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Abstract—We present a recursive-recursive and sparse-recursive
block Macaulay matrix algorithm to solve multiparameter eigen-
value problems (MEPs). In earlier work, we have developed
algorithms to find the solutions of an MEP via a multidimensional
realization problem in the null space of the block Macaulay
matrix constructed from the coefficient matrices of that MEP.
However, this null space based approach requires an iterative
increase of the degree of the block Macaulay matrix: in order to
determine if the null space contains all the (affine) solutions of
the MEP, i.e., if the degree is large enough, we need to compute
a numerical basis matrix of the null space and check its rank
structure in every iteration. In this letter, we use recursive and
sparse techniques to update the basis matrix and to perform the
necessary rank checks. We provide two examples from system
identification to show our improvements in both computation
time and memory usage: in one example, we notice that the
recursive-recursive and sparse-recursive algorithm are 400 and
700 times faster than the standard approach, respectively.

Index Terms—Numerical algorithms, linear systems, identifi-
cation.

I. INTRODUCTION

WHEN identifying linear time-invariant systems or solv-
ing partial differential equations via the method of

separation of variables, one can encounter multiparameter
eigenvalue problems (MEPs) [1], [2], [3]. In contrast to stan-
dard eigenvalue problems (SEPs) and polynomial eigenvalue
problems (PEPs), which are well-understood and for which
many efficient algorithms exist [4], techniques to solve MEPs
are much less abundant in the literature [5].

We have introduced in earlier work the block Macaulay
matrix [1], [2], [5], which is an extension of the classical
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(scalar) Macaulay matrix from polynomial system solving,
to solve MEPs via a multidimensional realization problem
in its structured null space. Although the block Macaulay
matrix approach creates an elegant, unifying framework to
solve SEPs, PEPs, and (polynomial) MEPs, it suffers from a
computational burden: before constructing a multidimensional
realization problem that yields the solutions of the MEP, we
need to increase the degree of the block Macaulay matrix
iteratively and check in every iteration the structure of its
null space in order to determine if it contains all the (affine)
solutions, i.e., we need to check if the degree is large enough.

Algorithms that recursively1 construct the block Macaulay
matrix and compute a numerical basis matrix of its null space
based on previous iterations are, without any doubt, very
useful. Thereupon, we use in this letter the recursive algorithms
developed in [6] and combine them into two double recursive
null space based block Macaulay matrix algorithms: we use
a (i) recursive/sparse algorithm to update a numerical basis
matrix of the null space of the block Macaulay matrix and we
apply a (ii) recursive algorithm to check the rank structure of
that basis matrix (which is a block row matrix). By means of
two examples from system identification, we develop in this
letter a recursive-recursive (with both (i) and (ii) recursive)
and sparse-recursive (with (i) sparse and (ii) recursive) block
Macaulay matrix algorithm to find the solutions of an MEP.
Although the key ingredients of the two double recursive
algorithms have already been discussed in [6], we combine
them for the first time in this letter in order to solve MEPs more
efficiently. We also show how to deflate positive-dimensional
solution sets at infinity (i.e., the number of solutions at infinity
is not finite), an additional difficulty that arises, for example, in
the system identification problems that we tackle in this letter.
We solve both system identification examples to demonstrate
our improvements in both computation time and memory
usage: in one example, we notice that the recursive-recursive
and sparse-recursive algorithm are 400 and 700 times faster
than the standard approach, respectively.

The remainder of this letter proceeds as follows: In Sec-
tion II, we define (rectangular) MEPs and give two examples
from system identification. Next, in Section III, we con-
struct the block Macaulay matrix from an MEP and show

1We do not use the term recursion in its strict computer science meaning
(“an algorithm that calls itself on smaller input values”), but see it as an
algorithm that performs the same steps on different input values (“an algorithm
that uses in every iteration the same approach on new input values”), cf., the
recursive least-squares algorithm.



how a multidimensional realization problem in its null space
yields the solutions of that MEP. Afterwards, we develop
in Section IV the double recursive algorithm and its sparse
adaptation. Section V illustrates both algorithms by means of
the system identification examples. Finally we conclude this
letter and point at ideas for future research in Section VI.

II. MULTIPARAMETER EIGENVALUE PROBLEMS

While a standard eigenvalue problem (SEP) contains only
single eigenvalues λ, a multiparameter eigenvalue problem
(MEP) has eigentuples λ = (λ1, . . . , λn) of multiple eigenval-
ues. Several manifestations of MEPs appear in the literature,
but in this letter we focus solely on rectangular MEPs (see [5]
for a more elaborate overview):

Definition 1: Given coefficient matrices Aω ∈ Rk×l (with
k ≥ l + n − 1), the multiparameter eigenvalue problem
M (λ1, . . . , λn) z = 0 consists in finding all n-tuples λ =
(λ1, . . . , λn) ∈ Cn and corresponding vectors z ∈ Cl×1 \{0},
such that

M (λ1, . . . , λn) z =

∑
{ω}

Aωλ
ω

 z = 0, (1)

where the summation runs over all the multi-indices ω of the
monomials λω =

∏n
i=1 λ

ωi
i . The n-tuples λ = (λ1, . . . , λn)

and (non-zero) vectors z are the eigentuples (with eigenvalues
λ1, . . . , λn) and eigenvectors of the MEP, respectively.

The size condition on the coefficient matrices is a necessary
(but not a sufficient) condition to have a zero-dimensional
solution set: there are k equations and one non-triviality
constraint on z (e.g., ‖z‖2 = 1) in l+n unknowns (l elements
in the eigenvectors and n eigenvalues), hence k + 1 ≥ l + n.
The matrix M (λ1, . . . , λn) is a multivariate polynomial in
the eigenvalues λ1, . . . , λn with matrix coefficients Aω .

Example 1: Our first example is the MEP that arises from
the least-squares realization problem: given a data sequence
y0, . . . , yN−1 (y ∈ RN×1), find the adapted data sequence
ŷ0, . . . , ŷN−1 so that the misfit ‖y − ŷ‖22 is minimized and
ŷ ∈ RN×1 is the output of a model of pre-specified order n [2]:

ŷk = CAkx0,

where x0 ∈ Rn×1 is the initial state, A ∈ Rn×n is the
system matrix, and C ∈ R1×n is the output vector. In [2]
has been shown how this identification problem corresponds
to a quadratic MEP, with the number of eigenvalues equal to
n. When we consider a model of order n = 2, we obtain a
quadratic two-parameter eigenvalue problem

M (λ1, λ2) z =
(
A00 +A10λ1 +A01λ2+

A20λ
2
1 +A11λ1λ2 +A02λ

2
2

)
z = 0,

(2)

with coefficient matrices Aω ∈ R(3N−4)×(3N−5) as described
in [2]. The integer multi-index ω = (ω1, ω2) ∈ N2 labels
the powers of the eigenvalues in the monomial λω1

1 λω2
2 and

indexes the associated coefficient matrices Aω = A(ω1,ω2).
The total degree of a monomial is equal to the sum of its

powers, denoted by |ω| = ω1 + ω2. Hence, an integer multi-
index ω = (0, 2) labels the monomial λ22 (with total degree 2)
and indexes the associated coefficient matrix A02.

Example 2: Secondly, we consider the least-squares ARMA
model identification problem. We have shown in [1] that the
stationary points of the related optimization problem corre-
spond to the solutions of an MEP. A first-order ARMA(1, 1)
model combines a regression of the observed output variable
yk ∈ R on its own lagged value yk−1 with a linear combination
of unobserved, latent inputs ek and ek−1 ∈ R [1]:

yk + αyk−1 = ek + γek−1,

where the weighting factors α and γ are the model parameters
of this ARMA model. When we consider a given series of
N output samples y ∈ RN×1, the quadratic two-parameter
eigenvalue problem (see [1] for the exact construction of Aω)

M (α, γ) z =
(
A00 +A10α+A10γ +A02γ

2
)
z = 0 (3)

yields the stationary points of the related optimization problem.
This problem contains n = 2 spectral parameters (α, γ) and
has four non-zero coefficient matrices Aω ∈ R(3N−1)×(3N−2)

(A20 and A11 are zero-matrices).

III. STANDARD APPROACH

In this section, we sketch the different steps of the standard
null space based block Macaulay matrix approach to solve
MEPs2. After an intuitive construction of the block Macaulay
matrix (Section III-A), we first assume that all solutions are
simple, isolated, and affine, which allows us to show that a
multidimensional realization problem in the structured null
space yields the solutions of the MEP (Section III-B). Some-
times, MEPs that arrive from system identification problems
(like Examples 1 and 2), have a positive-dimensional solution
set at infinity. We show how to deflate these solutions at infinity
(Section III-C) and close this section with an overview of the
different steps of the standard approach (Section III-D).

A. Block Macaulay matrix of an MEP

The MEP M (λ1, . . . , λn) z = 0 in (1) constitutes the
so-called seed equation of its corresponding block Macaulay
matrix [5]. Indeed, we can generate “new” matrix equations{∏n

i=1 λ
di
i

}
M (λ1, . . . , λn) z = 0 by multiplying the seed

equation (i.e., the MEP) by different monomials
∏n
i=1 λ

di
i

of increasing total degree dR =
∑n
i=1 di, and we stack

these “new” matrix equations as the block rows of the block
Macaulay matrix Md, where the degree d is equal to the total
degree of the highest monomial in all the matrix equations.
A rigorous definition of the block Macaulay matrix can be
found in [5], while we restrict ourselves in this letter to a
more intuitive construction.

Example 3: If we revisit the quadratic MEP in (3),(
A00 +A10α+A10γ +A02γ

2
)
z = 0,

2We refer the reader to [5] for a more detailed exposition of the different
steps and an alternative column space based block Macaulay matrix approach.





z αz γz α2z αγz γ2z α3z α2γz αγ2z γ3z α4z

1 A00 A10 A01 0 0 A02 0 0 0 0 0 · · ·
α 0 A00 0 A10 A01 0 0 0 A02 0 0 · · ·
γ 0 0 A00 0 A10 A01 0 0 0 A02 0 · · ·
α2 0 0 0 A00 0 0 A10 A01 0 0 0 · · ·
αγ 0 0 0 0 A00 0 0 A10 A01 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

...
. . .


Fig. 1. The block Macaulay matrix Md of the quadratic two-parameter eigenvalue problem in Example 2. The coefficient matrices of the seed equation,
i.e., the generating MEP, are indicated in red. Vertical lines indicate the different degree blocks. Clearly, the block Macaulay matrix exhibits a quasi-Toeplitz
structure: the coefficient matrices of the seed equation return in every block row in very sparse and structured pattern.

and we multiply this seed equation by monomials of total
degree dR = 1, then we obtain two “new” matrix equations:

α
(
A00 +A10α+A10γ +A02γ

2
)
z = 0

γ
(
A00 +A10α+A10γ +A02γ

2
)
z = 0.

The corresponding block Macaulay matrix M3 has degree
d = 3 (highest total degree of MEP is 2 and dR = 1). We
can continue this process with monomials of increasing total
degree dR, i.e.,

α, γ︸︷︷︸
dR=1

, α2, αγ, γ2︸ ︷︷ ︸
dR=2

, α3, α2γ, . . .︸ ︷︷ ︸
dR≥3

and organize the resulting coefficient matrices in a block
Macaulay matrix Md as in Fig. 1. The actual structure of the
block Macaulay matrix depends on its multivariate monomial
ordering. We use in this letter the degree negative lexicographic
ordering [7], but the remainder remains valid for every graded
monomial ordering.

Consequently, we can rewrite the MEP and “new” matrix
equations as a matrix-vector product of a block Macaulay
matrix Md ∈ Rpd×qd and a vector vd ∈ Cqd×1, i.e.,

[{∏n
i=1 λ

di
i

}
M (λ1, . . . , λn)

]
︸ ︷︷ ︸

Md



z
zλ1

...
zλn
zλ21

...


︸ ︷︷ ︸

vd

= 0.

The vector vd is a vector in the (right) null space of the block
Macaulay matrix Md and has a special block multivariate
Vandermonde structure, because of the monomial ordering of
the columns of the block Macaulay matrix3. In the structure
of the null space of the block Macaulay matrix lies the key
to solve its generating MEP. We need to increase the degree
d of the block Macaulay matrix Md until the structure of its
null space allows us to retrieve all the (affine) solutions of the
MEP: the degree d needs to be large enough, a concept on
which we elaborate in the next section.

3Note that we make a distinction between blocks and degree blocks in
this letter. A block gathers all the rows or columns that correspond to one
monomial (e.g., all the rows that belong to λ21), while a degree block contains
all the blocks that correspond to monomials of the same total degree (e.g.,
all the rows that belong to λ21, λ1λ2, and λ22). We separate different degree
blocks in matrices and vectors with lines.

B. Affine solutions in the structured null space

Initially, we consider an MEP M (λ1, . . . , λn) z = 0 that
only has ma simple and affine solutions, i.e., an MEP with
a simple and affine zero-dimensional solution set. When we
iteratively increase the degree d of the block Macaulay matrix
Md, we notice that the nullity (i.e., the dimension of the null
space) grows until it reaches the number of affine solutions ma

(at d = d∗, by definition), and it remains the same for larger
degrees (d ≥ d∗). Every solution of the MEP corresponds to
one block multivariate Vandermonde vector in the null space
and, together, these basis vectors span the entire null space of
Md. They naturally form the block multivariate Vandermonde
basis matrix V d ∈ Cqd×ma of degree d:

V d =



z|(1) · · · z|(ma)

(λ1z)|(1) · · · (λ1z)|(ma)

...
...

(λnz)|(1) · · · (λnz)|(ma)(
λ21z

)∣∣
(1)

· · ·
(
λ21z

)∣∣
(ma)

...
...


,

which has one column vd|(j), j = 1, . . . ,ma, for every affine
solution of the MEP. As explained thoroughly in [5], the null
space of the block Macaulay matrix has a special structure:

Proposition 1: The (affine) null space of the block Macaulay
matrix is (backward) block multi-shift-invariant, which
means that if we select a block row of a large enough basis
matrix of the null space and multiply/shift this block row by
one of the eigenvalues, then we obtain another block row of
that basis matrix [5].

This (backward) block multi-shift-invariance of the null
space corresponds mathematically to

SgV d︸ ︷︷ ︸
after shift

= S1V d︸ ︷︷ ︸
before shift

Dg, (4)

where the diagonal matrix Dg ∈ Cma×ma contains the eval-
uations of the shift polynomial g (λ1, . . . , λn) in the different
solutions of the MEP. In order for this expression to contain
all ma affine solutions, the matrix S1V d has to be non-
singular. This means that the row selection matrix S1 ∈ Rs×qd
has to select block rows that contain together ma linearly
independent rows from the block multivariate Vandermonde
basis matrix V d. The matrix Sg ∈ Rs×qd , on the other hand,



simply selects the block rows obtained after the multiplication
(or shift) by the shift polynomial g (λ1, . . . , λn). The basis
matrix V d is large enough when it can accommodate this shift
polynomial: when we shift the first r degree blocks of V d by
a shift polynomial of degree dg , the degree of V d (and thus
also of Md) must be at least r + dg > d∗.

In practice, we do not know the block multivariate Vander-
monde basis V d in advance, since it is constructed from the
unknown solutions of the MEP. Therefore, as the (backward)
block multi-shift-invariance is a property of the null space and
not of its specific basis matrix, we work with a numerical basis
matrix Zd ∈ Cqd×ma of Md instead, for example obtained
via the singular value decomposition. There exists, of course,
a linear transformation between these basis matrices, namely
V d = ZdT , with T ∈ Cma×ma a non-singular transformation
matrix, which transforms (4) into a solvable rectangular GEP,

(SgZd)T = (S1Zd)TDg, (5)

where T contains the eigenvectors and Dg the eigenvalues of
the matrix pencil (SgZd,S1Zd). Alternatively, we can also
consider the SEP (.† denotes the pseudo-inverse)

TDgT
−1 = (S1Zd)

†
(SgZd) .

We can then use the matrix of eigenvectors T to retrieve V d

via V d = ZdT . From V d and/or Dg , we find the solutions
of the MEP.

Influence of multiplicity larger than one: Affine and
isolated solutions can have a multiplicity larger than one. This
poses no problems to the above-mentioned approach (see [5]
for a more extensive discussion about multiple solutions).

C. Solutions at infinity and positive-dimensional solution sets

Due to the singularity of some higher degree coefficient
matrices, MEPs can also have solutions at infinity. Moreover,
the MEPs that arise in system identification problems (like
in [1], [2]) can have a positive-dimensional solution set at
infinity, which means that the total number of solutions is
infinite (remember that the condition on the size of the
coefficient matrices is only a necessary condition). In that
case, the nullity nd of the block Macaulay matrix Md no
longer stabilizes at the number of affine solutions ma, but
keeps increasing when we increase the degree d (see Fig. 2).

However, when the number of affine solutions is finite, we
can still apply the above-described affine solution approach.
The solutions of an MEP give rise to linearly independent
rows in the (numerical) basis matrix Zd of the null space
of Md (see [5]). When we monitor the linearly independent
rows in Zd (checked row-wise from top to bottom – see
Fig. 2), we notice at least one additional linearly independent
row per degree block up to degree d ≤ d∗ The linearly
independent rows that correspond to the standard monomials
associated to the affine solutions stabilize from a certain degree
d∗ on at their respective positions. The linearly independent
rows that correspond to the standard monomials associated
to the solutions at infinity, on the other hand, keep moving
to higher degree blocks when we further increase the degree
d > d∗. A gap zone in the rows of Zd without any additional

m
a

d = 3 d∗ = 4 d = 5 d = 6

Z3

Z4

ga
p

Z5
compressed basis matrix
W 11 of the null space

ga
p

Z6

nu
lli

ty
n
d

Fig. 2. The nullity of the null space of the block Macaulay matrix Md grows
as its degree d increases. However, at a certain degree d ≥ d∗ (in this example
d∗ = 4), the affine zone of the basis matrix stabilizes. From that degree on,
some linearly independent rows of the basis matrix Zd of the null space
(related to the affine solutions – indicated by dashed lines) stabilize, while
the other linearly independent rows (related to the solutions at infinity – also
indicated by dashed lines) move to higher degree blocks, and a gap emerges
that separates these two types of linearly independent rows. The influence of
the solutions at infinity can then be deflated via a column compression [5].

Algorithm 1 Standard null space based approach

1: while d∗ + dg is not yet reached do
2: Construct the block Macaulay matrix Md.
3: Compute a numerical basis matrix Zd of Md.
4: Check the rank structure of Zd — if there is a

large enough gap in Zd, then d∗+dg has been reached.
5: end while
6: Use Algorithm 2 to compute the solutions of the MEP.

linearly independent rows emerges. When this gap zone can
accommodate the shift polynomial (a shift polynomial of
degree dg requires a gap zone of dg degree blocks), the basis
matrix Zd is large enough and we can deflate the solutions
at infinity via a column compression (see [5]). This column
compression allows us to use the above-described affine null
space based approach as if no solutions at infinity were present
(we simply replace Zd in (5) by the compressed basis matrix
W 11 of the null space).

In order to determine if the basis matrix is large enough, we
need to check the rank structure (i.e., the linearly independent
rows) of the basis matrix and search for a gap zone of dg
degree blocks in every iteration.

D. Standard null space based approach

Algorithm 1 gives an overview of the different steps to com-
pute the solutions of an MEP via the standard null space based
approach, which uses Algorithm 2 to retrieve the solutions
from a large enough basis matrix Zd.

IV. TWO DOUBLE RECURSIVE ALGORITHMS

The fact that the required degree d∗ + dg is not known
in advance is the main difficulty of the standard null space
based approach. We need to increase the degree d of the



Algorithm 2 Solve MEP from a large enough basis matrix

1: Use a column compression to obtain the compressed
numerical basis matrix W 11 of the null space [5].

2: For a user-defined shift polynomial g (λ1, . . . , λn), solve
the rectangular GEP

(SgW )T = (S1W 11)TDg,

where S1, Sg , T , and Dg are defined as in (5).
3: Retrieve the different components of the solutions from

the block multivariate Vandermonde basis V d =W 11T .

block Macaulay matrix Md and compute a (numerical) basis
matrix Zd of its null space in every iteration in order to
check if d is large enough (i.e., to check if Zd contains a gap
zone that can accommodate the shift). Instead of re-computing
Zd in every iteration, we can use a recursive algorithm to
construct Zd based on Zd−1 (Section IV-A). Furthermore, we
can also check the rank structure via a recursive algorithm
(Section IV-B). Afterwards, we combine both recursive tech-
niques in a double recursive block Macaulay matrix algorithm
(Section IV-C) and propose a sparse adaptation (Section IV-D).

A. Recursive computation of a basis matrix of the null space
Consider a block Macaulay matrix Md−1 ∈ Rpd−1×qd−1

and a numerical basis matrix Zd−1 ∈ Cqd−1×nd−1 of its null
space. Obviously, Md−1Zd−1 = 0, and we can append the
block Macaulay matrix with td zero columns at the end (with
Itd×td ∈ Ntd×td the identity matrix):[

Md−1 0
] [Zd−1 0

0 Itd×td

]
= 0.

If we append the new part of the block Macaulay matrix,
(we now consider the block Macaulay matrix Md ∈ Rpd×qd ),
then we know that there exists an orthonormal matrix V d ∈
C(nd−1+td)×nd , such that we can compute a numerical basis
matrix of Md as[

M1
d−1 M2

d−1 0
0 Xd Y d

]
︸ ︷︷ ︸

Md

Z1
d−1 0

Z2
d−1 0
0 Itd×td

V d = 0, (6)

where we have split the block Macaulay matrix Md−1 into
M1

d−1 ∈ Cpd−1×(qd−1−sd) (part with only zeros below) and
M2

d−1 ∈ Cpd−1×sd (part with Xd below). The matrices Xd ∈
Rmd×sd and Y d ∈ Rmd×td correspond to the “new” block
rows of Md. We can rewrite (6), after partitioning V d, as[

Md−1Zd−1 0

XdZ
2
d−1 Y d

] [
V 1
d

V 2
d

]
= 0.

Hence, we find the orthonormal matrix V d as a numerical
basis matrix of a null space:[

XdZ
2
d−1 Y d

]
V d = 0.

Now, we can update the numerical basis matrix Zd ∈ Cqd×nd

of the null space as

Zd =

[
Zd−1V

1
d

V 2
d

]
.

Algorithm 3 Recursive-recursive null space based approach

1: while d∗ + dg is not yet reached do
2: Update the block Macaulay matrix Md−1 to Md.
3: Construct a numerical basis matrix Zd from Zd−1.
4: Recursively check the rank structure of Zd — if there

is a large enough gap in Zd, then d∗ + dg has been
reached.

5: end while
6: Use Algorithm 2 to compute the solutions of the MEP.

For a more detailed explanation about the properties of this
recursive computation and extensive numerical experiments,
we point the interested reader to [6].

B. Recursive determination of the rank structure

The numerical basis matrix Zd of the null space consists
of a series of degree block rows, which we need to consider
iteratively in order to reveal the rank structure of the null space
(i.e., to find a gap zone that can accommodate the shift). We
can interpret Zd in every iteration as a block row matrix Rd ∈
Cqd×nd and apply a second recursive algorithm:

Zd := Rd =


A0

A1

...
Ad

 =

[
Rd−1
Ad

]
,

where for degree d the basis matrix Zd consists of d+1 blocks
Ai ∈ Cvi×nd , for i = 0, . . . , d, with a different number of
rows vi for every i.

Consider a block row matrix Ri−1 ∈ Cqi−1×nd and a
numerical basis matrix U i−1 ∈ Cqi−1×wi−1 of its null space,
such that

Ri−1U i−1 = 0. (7)

When we append a new block Ai to obtain Ri, we know that
there exists an orthonormal matrix V i ∈ Cwi−1×wi , such that[

Ri−1
Ai

]
︸ ︷︷ ︸

Ri

U i−1V i =

[
0

AiU i−1

]
V i = 0,

because of (7). The matrix U i, on the one hand, corresponds to
a numerical basis matrix of the null space of the matrix W i =
AiU i−1 ∈ Cvi×wi−1 . The matrix product U i = U i−1V i =∏i
j=0 V j ∈ Rnd×wi , on the other hand, is a numerical basis

matrix of the null space of the block row matrix Ri.
By monitoring the change of wi, for i = 0, . . . , d, we can

recursively reveal the rank structure of Zd for a particular
degree d (so we need to apply this recursive technique in every
iteration). We refer again to [6] for the details of this recursive
computation.

C. Recursive-recursive null space based approach

Algorithm 3 combines both recursive techniques into a
recursive-recursive approach to solve MEPs.



Algorithm 4 Sparse-recursive null space based approach

1: while d∗ + dg is not yet reached do
2: Construct a numerical basis matrix Zd from Zd−1

(without building Md).
3: Recursively check the rank structure of Zd — if there

is a large enough gap in Zd, then d∗ + dg has been
reached.

4: end while
5: Use Algorithm 2 to compute the solutions of the MEP.

D. Sparse-recursive null space based approach

Note that Algorithm 3 stores in every iteration the block
Macaulay matrix, while this matrix contains in every block
row the same coefficient matrices and many zeros. We can
instead construct a numerical basis matrix Zd in every iteration
based only on Zd−1 and the coefficient matrices of the MEP.
We have proposed in [6] an algorithm to avoid the explicit
construction of the block Macaulay matrix, which allows us
to develop a sparse algorithm that only stores a (full) basis
matrix of the null space (see Algorithm 4).

V. NUMERICAL EXAMPLES

We revisit in this section Examples 1 and 2, in order to il-
lustrate the recursive-recursive and sparse-recursive algorithm.

A. Least-squares realization problem

We consider the quadratic two-parameter eigenvalue prob-
lem from Example 1 constructed from a series of N = 6
random data points y, which results in 14 × 13 coefficient
matrices Aω . The MEP in (2) has a positive-dimensional
solution set at infinity, meaning that the nullity of its corre-
sponding block Macaulay matrix does not stabilize. Therefore,
in every iteration, we need to compute a basis matrix of the
null space and check its rank structure. A block Macaulay
matrix of degree d = 18 suffices to find a large enough gap
zone (with dg = 1) and to deflate the positive-dimensional
solution set at infinity via a column compression. We apply
Algorithms 1, 3, and 4 to the identification problem and obtain
the results in Table I. The recursive-recursive and sparse-
recursive algorithm are much faster than the standard approach,
while resulting in more or less the same residual error4.
Furthermore, Algorithm 4 requires less memory than the other
two algorithms.

B. Least-squares ARMA model identification problem

Next, we solve the ARMA model identification problem ap-
plied to a series of N = 8 random data points y (Example 2).
The MEP consists of four 23 × 22 coefficient matrices Aω .
Table II contains similar results as the previous example4: the
recursive-recursive and sparse-recursive algorithm are 400 and
700 times faster than standard approach, respectively.

4We ran all the computations on Skylake nodes with two Xeon Gold
6140 processors working at 2.3GHz and calculated the residual error by
substituting the computed eigenvalues and eigenvectors in the MEP and
computing the norm of the residual vector.

TABLE I
COMPARISON OF THE STANDARD, RECURSIVE-RECURSIVE, AND
SPARSE-RECURSIVE APPROACH TO SOLVE THE LEAST-SQUARES

REALIZATION PROBLEM (EXAMPLE 1 – SECTION V-A).

Algorithm Computation time Memory Residual error

standard 672.32 s 503.840MB 5.16× 10−14

recr.-recr. 8.89 s 503.840MB 1.24× 10−12

sparse-recr. 6.68 s 34.36MB 1.48× 10−13

TABLE II
COMPARISON OF THE STANDARD, RECURSIVE-RECURSIVE, AND

SPARSE-RECURSIVE APPROACH TO SOLVE THE LEAST-SQUARES ARMA
MODEL IDENTIFICATION PROBLEM (EXAMPLE 2 – SECTION V-B).

Algorithm Computation time Memory Residual error

standard 30 996.92 s 3.76GB 2.34× 10−14

recr.-recr. 71.66 s 3.80GB 3.54× 10−13

sparse-recr. 44.01 s 0.18GB 1.12× 10−13

VI. CONCLUSION AND FUTURE WORK

In this letter, we developed a double recursive algorithm,
and a sparse adaptation, to solve an MEP via the null space
of the block Macaulay matrix constructed from the coefficient
matrices of that MEP. By exploiting the structure and sparsity,
we were able to obtain impressive reductions in computation
time and memory usage compared to the standard approach,
while keeping more or less the same accuracy.

In future work, we want to translate these recursive and
sparse techniques to the column space of the block Macaulay
matrix [5]. Furthermore, we currently investigate how to
replace the second recursive algorithm by more efficient pro-
cedures to reveal the rank structure (e.g., URV-algorithms [8]).
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