · zn

α1z1 · · · αnzn

β1z1 · · · βnzn

]
︸ ︷︷ ︸

S1V

⎡
⎣α1 · · · 0

...
. . .

...
0 · · · αn

⎤
⎦

︸ ︷︷ ︸
Γα

=
[

α1z1 · · · αnz1
α2

1z1 · · · α2
nzn

α1β1z1 · · · αnβnzn

]
︸ ︷︷ ︸

S2V[
z1 · · · zn

α1z1 · · · αnzn

β1z1 · · · βnzn

]
︸ ︷︷ ︸

S1V

⎡
⎣β1 · · · 0

...
. . .

...
0 · · · βn

⎤
⎦

︸ ︷︷ ︸
Γβ

=
[

β1z1 · · · βnzn

α1β1z1 · · · αnβnzn

β2
1z1 · · · β2

nzn

]
︸ ︷︷ ︸

S3V

.
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