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Abstract. We propose recursive algorithms to update an orthogonal numerical basis matrix
of the null space of the block row, (banded) block Toeplitz, and block Macaulay matrix, which is
the multivariate generalization of the (banded) block Toeplitz matrix. These structured matrices
are often constructed in an iterative way, and, for some applications, a basis matrix of the null
space is required in every iteration. Consequently, recursively updating a numerical basis matrix
of the null space, while exploiting the inherent structure of the matrices involved, induces large
savings in the computation time. Moreover, we also develop a sparse adaptation of one of the
recursive algorithms that avoids the explicit construction of the block Macaulay matrix and results
in a considerable reduction of the required memory. We provide several numerical experiments to
illustrate the proposed algorithms: for example, we solve four multiparameter eigenvalue problems
via the null space of the block Macaulay matrix and notice that the recursive and sparse approach
are, on average, 450 and 1300 times faster than the standard approach, respectively.
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1. Introduction. In various engineering applications, we encounter matrices
that have a particular structure, like the (banded) block Toeplitz and block Macaulay
matrix. The (banded) block Toeplitz matrix emerges in several system identification
and signal processing problems, where applications lead to (univariate) polynomial ei-
genvalue problems (PEPs). Typical examples are the stiffness and vibration analysis
of large structures [11, 18, 20, 28], finite element discretizations of continuous models
[17, 18, 28], and the design of multiple-input multiple-output filters [11, 13, 28]. A mul-
tiparameter eigenvalue problem (MEP), on the other hand, naturally gives rise to the
block Macaulay matrix, which is the multivariate generalization of the (banded) block
Toeplitz matrix. MEPs appear when identifying the least-squares optimal parameters
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A597

of linear time-invariant systems [7, 29], when solving partial differential equations via
the method of separation of variables [3, 24, 25], or when reducing the model order of
existing high-order models [2]. In our recent work [7, 29, 31], we have exploited the
structure of the null space of the (banded) block Toeplitz and block Macaulay matrix
to determine the solutions of the generating PEP and MEP, respectively. Unsurpris-
ingly, the computation of a numerical basis matrix of this null space is an important
step in the solution methods. In the case of a zero-dimensional solution set (i.e., every
solution of the PEP or MEP is an isolated point in the solution space), the nullity
of these structured matrices reveals the total number of solutions, both affine and at
infinity. Rank checks on growing submatrices of this numerical basis matrix are re-
quired to separate the affine solutions from the solutions at infinity. Since a numerical
basis matrix of the null space of a (banded) block Toeplitz or block Macaulay matrix
is typically a dense (i.e., nonsparse) tall matrix, it can be considered as a block row
matrix, where we iterate over its subsequent (block) rows in order to determine the
rank structure (i.e., we check the change of the rank for every additional block of the
numerical basis matrix)1 .

All three types of matrices considered in this paper are often constructed in
an iterative way. On the one hand, the block rows of the block row matrix are
considered iteratively, since a basis matrix of its null space is important in every
iteration (e.g., to determine the rank structure of the block row matrix). Moreover,
in many signal processing applications [1, 21, 22], new data vectors in the (block) rows
are appended continuously. The process of appending new (block) rows induces the
iterative structure naturally. A mature body of literature already covers the (block)
rowwise updating of the singular value decomposition [6, 22] or tracking of a subspace
[1, 22, 26, 27]. In this paper, we restrict ourselves to the particular subproblem where
we only update in every iteration a basis matrix of the null space of the block row
matrix using results from the previous iteration. On the other hand, the required
size of the (banded) block Toeplitz matrix and block Macaulay matrix in system
processing and system identification problems often depends on the properties of its
null space. Because these properties cannot be deduced in advance, we need to enlarge
the (banded) block Toeplitz and block Macaulay matrix iteratively and compute in
every iteration a new numerical basis matrix of the null space. Several authors have
already addressed the direct null space computation of these structured matrices [13,
19], but a recursive approach that exploits the structure and sparsity of these special
matrices clearly has a lot of potential.

Therefore, in this paper, we address these questions and propose recursive2 al-
gorithms to update an orthogonal numerical basis matrix of the null space of the
block row, (banded) block Toeplitz, and block Macaulay matrix, using results from
the previous iteration. Batselier, Dreesen, and De Moor [5] have developed a sim-
ilar recursive algorithm to update a numerical basis matrix of the null space of
the traditional (scalar) Macaulay matrix. However, they have not addressed the
block Macaulay matrix, nor have they considered the block row or (banded) block

1A numerical basis matrix of the null space of the traditional (scalar) Macaulay matrix also has
a block row structure [9, 30]. The recursive updating algorithm of the block row matrix proposed in
this paper fits perfectly in the (scalar) Macaulay matrix approach to solve systems of multivariate
polynomial equations.

2We do not use the term recursion in its strict computer science meaning (``an algorithm that
calls itself on smaller input values"") but see it as an algorithm that performs the same steps on
different input values (``an algorithm that uses in every iteration the same approach on new input
values""); cf. the recursive least-squares algorithm [12].
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A598 CHRISTOF VERMEERSCH AND BART DE MOOR

Toeplitz matrix. Moreover, we also develop a sparse algorithm that avoids the explicit
construction of the block Macaulay matrix and results in a considerable memory im-
provement compared to its dense counterparts. Exploiting the structure and sparsity
of the block Macaulay matrix leads to impressive results: for example, when we use
the null space of the block Macaulay matrix to solve four MEPs, we notice that the
recursive and sparse approach proposed in this paper are, on average, 450 and 1300
times faster than the standard approach, respectively.

Outline. The remainder of this paper proceeds as follows: In section 2 and section
3, we consider recursive algorithms to update a numerical basis matrix of the null space
of the block row and (banded) block Toeplitz matrix, respectively. We develop in both
sections a recursive updating algorithm, followed by a discussion of the computational
complexity and several numerical experiments. We use an analogous rationale in
section 4, where we discuss the null space of the block Macaulay matrix, but in this
section we also consider a sparse implementation that avoids the explicit construction
of the block Macaulay matrix. We close this paper by giving our conclusions and
pointing at ideas for future research in section 5.

Notation and preliminaries. We denote scalars by italic lowercase letters, e.g.,
a, and vectors by boldface lowercase letters, e.g., \bfita . Matrices are characterized by
boldface uppercase letters, e.g., \bfitA . The computational complexity of an operation is
given by its number of floating-point operations. We use null(\bfitA ) and rank(\bfitA ) to
denote the computation (via established numerical linear algebra tools) of an orthog-
onal numerical basis matrix of the null space and the numerical rank of a matrix \bfitA ,
respectively. \bfitI l\times l is the identity matrix of size l\times l.

Hardware and software. We use for all our numerical experiments a Red Hat
Enterprise Linux server infrastructure with nodes that have two Xeon Gold 6140 CPUs
working at 2.3 GHz (18 Skylake cores each) and 192 GB RAM (or 768 GB RAM for
the big memory nodes). The algorithms proposed in this paper are implemented in
MATLAB and available at https://www.macaulaylab.net.

2. Block row matrix. After d iterations, a block row matrix \bfitR d \in \BbbC pd\times qd

consists of d+ 1 consecutive blocks3 (or block rows) \bfitA i \in \BbbC k\times l:

(2.1) \bfitR d =

\left[       
\bfitA 0

\bfitA 1

\bfitA 2

...
\bfitA d

\right]       =

\biggl[ 
\bfitR d - 1

\bfitA d

\biggr] 
.

The block row matrix \bfitR d has pd = k(d + 1) rows and qd = l columns. Block row
matrices appear in applications where the data only gradually becomes available (e.g.,
online signal processing problems) or where intermediate results are required (e.g., to
determine the rank structure of the matrix). In the former situation, the desired
iteration d\ast of the block row matrix is often not known in advance. Since \bfitR d grows
in every iteration d, its null space also changes with respect to d. We denote an
orthogonal numerical basis matrix of the null space of \bfitR d by \bfitZ d \in \BbbC qd\times nd such that

(2.2) \bfitR d\bfitZ d = 0,

3Although we consider in this paper consecutive blocks \bfitA i with an equal number of rows for
didactical purposes, an extension to consecutive blocks with a different number of rows is trivial and
does not alter the proposed algorithm.
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A599

Algorithm 2.1 Iterative null space updating problem of the block row matrix.
Require: \bfitA 0,\bfitA 1, . . .
1: \bfitZ 0\leftarrow null(\bfitR 0) with \bfitR 0 =\bfitA 0

2: d\leftarrow 1
3: while d\leq d\ast do

4: \bfitR d\leftarrow 
\biggl[ 
\bfitR d - 1

\bfitA d

\biggr] 
5: \bfitZ d\leftarrow null(\bfitR d) via standard or recursive algorithm (e.g., Algorithm 2.2)
6: d\leftarrow d+ 1
7: end while
8: return \bfitZ d\ast 

where nd corresponds to the nullity of \bfitR d. Algorithm 2.1 states the problem more
clearly: we extend the block row matrix \bfitR d in an iterative way and compute a
numerical basis matrix \bfitZ d of its null space in every iteration using \bfitZ d - 1, until we
reach the desired iteration d\ast .

The standard algorithm to determine this numerical basis matrix is the singular
value decomposition, and it does not consider the iterative nature of the problem.
In subsection 2.1, we propose a recursive algorithm that uses the existing numerical
basis matrix \bfitZ d - 1 \in \BbbC qd - 1\times nd - 1 of the null space of the block row matrix \bfitR d - 1 \in 
\BbbC pd - 1\times qd - 1 to obtain \bfitZ d. We do not assume any structure in the blocks \bfitA i of \bfitR d,
apart from the iterative construction in (2.1). Afterwards, in subsection 2.2, we asses
the computational complexity of this recursive algorithm and compare it with the
standard algorithm. Subsection 2.3 illustrates the theoretical derivations by means of
two numerical experiments.

2.1. Recursive algorithm. We consider a block row matrix \bfitR d - 1 \in \BbbC pd - 1\times qd - 1

after d - 1 iterations and an orthogonal numerical basis matrix \bfitZ d - 1 \in \BbbR qd - 1\times nd - 1 of
its null space:

(2.3) \bfitR d - 1\bfitZ d - 1 = 0.

When we append a new block \bfitA d to obtain \bfitR d, we know that there exists an orthog-
onal matrix \bfitV d \in \BbbR nd - 1\times nd , so that

(2.4)

\biggl[ 
\bfitR d - 1

\bfitA d

\biggr] 
\underbrace{}  \underbrace{}  

\bfitR d

\bfitZ d - 1\bfitV d =

\biggl[ 
0

\bfitA d\bfitZ d - 1

\biggr] 
\bfitV d = 0,

because of (2.3). The matrix \bfitV d, on the one hand, is a basis matrix of the null space
of the matrix \bfitW d =\bfitA d\bfitZ d - 1 \in \BbbC k\times nd - 1 . The nullity nd of \bfitR d is at most nd - 1 because
the block \bfitA d adds (sometimes zero) linearly independent rows to \bfitR d. The matrix
product \bfitZ d = \bfitZ d - 1\bfitV d =

\prod d
i=0\bfitV i \in \BbbC l\times nd (with \bfitV 0 = \bfitZ 0), on the other hand,

is a numerical basis matrix of the null space of \bfitR d. This insight yields a recursive
algorithm to update an orthogonal numerical basis matrix of the null space of the
block row matrix. Algorithm 2.2 summarizes the different steps to obtain \bfitZ d, given
\bfitA d and \bfitZ d - 1, and fits perfectly in Algorithm 2.1.

Importance of correct rank decisions. In Algorithm 2.2, a correct rank decision
is essential to obtain correct results. For example, in the (limit) case when we add
a new block \bfitA d of which all the rows depend linearly on the rows of the previous

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A600 CHRISTOF VERMEERSCH AND BART DE MOOR

Algorithm 2.2 Recursive null space algorithm for the block row matrix.
Require: \bfitZ d - 1 and \bfitA d

1: \bfitW d\leftarrow \bfitA d\bfitZ d - 1

2: \bfitV d\leftarrow NULL(\bfitW d)
3: \bfitZ d\leftarrow \bfitZ d - 1\bfitV d

4: return \bfitZ d

blocks (\bfitA 0, . . . ,\bfitA d - 1), the numerical basis matrix of the null space of \bfitR d - 1 also
annihilates the matrix \bfitA d. Hence, \bfitW d =\bfitA d\bfitZ d - 1 (theoretically) equals zero. When
we determine \bfitV d in Algorithm 2.2 (line 2), we should obtain an orthogonal matrix
of full rank nd - 1, e.g., an identity matrix. However, due to numerical floating-point
errors, the matrix \bfitW d is only close to zero, and we need to be very careful when
computing \bfitV d. Let us consider a rank-10 block row matrix \bfitR 1 \in \BbbR 40\times 20, which
consists of two rank-5 blocks \bfitA 0 \in \BbbR 20\times 20 and \bfitA 1 \in \BbbR 20\times 20, and a orthogonal basis
matrix of its null space \bfitZ 1 \in \BbbC 20\times 10. We create a new block \bfitA 2 = 2\bfitA 0+3\bfitA 1 \in \BbbR 20\times 20

and construct \bfitR 2 \in \BbbR 60\times 20 as

(2.5) \bfitR 2 =

\left[  \bfitA 0

\bfitA 1

\bfitA 2

\right]  =

\biggl[ 
\bfitR 1

\bfitA 2

\biggr] 
.

Since the rows of \bfitA 2 depend by construction linearly on the rows of the first two
blocks, the matrix \bfitW 2 = \bfitA 2\bfitZ 1 is close (but not exactly) zero. All singular values
have the same order of magnitude, and, when using a relative tolerance, the matrix
\bfitW 2 could be considered to be of full rank. A careful rank check in Algorithm 2.2
alleviates this problem in most situations, for example, by using an additional absolute
tolerance or a more advanced rank decision approach (see, for example, [14, 23]).

2.2. Computational complexity. When computing a numerical basis matrix
\bfitZ d of the null space of the block row matrix \bfitR d via the standard algorithm (i.e.,
the singular value decomposition), we only use the singular values and right singular
vectors. This takes, in iteration d, about 4pdq

2
d+8q3d flop (floating-point operations)

[10, p. 493]. A substitution of the number of rows and columns of \bfitR d yields the
computational complexity of the standard algorithm (in flop):

(2.6) 4kl2 (d+ 1) + 8l3 = 4kl2d+ 4kl2 + 8l3 =\scrO (d) .

In some applications, the blocks \bfitA i are square (i.e., k= l), which simplifies (2.6):

(2.7) 4l3d+ 12l3 =\scrO (d) .

The proposed recursive algorithm consists of three main steps (see Algorithm
2.2---in flop:

2klnd - 1 (multiplication -- line 1)

4kn2
d - 1 + 8n3

d - 1 (null space computation -- line 2)

2lnd - 1nd (multiplication -- line 3)

The nullity nd of \bfitR d is equal to l  - rd \leq l = \scrO (1), where rd is the rank of \bfitR d. The
total computational complexity of the recursive algorithm is thus bounded above by
(in flop)

(2.8) 6kl2 + 10l3 =\scrO (1) ,
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A601

Table 2.1
The computational complexity (given in flop per iteration d) of the standard and recursive

algorithm to determine a numerical basis matrix of the null space of the block row matrix \bfitR d, for
both rectangular k\times l and square l\times l blocks \bfitA i. The given computational complexity of the recursive
algorithm is an upper bound and depends in practice on the rank of the blocks \bfitA i (i= 0, . . . , d).

Algorithm Rectangular Square

Standard 4kl2d+ 4kl2 + 8l3 4l3d+ 12l3

Recursive 6kl2 + 10l3 16l3

or when the blocks \bfitA i are square (i.e., k= l) by

(2.9) 16l3 =\scrO (1) .

When we compare the (theoretical) computational complexity of both approaches
(see Table 2.1), we notice that the number of flop of the recursive algorithm remains
constant with respect to the iteration d, while the computational complexity of the
standard algorithm depends linearly on d. This behavior, of course, does not sound
surprising, as the recursive algorithm uses results from the previous iterations and
matrices of (more or less) fixed sizes, while the block row matrix \bfitR d in the standard
algorithm grows in every iteration.

2.3. Numerical experiments. We consider two experiments to illustrate the
numerical properties of the recursive algorithm: a block row matrix with increasing
rank (or decreasing nullity) and a block row matrix of which the rank (and also the
nullity) stabilizes after d= 10 iterations.

2.3.1. Block row matrix with increasing rank. The first numerical experi-
ment consists of a block row matrix \bfitR d \in \BbbR 100d\times 100 that we extend in every iteration
d by a random matrix4 \bfitA i \in \BbbR 100\times 100 with rank r = 2. The rank of \bfitR d is equal to
rd = max(2(d + 1),100). The recursive algorithm clearly outperforms the standard

algorithm (see Figure 2.1), while the relative errors \| \bfitR d\bfitZ d\| 
\| \bfitR d\| remain stable within the

same order of magnitude. As mentioned in subsection 2.2, the computation time of
the standard algorithm grows linearly with the respect to d, while the computation
time of the recursive algorithm remains more or less constant. Figure 2.1 even shows
a small decrease in the computation time for higher iterations, which is mainly be-
cause of the decrease in the nullity (remember that we used the upper bound of the
nullity to determine the computational complexity of the recursive algorithm, which
is especially a good approximation when the number of blocks is still small).

2.3.2. Block row matrix with stabilizing rank. In the second numerical
experiment, we look at a block row matrix \bfitR d \in \BbbR 100d\times 100 in which the new blocks
\bfitA i after d= 10 iterations are linear combinations of the previously appended blocks
(namely, \bfitA 0, . . . ,\bfitA 10). The rank and nullity of \bfitR d stabilize after d = 10 iterations,
and we notice that the computation time of the recursive algorithm (see Figure 2.2)
becomes constant, i.e., the computational complexity now follows the theoretical\scrO (1).

4In order to construct a random matrix \bfitM \in \BbbR p\times q with a specific rank r, we multiply two random
matrices \bfitN \in \BbbR p\times r and \bfitP \in \BbbR r\times q , which have by construction a rank equal to r. Throughout
the entire paper, we always use the randn function in MATLAB to generate normally distributed
(pseudo)random matrices.
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A602 CHRISTOF VERMEERSCH AND BART DE MOOR

Fig. 2.1. A comparison of the mean computation time and the mean relative error
\| \bfitR d\bfitZ d\| 
\| \bfitR d\| 

between the standard ( ) and recursive ( ) algorithm applied to a block row matrix \bfitR d,
averaged over 15 experiments (the dashed lines indicate one standard deviation). In every iteration
d, we extend the block row matrix \bfitR d - 1 with a random block \bfitA d \in \BbbR 100\times 100 of rank r = 2. The
computation times of both algorithms follow the theoretical complexities ( ). The computation
time of the recursive algorithm decreases for higher iterations, because the input matrices become
smaller in every iteration (since the nullity decreases in every iteration).

Fig. 2.2. A comparison of the mean computation time and the mean relative error
\| \bfitR d\bfitZ d\| 
\| \bfitR d\| 

be-

tween the standard ( ) and recursive ( ) algorithm applied to a block row matrix \bfitR d, averaged
over 15 experiments (the dashed lines indicate one standard deviation). In every iteration d, we
extend the block row matrix \bfitR d - 1 with a random block \bfitA d \in \BbbR 100\times 100 of rank r= 2, until iteration
d = 10. After 10 iterations, the newly appended blocks are linear combinations of previously added
blocks; hence the computational complexity of the recursive algorithm stabilizes. The computation
times of both algorithms follow the theoretical complexities ( ). The jump in the computation
time at d= 11 for the recursive algorithm is due to the fact that the matrix \bfitW 11 is numerically zero;
hence the singular value decomposition of a full-rank instead of low-rank matrix has to be computed.

Notice that the computation time first jumps at d = 11 before stabilizing. Due
to the rank stabilization after 10 iterations, the matrix \bfitW 11 is numerically zero and
considered to be a matrix of full rank, the singular value decomposition of which
is computationally more expensive than of a low-rank matrix (like \bfitW 10). This is
completely in line with our earlier discussion about the importance of a correct rank
decision (see subsection 2.1): when we are not careful and use wrong rank decisions,
the relative error of the recursive algorithm can rise quickly. The combination of a
relative and absolute tolerance avoids wrong rank decisions in this numerical experi-
ment.
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A603

3. Block Toeplitz matrix. Next, we consider the (banded5) block Toeplitz
matrix \bfitT d, for example,

(3.1) \bfitT d =

\left[     
\bfitA 1 \bfitA 2 0 0 \cdot \cdot \cdot 
0 \bfitA 1 \bfitA 2 0 \cdot \cdot \cdot 
0 0 \bfitA 1 \bfitA 2 \cdot \cdot \cdot 
...

...
...

...
. . .

\right]     
\right\}         d+ 1 block rows

with seed matrices \bfitA 1,\bfitA 2 \in \BbbC k\times l. Block Toeplitz matrices often consist of more
than two seed matrices, i.e., \bfitA i \in \BbbC k\times l for i = 1, . . . , x + y. Therefore, we gather
(in iteration d) all seed matrices \bfitA 1, . . . ,\bfitA x below the block Toeplitz matrix \bfitT d - 1 in
the matrix \bfitX \in \BbbC k\times s and the remaining seed matrices \bfitA x+1, . . . ,\bfitA x+y in the matrix
\bfitY \in \BbbC k\times t (with s = lx and t = ly). Hence, we can define the block Toeplitz matrix
\bfitT d \in \BbbC pd\times qd in iteration d recursively as

(3.2) \bfitT d =

\biggl[ 
\bfitT 1

d - 1 \bfitT 2
d - 1 0

0 \bfitX \bfitY 

\biggr] 
,

in which we partition \bfitT d - 1 accordingly into \bfitT 1
d - 1 \in \BbbC pd - 1\times (qd - 1 - s) and \bfitT 2

d - 1 \in 
\BbbC pd - 1\times s. The block Toeplitz matrix \bfitT d has pd rows and qd columns, which are given by

(3.3)
pd = k (d+ 1) ,

qd = t (d+ 1) + s= ly (d+ 1) + lx,

which reduce in the square case with only two seed matrices (i.e., \bfitX = \bfitA 1 \in \BbbC l\times l

and \bfitY =\bfitA 2 \in \BbbC l\times l) to

(3.4)
pd = l (d+ 1) ,

qd = l (d+ 2) .

The block Toeplitz matrix contains a repetition of the same two shifted blocks \bfitX and
\bfitY in every block row of the matrix. It is very sparse and structured, in contrast to
the previously discussed block row matrix. In every iteration d, the null space of this
matrix changes. When the desired iteration d\ast is not known in advance, a basis matrix
of the null space has to be recomputed in every iteration, and a recursive algorithm
to do this sounds very interesting. Algorithm 3.1 sketches the problem setting.

Subsection 3.1 develops a recursive algorithm to compute an orthogonal numerical
basis matrix \bfitZ d \in \BbbC qd\times nd of the null space of the block Toeplitz matrix \bfitT d, using
\bfitZ d - 1. In subsection 3.2 and subsection 3.3, we compare the standard and recursive
algorithm via a complexity analysis and numerical experiments, respectively.

3.1. Recursive algorithm. We consider a block Toeplitz matrix \bfitT d - 1 after
d - 1 iterations and an orthogonal numerical basis matrix \bfitZ d - 1 \in \BbbC qd - 1\times nd - 1 of its
null space, with nullity nd - 1, such that

(3.5) \bfitT d - 1\bfitZ d - 1 = 0.

5In the literature, this type of block Toeplitz matrices is often called banded block Toeplitz
matrices, in order to make a distinction with full and circulant block Toeplitz matrices. To soften
the notation in this paper, we only consider the banded block Toeplitz matrix and drop the term
``banded.""
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A604 CHRISTOF VERMEERSCH AND BART DE MOOR

Algorithm 3.1 Iterative null space updating problem of the block Toeplitz matrix.
Require: \bfitA 1, . . . ,\bfitA x+y

1: \bfitX \leftarrow 
\bigl[ 
\bfitA 1 \cdot \cdot \cdot \bfitA x

\bigr] 
and \bfitY \leftarrow 

\bigl[ 
\bfitA x+1 \cdot \cdot \cdot \bfitA x+y

\bigr] 
2: \bfitZ 0\leftarrow null(\bfitT 0) with \bfitT 0 =

\bigl[ 
\bfitX \bfitY 

\bigr] 
3: d\leftarrow 1
4: while d\leq d\ast do

5: \bfitT d\leftarrow 
\biggl[ 
\bfitT 1

d - 1 \bfitT 2
d - 1 0

0 \bfitX \bfitY 

\biggr] 
6: \bfitZ d\leftarrow null(\bfitT d) via standard or recursive algorithm (e.g., Algorithm 3.2)
7: d\leftarrow d+ 1
8: end while
9: return \bfitZ d\ast 

If we now extend \bfitT d - 1 with t= ly zero columns, then we can write

(3.6)
\bigl[ 
\bfitT d - 1 0

\bigr] \biggl[ \bfitZ d - 1 0
0 \bfitI t\times t

\biggr] 
= 0.

The nullity of this extended matrix
\bigl[ 
\bfitT d - 1 0

\bigr] 
equals nd - 1 + t. If we add the next

block row of the block Toeplitz matrix, i.e., we consider the block Toeplitz matrix \bfitT d,
then we know that there exists an orthogonal matrix \bfitV d \in \BbbC (nd - 1+t)\times nd such that

(3.7)

\biggl[ 
\bfitT 1

d - 1 \bfitT 2
d - 1 0

0 \bfitX \bfitY 

\biggr] \left[  \bfitZ 1
d - 1 0

\bfitZ 2
d - 1 0
0 \bfitI t\times t

\right]  \bfitV d =

\biggl[ 
\bfitT d - 1\bfitZ d - 1 0

\bfitX \bfitZ 2
d - 1 \bfitY 

\biggr] 
\bfitV d = 0,

where \bfitZ d - 1 is partitioned in accordance with \bfitT d - 1. From the bottom part of (3.7),
it follows that

(3.8) \bfitX \bfitZ 2
d - 1\bfitV 

1
d +\bfitY \bfitV 2

d = 0,

where \bfitV d is partitioned into \bfitV 1
d \in \BbbC nd - 1\times nd and \bfitV 2

d \in \BbbC t\times nd . Hence,

(3.9)
\bigl[ 
\bfitX \bfitZ 2

d - 1 \bfitY 
\bigr] 
\bfitV d = 0,

which means that \bfitV d is a basis matrix of the null space of
\bigl[ 
\bfitX \bfitZ 2

d - 1 \bfitY 
\bigr] 
and

(3.10)

\biggl[ 
\bfitT 1

d - 1 \bfitT 2
d - 1 0

0 \bfitX \bfitY 

\biggr] 
\underbrace{}  \underbrace{}  

\bfitT d

\left[  \bfitZ 1
d - 1\bfitV 

1
d

\bfitZ 2
d - 1\bfitV 

1
d

\bfitV 2
d

\right]  
\underbrace{}  \underbrace{}  

\bfitZ d

= 0.

An orthogonal numerical basis matrix \bfitZ d of the nullspace of \bfitT d can be computed as

(3.11) \bfitZ d =

\biggl[ 
\bfitZ d - 1 0
0 \bfitI t\times t

\biggr] 
\bfitV d =

\biggl[ 
\bfitZ d - 1\bfitV 

1
d

\bfitV 2
d

\biggr] 
.

Algorithm 3.2 summarizes the different steps of this recursive approach.
Banded block matrix without fixed seed matrices. Since the recursive algorithm

does not explicitly make use of the repetitive structure in the block Toeplitz matrix
(i.e., the same seed matrices appear in every block row), it can also be applied to
tackle banded block matrices without fixed seed matrices: the matrices \bfitX and \bfitY are
different in every iteration. Subsection 3.3.4 contains a numerical experiment with
such a banded block matrix.
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A605

Algorithm 3.2 Recursive null space algorithm for the block Toeplitz matrix.
Require: \bfitZ d - 1, \bfitX , and \bfitY 

1: \bfitW d\leftarrow \bfitX \bfitZ 2
d - 1

2: \bfitV d\leftarrow null(
\bigl[ 
\bfitW d \bfitY 

\bigr] 
)

3: \bfitZ d\leftarrow 
\biggl[ 
\bfitZ d - 1\bfitV 

1
d

\bfitV 2
d

\biggr] 
4: return \bfitZ d

3.2. Computational complexity. We determine the computational complex-
ity of the standard algorithm by substituting again the number of rows and columns
of the block Toeplitz matrix \bfitT d in iteration d into the computational complexity of
computing the singular value decomposition (see subsection 2.2---in flop):

(3.12) 4k (d+ 1) (t (d+ 1) + s)
2
+ 8(t (d+ 1) + s)

3
=\scrO 

\bigl( 
d3
\bigr) 
.

In some applications, \bfitT d consists of two square submatrices \bfitX = \bfitA 1 \in \BbbC l\times l and
\bfitY =\bfitA 2 \in \BbbC l\times l, so we can simplify (3.12):

(3.13) l3
\bigl( 
12d3 + 68d2 + 128d+ 80

\bigr) 
=\scrO 

\bigl( 
d3
\bigr) 
.

The proposed recursive algorithm, on the other hand, contains three main
steps (see Algorithm 3.2---in flop):

2ksnd - 1 (multiplication -- line 1)

4k (nd - 1 + t)
2
+ 8(nd - 1 + t)

3
(null space computation -- line 2)

2 (td+ s)nd - 1nd (multiplication -- line 3)

The nullity nd of \bfitT d with respect to the iteration d is given by

(3.14)

nd = qd  - rd

= t (d+ 1) + s - rd

= (t - r)d+ t+ s=\scrO (d)

with rd = rd the rank of \bfitT d when rank (
\bigl[ 
\bfitX \bfitY 

\bigr] 
) = r. We assume that rank

of
\bigl[ 
\bfitX \bfitY 

\bigr] 
is very close to the number of columns (i.e., r \approx t), and, therefore, we

consider the nullity to remain almost constant with respect to the iteration d. The
computational complexity (in flop) of the recursive algorithm then corresponds to
(with nd = nd - 1 = t+ s)

(3.15) 2ks (t+ s) + 4k (s+ 2t)
2
+ 8(s+ 2t)

3
+ 2(td+ s) (t+ s)

2
=\scrO (d) ,

or, for two square l\times l submatrices \bfitX and \bfitY , to

(3.16) 8l3d+ 108l3 =\scrO (d) .

The computational complexity of the recursive algorithm is equal to \scrO (d), which
is due to the dominating multiplication. If we compare this to the standard algorithm,
which has a computational complexity \scrO (d3), then the recursive algorithm gains two
orders of magnitude. Table 3.1 summarizes the computational complexities.
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A606 CHRISTOF VERMEERSCH AND BART DE MOOR

Table 3.1
The computational complexity (given in flop per iteration d) of the standard and recursive

algorithm to compute a numerical basis matrix of the null space of the block Toeplitz matrix \bfitT d, for
both the rectangular case (\bfitX \in \BbbR k\times s and \bfitY \in \BbbR k\times t) and square case (\bfitX \in \BbbR l\times l and \bfitY \in \BbbR l\times kl).

Algorithm Rectangular Square

Standard 4kt2d3 + 8t3d3 +\scrO (d2) l3(12d3 + 68d2 + 128d+ 80)
Recursive 2t(s+ t)2d+\scrO (1) 8l3d+ 108l3

Fig. 3.1. A comparison of the mean computation time and the mean relative error
\| \bfitT d\bfitZ d\| 
\| \bfitT d\| 

between the standard ( ) and recursive ( ) algorithm applied to a block Toeplitz matrix \bfitT d,
averaged over 15 experiments (the dashed lines indicate one standard deviation). \bfitT d consists of two
square random seed matrices \bfitA 1,\bfitA 2 \in \BbbR 20\times 20 such that the rank r of [\bfitA 1 \bfitA 2] = [\bfitX \bfitY ] is equal
to 16. The computation times of both algorithms follow the theoretical computational complexities
( ).

3.3. Numerical experiments. Four experiments with random seed matrices
\bfitA 1 and \bfitA 2 illustrate the numerical properties of the recursive algorithm.

3.3.1. Block Toeplitz matrix with high-rank seed matrices. In the first
numerical experiment, we consider a block Toeplitz matrix \bfitT d that consists of two
square seed matrices \bfitA 1,\bfitA 2 \in \BbbR 20\times 20 with rank (

\bigl[ 
\bfitA 1 \bfitA 2

\bigr] 
) = rank(

\bigl[ 
\bfitX \bfitY 

\bigr] 
) = 16

(which is close to the number of columns l = 20). In every iteration d, we compute
a numerical basis matrix of the null space of \bfitT d via the standard and recursive al-
gorithm. Figure 3.1 visualizes the computation time and relative error for every d.
Clearly, the recursive algorithm outperforms the full singular value decomposition,
while the relative error \| \bfitT d\bfitZ d\| 

\| \bfitT d\| remains more or less the same. The computation
times of the standard and recursive algorithm grow cubicly and linearly with respect
to d, respectively (as in Table 3.1).

3.3.2. Block Toeplitz matrix with low-rank seed matrices. In subsection
3.2, we assume that the rank of the seed matrices of the block Toeplitz matrix \bfitT d is
quite high, which means that the nullity is almost constant with respect to the itera-
tion d. When we use random low-rank seed matrices, like in Figure 3.2, we violate this
assumption and notice that the recursive algorithm takes more time than the theo-
retical computational complexity. However, the recursive algorithm still outperforms
the standard algorithm, since the input matrices are smaller.

3.3.3. Block Toeplitz matrix with seed matrices of different sizes. Next,
we investigate the influence of the size of the seed matrices \bfitA 1 and \bfitA 2 on the com-
putation time. In Figure 3.3, we visualize the total computation time to determine
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A607

Fig. 3.2. A comparison of the mean computation time and the mean relative error
\| \bfitT d\bfitZ d\| 
\| \bfitT d\| 

between the standard ( ) and recursive ( ) algorithm applied to a block Toeplitz matrix \bfitT d,
averaged over 15 experiments (the dashed lines indicate one standard deviation). \bfitT d consists of two
square random seed matrices \bfitA 1,\bfitA 2 \in \BbbR 20\times 20 such that the rank r of [\bfitA 1 \bfitA 2] = [\bfitX \bfitY ] is equal
to 3. The computation time of the recursive algorithm is higher than the theoretical computational
complexity ( ).

Fig. 3.3. A comparison of the total mean computation time between the standard ( ) and
recursive ( ) algorithm to compute a numerical basis matrix of a block Toeplitz matrix \bfitT 30,
averaged over 15 experiments (the dashed lines indicate one standard deviation). \bfitT d consists of two
square random seed matrices \bfitA 1,\bfitA 2 \in \BbbR k\times l. In the left figure the rank r of [\bfitA 1 \bfitA 2] = [\bfitX \bfitY ]
grows with the size of the seed matrices as r = 4l

5
(so remains high rank), while in the right figure

the rank r is fixed at 16. The computation time of the standard and recursive algorithm grows in
both experiments cubicly with respect to the size of the seed matrices ( ).

a numerical basis matrix of the null space of a block Toeplitz matrix \bfitT 30 for de-
sired iteration d\ast = 30 from d = 0, i.e., the total computation time to iteratively
reach d\ast . We consider both the situation in which the rank r of the seed matrices\bigl[ 
\bfitA 1 \bfitA 2

\bigr] 
=

\bigl[ 
\bfitX \bfitY 

\bigr] 
grows with the size (r = 4l

5 ) and the situation in which the
rank r remains fixed (r = 16). The computation time of the standard and recursive
algorithm grows in both numerical experiments cubicly with respect to the size of the
seed matrices.

3.3.4. Banded block matrix without fixed seed matrices. In this example,
we consider a banded block matrix \bfitS d, which consists of two different square random
matrices \bfitA 1,\bfitA 2 \in \BbbR 20\times 20 in every iteration such that the rank r of

\bigl[ 
\bfitA 1 \bfitA 2

\bigr] 
=\bigl[ 

\bfitX \bfitY 
\bigr] 
is equal to 16 (which is close to the number of columns l = 20). In every

iteration d, we compute a numerical basis of the null space of \bfitS d via the standard
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A608 CHRISTOF VERMEERSCH AND BART DE MOOR

Fig. 3.4. A comparison of the mean computation time and the mean relative error
\| \bfitS d\bfitZ d\| 
\| \bfitS d\| 

between the standard ( ) and recursive ( ) algorithm applied to a banded block matrix \bfitS d,
averaged over 15 experiments (the dashed lines indicate one standard deviation). The banded block
matrix \bfitS d consists of two different square random seed matrices \bfitA 1,\bfitA 2 \in \BbbR 20\times 20 in every iteration
d such that the rank r of [\bfitA 1 \bfitA 2] = [\bfitX \bfitY ] is equal to 16. The computation times of both algorithms
follow the theoretical complexities of the block Toeplitz matrix ( ).

and recursive algorithm. Figure 3.4 visualizes the computation time and relative error
\| \bfitS d\bfitZ d\| 
\| \bfitS d\| for every d, which are very similar to Figure 3.1.

4. Block Macaulay matrix. Finally, we study the null space of the block
Macaulay matrix, an extension of the traditional (scalar) Macaulay matrix from resul-
tant theory [15, 16]. The block Macaulay matrix incorporates the coefficient matrices
of an MEP, which are shifted in every block row according to a particular pattern (we
refer the interested reader to our previous papers, in which we have introduced the
block Macaulay matrix in order to solve MEPs [7, 29, 31]). For example, the block
Macaulay matrix that incorporates the quadratic two-parameter eigenvalue problem
(with eigenvalues \alpha and \beta and eigenvectors \bfitz ),

(4.1)
\bigl( 
\bfitA 1 +\bfitA \alpha \alpha +\bfitA \beta \beta +\bfitA \alpha 2\alpha 2 +\bfitA \alpha \beta \alpha \beta +\bfitA \beta 2\beta 2

\bigr) 
\bfitz = 0,

looks like

(4.2) \bfitM d =

\left[       
\bfitA 1 \bfitA \alpha \bfitA \beta \bfitA \alpha 2 \bfitA \alpha \beta \bfitA \beta 2 0 0 \cdot \cdot \cdot 
0 \bfitA 1 0 \bfitA \alpha \bfitA \beta 0 \bfitA \alpha 2 \bfitA \alpha \beta \cdot \cdot \cdot 
0 0 \bfitA 1 0 \bfitA \alpha \bfitA \beta 0 \bfitA \alpha 2 \cdot \cdot \cdot 
0 0 0 \bfitA 1 0 0 \bfitA \alpha \bfitA \beta \cdot \cdot \cdot 
...

...
...

...
...

...
...

...
. . .

\right]       .

The coefficient matrices (e.g., \bfitA 1 and \bfitA \alpha 2) of the MEP are often referred to as the
seed matrices of \bfitM d, since the MEP generates the entire block Macaulay matrix.6

In order to keep our notation consistent throughout the entire paper, we denote the
seed matrices again by a single subscript i, i.e., \bfitA i \in \BbbC k\times l (i = 1, . . . , x+ y). Conse-
quently, we can recursively define the block Macaulay matrix\bfitM d \in \BbbC pd\times qd in iteration

6We do not elaborate on the particular structure of the shifts in this paper. Essentially, every
seed matrix corresponds to a particular monomial (e.g., \alpha ), and in every iteration this monomial is
multiplied by different (shift) monomials, resulting in a quasi-Toeplitz structure of the seed matrices.
The precise structure depends on the number of variables of the seed equation, the degree of the seed
equation, and the monomial ordering. A more detailed explanation can be found in [29, 31].
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A609

d as

(4.3) \bfitM d =

\biggl[ 
\bfitM 1

d - 1 \bfitM 2
d - 1 0

0 \bfitX d \bfitY d

\biggr] 
,

where the matrix \bfitX d \in \BbbC md\times sd gathers all the seed matrices \bfitA 1, . . . ,\bfitA x (but also
some zero matrices) below \bfitM 2

d - 1 and the matrix \bfitY d \in \BbbC md\times td contains the remaining
seed matrices \bfitA x+1, . . . ,\bfitA x+y (and also some zero matrices) under the zero block.
Notice that, in contrast to the matrices \bfitX and \bfitY of the block Toeplitz matrix, the
matrices \bfitX d and \bfitY d of \bfitM d depend on d, because every iteration adds a different
number of block rows to the matrix. The sizes of \bfitX d and \bfitY d depend on the number
of shifts smax in that particular d:

(4.4)

md = k

\biggl( 
d+ n - 1

n - 1

\biggr) 
=

k

(n - 1)!
dn - 1 +\scrO 

\bigl( 
dn - 2

\bigr) 
,

sd = l

d\mathrm{M} - 1\sum 
i=0

\biggl( 
d+ i+ n - 1

n - 1

\biggr) 
=

l

(n - 1)!
dn - 1 +\scrO 

\bigl( 
dn - 2

\bigr) 
,

td = l

\biggl( 
d+ dM + n - 1

n - 1

\biggr) 
=

l

(n - 1)!
dn - 1 +\scrO 

\bigl( 
dn - 2

\bigr) 
,

where n is the number of eigenvalues of the generating MEP (i.e., the number of
variables in the block Macaulay matrix) and dM is the degree of the generating MEP
(i.e., the highest total degree of the monomials in the MEP). The block Macaulay
matrix has a typical quasi-Toeplitz structure, as visualized in Figure 4.1, and its

Fig. 4.1. A visualization of a block Toeplitz \bfitT 19 and block Macaulay matrix \bfitM 3 (n = 3 and
dM = 1), both with rectangular seed matrices \bfitA i \in \BbbR 6\times 4. Due to the combinatorial explosion of the
number of shifts, the block Macaulay matrix grows quickly very large, even after much less iterations
d than the block Toeplitz matrix. Note that the sizes of \bfitX d and \bfitY d of the block Macaulay matrix
depend on d, while this is not the case for \bfitX and \bfitY in the block Toeplitz matrix.
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A610 CHRISTOF VERMEERSCH AND BART DE MOOR

Algorithm 4.1 Iterative null space updating problem of the block Macaulay matrix.
Require: \bfitA 1, . . . ,\bfitA x+y

1: \bfitZ 0\leftarrow null(\bfitM 0)
2: d\leftarrow 1
3: while d\leq d\ast do
4: Determine \bfitX d and \bfitY d

5: \bfitM d\leftarrow 
\biggl[ 
\bfitM 1

d - 1 \bfitM 2
d - 2 0

0 \bfitX d \bfitY d

\biggr] 
6: \bfitZ d\leftarrow null(\bfitM d) via standard or recursive algorithm (e.g., Algorithm 4.2)
7: d\leftarrow d+ 1
8: end while
9: return \bfitZ d

number of rows pd and columns qd grows quickly very large, due to the combinatorial
explosion of the number of shifts:7

(4.5)

pd = k

\biggl( 
d+ n

n

\biggr) 
=

k

n!
dn +\scrO 

\bigl( 
dn - 1

\bigr) 
,

qd = l

\biggl( 
d+ dM + n

n

\biggr) 
=

l

n!
dn +\scrO 

\bigl( 
dn - 1

\bigr) 
.

Typically, the desired iteration d\ast of the block Macaulay matrix depends on the
structure of its null space and is not known in advance. Hence, when we want to
compute a numerical basis matrix of the null space for every iteration d, e.g., in
order to determine the solutions of the generating MEP, we have to extend the block
Macaulay matrix in an iterative way and recompute a numerical basis matrix of its null
space in every iteration. Clearly, a recursive algorithm to update this numerical basis
matrix makes itself useful in this type of practical situations. Algorithm 4.1 sketches
the problem of iteratively updating the block Macaulay matrix and a numerical basis
matrix of its null space.

As in the previous sections, we develop a recursive algorithm to determine an
orthogonal numerical basis matrix \bfitZ d of the null space of the block Macaulay matrix
\bfitM d in subsection 4.1 and determine the computational complexity afterwards in
subsection 4.2. Furthermore, we also propose a sparse adaptation of the recursive
algorithm in subsection 4.3. The numerical experiments in subsection 4.4 illustrate
the standard, recursive, and sparse algorithm. Afterwards, in subsection 4.5, we solve
several MEPs via the null space of the block Macaulay matrix.

4.1. Recursive algorithm. We extend the ideas of the block Toeplitz matrix
to the block Macaulay matrix in this subsection. Since the block Macaulay matrix
is a quasi-block Toeplitz matrix, a generalization of the recursive algorithm is quite
straightforward. Similar to (3.7), we partition the block Macaulay matrix \bfitM d and
suppose that we have a block Macaulay matrix \bfitM d - 1 of which we know a numerical
basis matrix \bfitZ d - 1 of its null space. As in the block Toeplitz matrix case, we can add
td zero columns at the end, multiply by an orthogonal matrix \bfitV d \in \BbbC (nd - 1+td)\times nd - 1 ,
and obtain

7The block Macaulay matrix is the multivariate generalization of the block Toeplitz matrix, with
an MEP instead of a PEP as its seed equation, i.e., with monomials of multiple eigenvalues instead
of powers of single eigenvalues [31]. Notice that the expressions for pd and qd reduce to the block
Toeplitz case of (3.3) when we consider a PEP instead of an MEP (n= 1, d\mathrm{M} = t, and s= l).
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Algorithm 4.2 Recursive null space algorithm for the block Macaulay matrix.
Require: \bfitZ d - 1, \bfitX d, and \bfitY d

1: \bfitW d\leftarrow \bfitX d\bfitZ 
2
d - 1

2: \bfitV d\leftarrow null(
\bigl[ 
\bfitW d \bfitY d

\bigr] 
)

3: \bfitZ d\leftarrow 
\biggl[ 
\bfitZ d - 1\bfitV 

1
d

\bfitV 2
d

\biggr] 
4: return \bfitZ d

(4.6)

\biggl[ 
\bfitM 1

d - 1 \bfitM 2
d - 1 0

0 \bfitX d \bfitY d

\biggr] 
\underbrace{}  \underbrace{}  

\bfitM d

\left[  \bfitZ 1
d - 1 0

\bfitZ 2
d - 1 0
0 \bfitI t\times t

\right]  \bfitV d

\underbrace{}  \underbrace{}  
\bfitZ d

=

\biggl[ 
\bfitM d - 1\bfitZ d - 1 0

\bfitX d\bfitZ 
2
d - 1 \bfitY d

\biggr] 
\bfitV d = 0.

The most important difference with (3.7) is that \bfitX d and \bfitY d are now indexed by d
and can contain many zero blocks (see Figure 4.1(b)). We compute \bfitV d again as a
numerical basis matrix of a null space,

(4.7)
\bigl[ 
\bfitX d\bfitZ 

2
d - 1 \bfitY d

\bigr] 
\bfitV d = 0,

and construct \bfitZ d \in \BbbC qd\times nd as

(4.8) \bfitZ d =

\biggl[ 
\bfitZ d - 1\bfitV 

1
d

\bfitV 2
d

\biggr] 
.

Algorithm 4.2 summarizes the different steps of the entire recursive approach.
An efficient implementation, of course, tries to avoid the zero blocks and uses
fast multiplications that exploit the structure, an improvement that is naturally
incorporated in a sparse adaptation (see subsection 4.3).

On the iterationwise versus block rowwise implementation. Algorithm 4.2 con-
siders an iterationwise growth of the block Macaulay matrix and recomputes the
numerical basis matrix in an iterationwise fashion.8 One notices easily that the same
idea could also work if the recursive algorithm is applied in a block rowwise fash-
ion. Moreover, in a block rowwise fashion, the zero blocks are easier to identify and
avoid. The main drawback of this alternative block rowwise implementation is the
fact that, for every iteration, multiple multiplications and null space computations
are necessary, which cancels the above-mentioned computational advantages (see the
numerical experiment in subsection 4.4.1).

4.2. Computational complexity. As for the block Toeplitz matrix (but now
for growing matrices \bfitX d and \bfitY d), we substitute the number of rows and columns of
the block Macaulay matrix \bfitM d (4.5) into the computational cost of computing the
singular values and right singular vectors, i.e., 4pdq

2
d + 8q3d flop [10, p. 493], which

results in the computational cost of the standard algorithm (in flop):

(4.9)
4kl2

n!3
d3n +

8l3

n!3
d3n +\scrO 

\bigl( 
d3n - 1

\bigr) 
=\scrO 

\bigl( 
d3n

\bigr) 
.

Most of the times, the seed matrices \bfitA i are square or close to square (i.e., k\approx l):

(4.10)
12l3

n!3
d3n +\scrO 

\bigl( 
d3n - 1

\bigr) 
=\scrO 

\bigl( 
d3n

\bigr) 
.

8This distinction between iterationwise and block rowwise does not exist in the block Toeplitz
matrix, since the number of block rows coincides with the number of iterations in that situation.
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A612 CHRISTOF VERMEERSCH AND BART DE MOOR

Table 4.1
The dominant term(s) of the computational complexity (in flop per iteration d) of the standard

and recursive algorithms to compute a numerical basis matrix of the null space of the block Macaulay
matrix \bfitM d, for both rectangular k \times l and square l \times l seed matrices \bfitA i. We assume in these
complexity numbers that the rank rd is equal to the number of rows pd of \bfitM d for iteration d \leq d\ast 

and introduce two factors \phi and \phi 
\prime 
that do not depend on d.

Algorithm Rectangular Square

Standard 4kl2+8l3

n!3
d3n 12l3

n!3
d3n

Recursive

\biggl( 
\phi 
\prime 
3

(n - 1)!3
+ 2l\phi 2

n(n - 1)!3

\biggr) 
d3n - 2 2k\phi 2

n(n - 1)!3
d3n - 2

The proposed recursive algorithm contains again three main steps (see Algo-
rithm 4.2---in flop):

2mdsdnd - 1 (multiplication -- line 1)

4md (nd - 1 + td)
2
+ 8(nd - 1 + td)

3
(null space computation -- line 2)

2qd - 1nd - 1nd (multiplication -- line 3)

The polynomial nd describes the nullity of \bfitM d with respect to the iteration d:

nd = qd  - rd(4.11)

= qd  - pd(4.12)

=
l

n!
dn  - k

n!
dn +\scrO 

\bigl( 
dn - 1

\bigr) 
(4.13)

\leq \phi 

(n - 1)!
dn - 1 =\scrO 

\bigl( 
dn - 1

\bigr) 
,(4.14)

where we assume in (4.12) that the rank is equal to the number of rows for d < d\ast 

and introduce a factor \phi (and also \phi 
\prime 
below) in (4.14) that does not depend on d, but

depends linearly on the size of the seed matrices (i.e., \scrO (k, l)). We remove the highest-
order terms in our upper bound, since k \geq l in practical applications (otherwise the
nullity does not stabilize). The computational complexity of the recursive algorithm
is then bounded above by (in flop)

(4.15)
\phi 
\prime 
3

(n - 1)!3
d3n - 3 +

2l\phi 2

n (n - 1)!3
d3n - 2 =\scrO 

\bigl( 
d3n - 2

\bigr) 
,

which remains the same expression when k= l (only the factors \phi and \phi 
\prime 
change).

The computational complexity of the recursive algorithm (per iteration d) corre-
sponds to \scrO (d3n - 2), which is due to the dominating multiplication. If we compare this
to the standard singular value decomposition, which has a computational complexity
\scrO (d3n), the recursive algorithm gains two orders of magnitude. Table 4.1 summarizes
the computational complexities.

4.3. Sparse algorithm. Although an efficient implementation of Algorithm 4.2
may exploit the structure and sparsity pattern of the block Macaulay matrix, it does
not yet consider the fact that every block row contains the same generating seed ma-
trices \bfitA i. Furthermore, since the block Macaulay matrix quickly grows very large,
storing this matrix requires a considerable amount of memory. We propose in Algo-
rithm 4.4 a sparse implementation that addresses these two shortcomings. It removes
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A613

Algorithm 4.3 Sparse null space updating problem of the block Macaulay matrix.
Require: \bfitA 1, . . . ,\bfitA x+y

1: \bfitZ 0\leftarrow null(\bfitM 0)
2: d\leftarrow 1
3: while d\leq d\ast do
4: \bfitZ d\leftarrow SPARSE-NULL(\bfitZ d - 1,\bfitA 1, . . . ,\bfitA x+y) via Algorithm 4.4
5: d\leftarrow d+ 1
6: end while
7: return \bfitZ d

Algorithm 4.4 Sparse null space algorithm for the block Macaulay matrix.
Require: \bfitZ d - 1, \bfitA 1, . . . ,\bfitA x+y

1: for every shift s of iteration d (s= 1, . . . smax) do
2: col\leftarrow positions of columns of \bfitA 1, . . . ,\bfitA x+y at shift s
3: colx\leftarrow COL\leq qd (positions of columns of \bfitA 1, . . . ,\bfitA x at shift s)
4: coly\leftarrow COL> qd (positions of columns of \bfitA x+1, . . . ,\bfitA x+y at shift s)
5: \bfitW s

d\leftarrow 
\bigl[ 
\bfitA 1 \cdot \cdot \cdot \bfitA x

\bigr] 
\bfitZ d - 1(COLx)

6: \bfitY s
d(COLy)\leftarrow 

\bigl[ 
\bfitA x+1 \cdot \cdot \cdot \bfitA x+y

\bigr] 
7: end for

8: \bfitW d\leftarrow 

\left[   \bfitW 1
d

...
\bfitW s\mathrm{m}\mathrm{a}\mathrm{x}

d

\right]   and \bfitY d\leftarrow 

\left[   \bfitY 1
d
...

\bfitY s\mathrm{m}\mathrm{a}\mathrm{x}

d

\right]   
9: \bfitV d\leftarrow null(

\bigl[ 
\bfitW d \bfitY d

\bigr] 
)

10: \bfitZ d\leftarrow 
\biggl[ 
\bfitZ d - 1\bfitV 

1
d

\bfitV 2
d

\biggr] 
11: return \bfitZ d

the explicit construction of the block Macaulay matrix \bfitM d and incorporates the for-
mation of \bfitX d and \bfitY d into the recursive algorithm to build a basis matrix \bfitZ d of the
null space (the problem statement changes from Algorithm 4.1 to Algorithm 4.3). For
every shift s in iteration d, Algorithm 4.4 first determines the position of the shifted
seed matrices \bfitA i and partitions them into \bfitX s

d and \bfitY s
d. The blocks \bfitX 

s
d yield together

with the previous numerical basis matrix \bfitZ d - 1 the matrix \bfitW d, similar to Algorithm
4.2, but now per shift, and the blocks \bfitY s

d result in \bfitY d. The computation of \bfitV d and
\bfitZ d are similar to Algorithm 4.4. At no point in this sparse algorithm \bfitM d is explicitly
built or stored in memory; \bfitM d is only used implicitly through the position of its
shifts.

Note that for some orderings of the monomials in the block Macaulay matrix, the
structure can be exploited even further. For example, when using the degree negative
lexicographic ordering (like in Figure 4.1(b)), \bfitY d always contains \bfitY d - 1 [4].

4.4. Numerical experiments. We illustrate the properties of the recursive and
sparse algorithm via several numerical experiments with random seed matrices.

4.4.1. Block Macaulay matrix with high-rank seed matrices. In the first
numerical experiment, we iteratively build a block Macaulay matrix \bfitM d and compute
a numerical basis matrix \bfitZ d of its null space. We consider both a linear 2-parameter
eigenvalue problem with 3 random seed matrices \bfitA i \in \BbbR 21\times 20 (see Figure 4.2) and a
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A614 CHRISTOF VERMEERSCH AND BART DE MOOR

Fig. 4.2. A comparison of the mean computation time and the mean relative error
\| \bfitM d\bfitZ d\| 
\| \bfitM d\| 

between the standard ( ) and recursive ( ) algorithm applied to a block Macaulay matrix
\bfitM d, averaged over 15 experiments (the dashed lines indicate one standard deviation). The block
Macaulay matrix \bfitM d is generated by a linear 2-parameter eigenvalue problem with 3 random seed
matrices \bfitA i \in \BbbR 21\times 20. The computation times of both algorithms follow the theoretical complexities
( ).

Fig. 4.3. A comparison of the mean computation time and the mean relative error
\| \bfitM d\bfitZ d\| 
\| \bfitM d\| 

between the standard ( ) and recursive ( ) algorithm applied to a block Macaulay matrix \bfitM d,
averaged over 15 experiments (the dashed lines indicate one standard deviation). The block Macaulay
matrix \bfitM d is generated by a quadratic 3-parameter eigenvalue problem with 10 random seed matrices
\bfitA i \in \BbbR 22\times 20. The computation times of both algorithms follow the theoretical complexities ( ).

quadratic 3-parameter eigenvalue problem with 10 random seed matrices \bfitA i \in \BbbR 22\times 20

(see Figure 4.3). As Table 4.1 indicates, we observe experimentally that we gain two

orders of magnitude in the computational complexity, while the relative error \| \bfitM d\bfitZ d\| 
\| \bfitM d\| 

remains more or less the same.

4.4.2. Block Macaulay matrix with seed matrices of different sizes and
with different numbers of eigenvalues. Next, we investigate the influence of the
size of the seed matrices \bfitA i and the number of eigenvalues on the computation time.
In Figure 4.4, we visualize the total time to compute a numerical basis matrix of
the null space of a block Macaulay matrix \bfitM 15 for desired iteration d\ast = 15 from
d = 0, i.e., the total computation time to iteratively reach d\ast . We consider a linear
2-parameter eigenvalue problem with 3 random seed matrices \bfitA \bfiti \in \BbbR (l+1)\times l, where we
increase the size of the seed matrices during the numerical experiment, and a linear
n-parameter eigenvalue problem with n+ 1 random seed matrices \bfitA \bfiti \in \BbbR (19+n)\times 20,
where we increase the number of eigenvalues during the numerical experiment. The
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A615

Fig. 4.4. A comparison of the total mean computation time between the standard ( ) and
recursive ( ) algorithm to compute a numerical basis matrix of the null space of a block Macaulay
matrix \bfitM 15, averaged over 15 experiments (the dashed lines indicate one standard deviation). \bfitM d

is generated in the left figure by a linear 2-parameter eigenvalue problem with 3 random seed matrices
\bfitA i \in \BbbR (l+1)\times l and in the right figure by a linear n-parameter eigenvalue problem with n+1 random
seed matrices \bfitA i \in \BbbR (19+n)\times 20. The computation times of both algorithms follow the theoretical
complexities ( ).

Fig. 4.5. A comparison of the mean computation time of the recursive algorithm applied to a
block Macaulay matrix \bfitM d, averaged over 15 experiments (the dashed lines indicate one standard
deviation), when we use the recursive algorithm iterationwise ( ) and block rowwise ( ).
The block Macaulay matrix \bfitM d is generated in the left figure by a linear 2-parameter eigenvalue
problem with 3 random seed matrices \bfitA i \in \BbbR 21\times 20 and in the right figure by a quadratic 3-parameter
eigenvalue problem with 10 random seed matrices \bfitA i \in \BbbR 22\times 20.

computation time grows cubicly with the number of columns of the seed matrices,
while the influence of the number of eigenvalues is given in Table 4.1.

4.4.3. Comparison between the iterationwise and block rowwise imple-
mentation. Figure 4.5 compares the computation time for the recursive algorithm
when applied iterationwise and block rowwise. The results obtained for the block
Macaulay matrices generated by a linear 2-parameter eigenvalue problem and a qua-
dratic 3-parameter eigenvalue problem support our claim that an iterationwise imple-
mentation of the recursive algorithm is faster than a block rowwise implementation,
especially when the iteration d increases.
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A616 CHRISTOF VERMEERSCH AND BART DE MOOR

Fig. 4.6. A comparison of the mean computation time and the memory usage between the
recursive ( ) and sparse ( ) algorithm applied to a block Macaulay matrix \bfitM d, averaged over
15 experiments (the dashed lines indicate one standard deviation). \bfitM d is generated by a linear
2-parameter eigenvalue problem with 3 random seed matrices \bfitA i \in \BbbR 21\times 20. The explicit recursive
construction of \bfitM d ( ) takes up a major part of the computation time of the recursive algorithm.

Table 4.2
A comparison between the standard, recursive, and sparse approach to solve a linear 2-parameter

eigenvalue with 3 random seed matrices \bfitA i \in \BbbR 41\times 40. The table contains the total computation time
to build a numerical basis matrix of the null space of the corresponding block Macaulay matrix
(requires 41 iterations), the total memory usage to obtain this basis matrix, and the maximum
residual error of the obtained solutions.

Algorithm Comp. time Memory usage Residual error

Standard (last iter.) 168630 s (25771 s) 11.46 GB 3.9\times 10 - 15

Recursive 126.48 s 11.46 GB 1.8\times 10 - 14

Sparse 41.12 s 0.25 GB 1.8\times 10 - 14

4.4.4. Comparison between the recursive and sparse algorithm. We
repeat the numerical experiment with a block Macaulay matrix \bfitM d generated by
a linear 2-parameter eigenvalue problem with 3 random seed matrices \bfitA i \in \BbbR 21\times 20,
but we now compare the recursive and sparse algorithm. To make a fair comparison,
we also include the time to build \bfitM d (in a recursive fashion). Figure 4.6 shows that
the sparse algorithm is clearly faster than the recursive approach (the construction of
\bfitM d also takes up a major part of the computation time) and is much more memory
efficient.

4.5. Solving MEPs. Finally, we use the proposed algorithms for their in-
tended purpose: solving MEPs via a numerical basis matrix of a corresponding block
Macaulay matrix. The null space of a block Macaulay matrix has a special structure
that we can exploit to obtain the eigentuples of the generating MEP. We do not elab-
orate on the details of this null space based solution approach, which we explain in
depth in [31]. It is important to know that this problem fits perfectly into the problem
setting of Algorithm 4.1, where we do not know the desired iteration d\ast of the block
Macaulay matrix because d\ast depends on the properties of the null space (the nullity
has to stabilize at the total number of solutions).

4.5.1. Random MEPs. We solve four different MEPs: a linear 2-parameter
eigenvalue problem with 3 random seed matrices \bfitA i \in \BbbR 41\times 40 (Table 4.2), a linear 3-
parameter eigenvalue problem with 4 random seed matrices \bfitA i \in \BbbR 19\times 17 (Table 4.3),
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UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY A617

Table 4.3
A comparison between the standard, recursive, and sparse approach to solve a linear 3-parameter

eigenvalue with 4 random seed matrices \bfitA i \in \BbbR 19\times 17. The table contains the total computation time
to build a numerical basis matrix of the null space of the corresponding block Macaulay matrix
(requires 28 iterations), the total memory usage to obtain this basis matrix, and the maximum
residual error of the obtained solutions.

Algorithm Comp. time Memory usage Residual error

Standard (last iter.) 21421 s (8315 s) 5.50MB 3.9\times 10 - 15

Recursive 128.50 s 5.50MB 1.8\times 10 - 14

Sparse 104.07 s 0.21MB 1.8\times 10 - 14

Table 4.4
A comparison between the standard, recursive, and sparse approach to solve a cubic 2-parameter

eigenvalue with 10 random seed matrices \bfitA i \in \BbbR 11\times 10. The table contains the total computation
time to build a numerical basis matrix of the null space of the corresponding block Macaulay matrix
(requires 33 iterations), the total memory usage to obtain this basis matrix, and the maximum
residual error of the obtained solutions.

Algorithm Comp. time Memory usage Residual error

Standard (last iter.) 805.57 s (144.74 s) 377.59MB 3.9\times 10 - 13

Recursive 3.54 s 377.59MB 1.8\times 10 - 13

Sparse 1.21 s 26.56MB 1.8\times 10 - 13

Table 4.5
A comparison between the standard, recursive, and sparse approach to solve a quadratic 3-

parameter eigenvalue with 10 random seed matrices \bfitA i \in \BbbR 12\times 10. The table contains the total
computation time to build a numerical basis matrix of the null space of the corresponding block
Macaulay matrix (requires 23 iterations), the total memory usage to obtain this basis matrix, and
the maximum residual error of the obtained solutions.

Algorithm Comp. time Memory usage Residual error

Standard (last iter.) 48363 s (15720 s) 8.64 GB 3.9\times 10 - 15

Recursive 184.34 s 8.64 GB 1.8\times 10 - 14

Sparse 130.45 s 0.46 GB 1.8\times 10 - 14

a cubic 2-parameter eigenvalue problem with 10 random seed matrices \bfitA i \in \BbbR 11\times 10

(Table 4.4), and a quadratic 3-parameter eigenvalue problem with 10 random seed
matrices \bfitA i \in \BbbR 12\times 10 (Table 4.5). Clearly, the computation times of the recursive
and sparse approaches are much smaller than the time to solve the MEPs via the
standard approach, while the maximum residual errors9 of the obtained solutions are
more or less the same: we notice that the recursive and sparse approach proposed in
this paper are, on average, 450 and 1300 times faster than the standard approach,
respectively. Moreover, the computation time required to perform the last iteration
with the standard approach is larger than the total computation time of the recursive
and sparse approach. Hence, even if we know the desired iteration d\ast in advance,
a recursive (or sparse) approach may still be better. The sparse approach has the
additional advantage of requiring much less memory.

4.5.2. Least-squares realization problem. We solve an MEP that arises from
a least-squares realization problem with N = 7 random data points: given a data se-
quence y0, . . . , y6 (\bfity \in \BbbR 7\times 1), find the adapted data sequence \^y0, . . . , \^y6 (\^\bfity \in \BbbR 7\times 1), so

9The residual error corresponds to the 2-norm of the residual vector after substituting the com-
puted eigenvalues and eigenvectors in the MEP.
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Table 4.6
A comparison between the standard, recursive, and sparse algorithm to solve a least-squares

realization problem with N = 7 data points, which corresponds to a quadratic 2-parameter eigenvalue
with 6 seed matrices \bfitA i \in \BbbR 17\times 16. The table contains the total computation time to build a numerical
basis matrix of the null space of the corresponding block Macaulay matrix (requires 28 iterations),
the total memory usage to obtain this basis matrix, and the maximum residual error of the solutions.

Algorithm Comp. time Memory usage Residual error

Standard (last iter.) 1049.23 s (219.28 s) 508.84MB 5.1\times 10 - 10

Recursive 22.24 s 508.84MB 4.9\times 10 - 10

Sparse 19.05 s 34.36MB 1.4\times 10 - 9

that the misfit \| \bfity  - \^\bfity \| 22 is minimized and \^\bfity is the output of a second-order autonomous
model [7, 8]:

(4.16) \^yk = \bfitc \bfitA k\bfitx 0,

where \bfitx 0 \in \BbbR 2\times 1 is the initial state, \bfitA \in \BbbR 2\times 2 is the system matrix, and \bfitc \in \BbbR 1\times 2 is the
output vector. In [7], it has been shown how this identification problem corresponds
to a quadratic two-parameter eigenvalue problem

(4.17)
\bfscrM (\lambda 1, \lambda 2)\bfitz =

\bigl( 
\bfitA 1 +\bfitA 2\lambda 1 +\bfitA 3\lambda 2

+\bfitA 4\lambda 
2
1 +\bfitA 5\lambda 1\lambda 2 +\bfitA 6\lambda 

2
2

\bigr) 
\bfitz = 0,

where the coefficient matrices \bfitA i \in \BbbR 17\times 16 are as described in [7].
This problem has a positive-dimensional solution set at infinity, so the nullity of

the block Macaulay matrix does not stabilize. In order to solve this system identifi-
cation problem, we need to check in every iteration if the basis matrix of the block
Macaulay matrix contains all the affine solutions. For this specific problem, we need
d = 28 iterations to build a 7395\times 7936 block Macaulay matrix (i.e., total degree of
highest monomial is equal to 30) that has a null space with the correct affine solutions
of the problem. Table 4.6 compares the computation time and maximum residual error
of the different approaches. The recursive and sparse approach are also much faster
than the standard approach in the case of this system identification problem, while
resulting in more or less the same residual errors. In these practical problems, the
proposed algorithms allow us to tackle problems that are much larger than possible
with the standard algorithm.

5. Conclusions and future work. In this paper, we presented recursive algo-
rithms to update a numerical basis matrix of the null space of the block row, (banded)
block Toeplitz, and block Macaulay matrix. These recursive algorithms use the nu-
merical basis matrix computed during the previous iteration in order to efficiently de-
termine an update. Furthermore, we also proposed a sparse alternative for the block
Macaulay matrix, without explicitly constructing this large block Macaulay matrix.
We provided several numerical experiments to illustrate the properties of these four
algorithms and to compare them with the standard full singular value decomposition.
The numerical experiments, like the least-squares realization problem, motivated the
need for faster algorithms: the proposed recursive (and sparse) algorithms clearly
outperformed the standard algorithm.

The recursive algorithm and sparse adaptation have given us the opportunity
to solve larger MEPs than possible with the standard approach. In the future, we
will improve our current algorithms and consider memory-efficient implementations
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to further push the limits. Analog approaches for Hankel and block Hankel matrices
could also be useful in other application areas. Furthermore, we want to translate
our efforts from the singular value decomposition to the QR decomposition, enabling
column space based solution approaches for MEPs.
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