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About the Macaulay matrix approach

Consider a system of multivariate polynomial equations, for exam-
ple, with s = 2 equations in n = 2 variables,

d
p1 () = agp + aipr1 + ap1r2 +- - - + agg,ry' =0,

p2 () = by + brox1 +bo1re +- -+ byg,x5” =0,

which is given in the standard monomial basis. The basis polynomials
0o () are powers of the variables: g () = x = :1:(1)‘1 g

1

The Macaulay matrix is constructed from these polynomials:
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the elements of the Macaulay matrix
correspond to the coeflicients of the
polynomials of the system

Every solution :c|( 5) of the system corresponds to one vector, fv|< §); in the
basis matrix V' of the right null space of that Macaulay matrix.
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In the (backward) shift-invariant structure of the right null space
lies the key to finding the unknown solutions of the system:

The matrix V' is not known in advance, because it consists out of w|< i)

l numerical basis matrix Z with V = ZT

Eigenvalue problems, for g () = x;, give the solutions of the system:

Of course, a lot of details are not shown in this short summary [3]!

Rectangular multiparameter eigenvalue problems

It is also possible to build the block Macaulay matrix from the coeffi-
cient matrices of a rectangular multiparameter eigenvalue prob-
lem.
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Systems in the Chebyshev polynomial basis

A system of multivariate polynomial equations can also be expanded in a
different polynomial basis. For example,

~

p1 () = ENLOOtOO () + CNflOtl() (x) + §L01t01 () +---
o () = bootoo () + biotio (@) + borter () +---

is given in the Chebyshev polynomial basis. The basis polynomials
pg(x) =1tg(x) are multivariate products of Chebyshev polynomials.

— to(x) =1

— ti(x) ==
to(x) = 222 — 1
t3(x) = 4z — 3z

Good numerical properties |2]!
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Computational advantages

The change of basis polynomials results in a different Macaulay matrix:

e Sparsity of the Macaulay matrix reduces, but the link between the FF'T
and Chebyshev polynomials may be useful.

e Relation between this Macaulay matrix and a Cauchy matrix for bivari-
ate systems still exists, resulting in a faster approach to compute Z [1].

Numerical advantages

The (backward) shift-invariant structure of the right null space changes:

00 () L [to@)] [t (@)
t1o () to (@) = 5 tog () - too ()
o1 () | 11 () | 11 () |

Eigenvalue problems, for g () = x;, yield again the solutions of the system.
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“Are there numerical advantages to using the adapted
Macaulay matrix approach?”

e Preliminary results suggest that the Chebyshev polynomial basis behaves
numerical better for solutions in the real hyperplane.

e Basis transformation may be very ill-conditioned!

The above-mentioned approach can be extended to solve this problem [4].

* This poster considers results from the master thesis research of Quinten Peeters.
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Adapted block Macaulay matrix

It is also possible to express and solve rectangular multiparameter eigen-
value problems in the Chebyshev polynomial basis, for example,

M(A) z = (z‘iootoo (A) + Ajgtio (A) + Aoty (M) z=0.
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