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Why multivariate polynomials?

2

c(q)
a(q)




e1
...

eM




︸ ︷︷ ︸
unknown, latent input




y1
...

yN




︸ ︷︷ ︸
known output

such that
na∑
i=0

αiyk−i =
nc∑
i=0

γiek−i

min
α,γ,e

∥e∥22
subject to Tαy = Tγe

(Vermeersch and De Moor, 2019)
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Multivariate polynomials
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A multivariate polynomial p(x), or p(x1, . . . , xn), in n variables is a finite linear
combination of monomials xα from Kn with coefficients cα from K:

p(x) =
∑

A
cαx

α,

where the summation runs over all the exponents in the set A.

• K can be any field: complex numbers C, real numbers R, or finite numbers Fq

• α = (α1, . . . , αn) indexes the monomials αα and coefficients cα
• set of monomials, Cn

d , consists out of
(
d+n
n

)
elements

• example: p(x) = 3 +
√
5x1 + (1 + i)x2 +

3
2x

2
1x

8
2



Multivariate polynomials
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• Typically, multivariate polynomials appear in systems of multivariate polynomial
equations: 




p1(x) =
∑

A
c
(1)
α xα = 0,

...

ps(x) =
∑

A
c
(s)
α xα = 0,

where we look for the solutions of s multivariate polynomials in n variables.

• Every polynomial has a total degree: di = max(|α|).



Combinatorial explosion
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Combinatorial explosion of the number of monomials in the set Cn
d with respect to the

maximum total degree d and number of variables n. The cardinality of Cn
d is given for n = 1

( ), n = 2 ( ), n = 3 ( ), n = 4 ( ), and n = 5 ( ).



Two limit cases
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univariate polynomial (n = 1)

p(x) =

d∑

i=0

cix
i

⇓

Cp =




0 0 · · · 0 −c0/cn
1 0 · · · 0 −c1/cn
0 1 · · · 0 −c2/cn
...

...
. . .

...
...

0 0 · · · 1 −cn−1/cn




⇓
Cpx = λx

linear systems (di = 1)





p1(x) = b1 +

n∑

j=1

a1jxj

...

ps(x) = bs +

n∑

j=1

asjxj

⇓
Ax = b

These are well-known problems from linear algebra



Different polynomial basis
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p(x) =
∑

W
c̃ωtω(x)

A multivariate Chebyshev polynomial of degree α = (α1, . . . , αn):

tα(x) =

n∏

i=1

t∗αi
(xi) =

n∏

i=1

cos
(
αi cos

−1(xi)
)
,

where t∗αi
(xi) corresponds to the univariate Chebyshev polynomial of degree αi.

Examples:

t2(x) = 2x2 − 1

t13(x1, x2) = x1
(
4x32 − 3x2

)

t162(x1, x2, x3) = x1
(
32x62 − 48x42 + 18x22 − 1

)(
2x23 − 1

)



Some applications
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min
x∈Kn

g(x)

subject to h1(x) = · · · = hl(x) = 0

↓
This can be solved via the Lagrangian L(x, λ1, . . . , λl):

L(x, λ1, . . . , λl) = g(x)− λ1h1(x)− · · · − λlhl(x)

The first-order necessary conditions are given by the partial
derivatives:

∂L
∂x1

= · · · = ∂L
∂xn

= h1(x) = · · · = hl(x) = 0

polynomial optimization problems



Some applications
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(x1, x2)

(a, b)

x1

x2
a − x1

b − x2

l1

l2

robotics and kinematics



Some applications
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computational chemistry

The (bio)chemical reaction network of the T-cell signal transduction model:

D κ23
C,

κ31

A+B

κ12

κ21
⇒





dxA(t)

dt
= −κ12xA(t)xB(t) + κ21xC(t) + κ31xD(t) = 0,

dxB(t)

dt
= −κ12xA(t)xB(t) + κ21xC(t) + κ31xD(t) = 0,

dxC(t)

dt
= κ12xA(t)xB(t)− κ21xC(t)− κ23xC(t) = 0,

dxD(t)

dt
= κ23xC(t)− κ31xD(t) = 0.



Some applications
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computer graphics

Estimating internal calibration parameters of a camera from point correspondences in a
sequence of (noisy) images:

P

A B

C
D

x1 x2

x3x4
⇒





x21 + x22 − rx1x2 − ∥AB∥2 ≈ 0,

x21 + x23 − qx1x3 − ∥AC∥2 ≈ 0,

x22 + x23 − px2x3 − ∥BC∥2 ≈ 0,

x21 + x24 − sx1x4 − ∥AD∥2 ≈ 0,

x24 + x23 − tx1x2 − ∥CD∥2 ≈ 0,

x22 + x24 − ux2x4 − ∥BD∥2 ≈ 0,



Some applications
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system identification and time series

û b(q)
a(q) + ŷ

e c(q)
a(q)

+

u

ũ +

y

ỹ

observed data
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What does solving mean?
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Find all the values for x ∈ K̄n such that p1(x) = · · · = ps(x) = 0, i.e., the variety of
the polynomial system

V(p1, . . . , ps) =
{
a ∈ K̄n : pi(a) = 0, ∀i = 1, . . . s

}

• Typically, we consider polynomial
systems which are well-determined!
This can be for both square and
rectangular systems.

• Some solution approaches can deal
with over-determined polynomial
systems.

• Under-determined polynomial systems
could be solved in a certain sense, but
what does it mean?

−2 −1 0 1 2
−2

−1

0

1

2

x1
x
2
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What does solving mean?
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Everything depends on the ground field that you consider!

−2 −1 0 1 2
−2

−1

0

1

2

x1

x 2

This polynomial system has 9 solutions in C2, 1
solution in R2, and 0 solutions in Q2

Some examples:

• C: homotopy continuation, particle
physics

• R: optimization, chemical reaction
networks, robotics

• Q: discriminants/resultants,
Grassmannians, number theory

• Fq: cryptography

• C{{t}},Qp: tropical geometry



Number of solutions?
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• For univariate polynomials (i.e., n = 1), the fundamental theorem of algebra
states that a degree d polynomial has d roots.

• The theorem of Bézout is the multivariate extension of that theorem.

For any square system (i.e., s = n) of multivariate polynomial equations
p1(x), . . . , pn(x), the number of isolated solutions in the projective space Pn

when the solution set is zero-dimensional, i.e., the number of isolated points in
the zero-dimensional variety V(p1(x), . . . , pn(x)) ⊂ Pn, is exactly equal to

mb = d1 · · · dn =

n∏

i=1

di,

where di is the total degree of the polynomial pi(x).



Number of solutions?
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• The theorem of Bézout counts the
number of isolated solutions in the
projective space:

mb = ma +m∞

• For generic systems, mb = ma, but in
practice this is not the case

• There exist more refined bounds on
the number of affine solutions (e.g.,
Kushnirenko, BKK, etc.)

−4 −2 0 2 4

−4

−2

0

2

4

x1

x 2



Different solution approaches
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When we consider an algebraically closed field, there are two main methods to solve
systems of multivariate polynomial equations:

normal form methods

• reduce problem to a univariate
problem

• (numerical) linear algebra

• any field Kn

• rectangular systems: s ≥ n

• mb < ±10 000 solutions

homotopy continuation methods

• continuously deform a system with
known solutions

• ordinary differential equations

• field of complex numbers Cn

• square systems: s = n

• mb < ±1 000 000 solutions



Implementations
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normal form methods

• Macaulay2

• Singular

• Magma

• msolve

• Mathematica

• Oscar.jl

• Maple

• MacaulayLab

• . . .

homotopy continuation methods

• HomotopyContinuation.jl

• Bertini

• NAG4M2

• Hom4PS-3

• PHCpack

• . . .
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Normal form methods and the Macaulay matrix

19

{
p1(x) = a00 + a10x1 + a01x2 + a20x

2
1 + a11x1x2 + a02x

2
2 = 0

p2(x) = b00 + b10x1 + b01x2 + b20x
2
1 + b11x1x2 + b02x

2
2 = 0

⇓




1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

p1(x) a00 a10 a01 a20 a11 a02 0 0 0 0
x1p1(x) 0 a00 0 a10 a01 0 a20 a11 a02 0
x2p1(x) 0 0 a00 0 a10 a01 0 a20 a11 a02

p2(x) b00 b10 b01 b20 b11 b02 0 0 0 0
x1p2(x) 0 b00 0 b10 b01 0 b20 b11 b02 0
x2p2(x) 0 0 b00 0 b10 b01 0 b20 b11 b02







1
x1
x2
x21

x1x2
x22
x31

x21x2
x1x

2
2

x32




= 0

Macaulay matrix



Structured right null space
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Basis matrix of the right null space can be written in terms of the solutions (d ≥ d∗)

• solutions can be described by the dual
vector space of the quotient space

• from the rank-nullity theorem

nd = qd − rd

= dimPn
d /
〈
ph1(x̃), . . . , p

h
s (x̃)

〉
d

• requires dual vector space Cn′
d of Cn

d

and differential functionals

∂i(·)|(j) ≜
1

i1! . . . in!

∂|i|(·)
∂xi11 . . . ∂xinn

∣∣∣∣∣
(j)

confluent multivariate Vandermonde
basis matrix (projective setting)

Vd =




x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




∂00(v)|(1) ∂10(v)|(1) ∂00(v)|(2)

(Batselier et al., 2014; Stetter, 2004)



Monomial multiplicative property

21

one projective solution



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




︸ ︷︷ ︸
Sx1,x0




x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)




︸ ︷︷ ︸
∂00(v)|(1)

x1|(1) =



0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




︸ ︷︷ ︸
Sx0,x1




x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)




︸ ︷︷ ︸
∂00(v)|(1)

x0|(1)

Note that we consider differential functionals in C2′
2 in this exposition.



Monomial multiplicative property
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one projective solution

Sx1,x0




x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)




︸ ︷︷ ︸
∂00(v)|(1)

x1|(1) = Sx0,x1




x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)




︸ ︷︷ ︸
∂00(v)|(1)

x0|(1)

Note that we consider differential functionals in C2′
2 in this exposition.



Monomial multiplicative property
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multiple simple projective solutions

Sx1,x0




x20
∣∣
(1)

x20
∣∣
(2)

x0x1|(1) x0x1|(2)
x0x2|(1) x0x2|(2)
x21
∣∣
(1)

x21
∣∣
(2)

x1x2|(1) x1x2|(2)
x22
∣∣
(1)

x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx1 = Sx0,x1




x20
∣∣
(1)

x20
∣∣
(2)

x0x1|(1) x0x1|(2)
x0x2|(1) x0x2|(2)
x21
∣∣
(1)

x21
∣∣
(2)

x1x2|(1) x1x2|(2)
x22
∣∣
(1)

x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx0

[
x1|(1) 0

0 x1|(2)

]

Note that we consider differential functionals in C2′
2 in this exposition.



Monomial multiplicative property
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multiple projective solutions with multiplicity greater than one

Sx1,x0




x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx1 = Sx0,x1




x20
∣∣
(1)

0 x20
∣∣
(2)

x0x1|(1) x0|(1) x0x1|(2)
x0x2|(1) 0 x0x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx0



x1|(1) × ×
0 x1|(1) ×
0 0 x1|(2)




Note that we consider differential functionals in C2′
2 in this exposition.



Monomial multiplicative property
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select the linearly independent rows of Vd

multiple affine solutions with multiplicity greater than one

S1




1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx1 = Sx1




1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

I

Note that we consider differential functionals in C2′
2 in this exposition.



Monomial multiplicative property
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multiple affine solutions with multiplicity greater than one

S1




1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

Dx1 = Sx1




1 0 1

x1|(1) 1 x1|(2)
x2|(1) 0 x2|(2)
x21
∣∣
(1)

2x1|(1) x21
∣∣
(2)

x1x2|(1) x2|(1) x1x2|(2)
x22
∣∣
(1)

0 x22
∣∣
(2)




︸ ︷︷ ︸
Vd

I

eigenvalue problem!

S1VdDx1 = Sx1Vd

Note that we consider differential functionals in C2′
2 in this exposition.



Three difficulties

22

S1VdDx1 = Sx1Vd

• Solutions/confluent Vandermonde basis vectors are not known in advanced:

numerical basis matrix Zd of the right null space (Vd = ZdT )

⇓
(S1Zd)TDx1 = (Sx1Zd)T

TDx1T
−1 = (S1Zd)

−1(Sx1Zd)

• Not possible to numerically stable compute Jordan normal form:

numerically stable Schur decomposition

⇓
QUx1Q

−1 = (S1Zd)
−1(Sx1Zd)

• Solutions at infinity need to be deflated via a column compression
(Dreesen, 2013; Corless et al., 1997; Vermeersch and De Moor, 2021)
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Homotopy continuation methods
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Homotopy continuation methods

24

Q(x) = (q1(x), . . . , qn(x)) → P (x) = (p1(x), . . . , pn(x))

H(x, t) = (1− t)Q(x) + tP (x), t = 0 → 1
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MacaulayLab toolbox
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www.macaulaylab.net

www.macaulaylab.net
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Multiparameter eigenvalue problem
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The multiparameter eigenvalue problem (MEP) M(λ)z = 0 consists in
finding all n-tuples λ = (λ1, . . . , λn) ∈ Cn and corresponding vectors z ∈ Cl×1 \
{0}, so that

M(λ)z =


∑

{ω}

Aωλ
ω


z = 0,

with ∥z∥2 = 1.

• ω = (ω1, . . . , ωn) indexes the monomials λω and coefficient matrices Aω

• rectangular† coefficient matrices Aω = A(ω1,...,ωn) ∈ Rk×l with k ≥ l + n− 1

• example:
(
A000 +A200λ

2
1 +A013λ2λ

3
3

)
z = 0

†We consider only rectangular problems in this presentation, so we no longer mention the term “rectangular” explicitly.



Unifying framework for (multiparameter) eigenvalue problems

27

Different types of (multiparameter) eigenvalue problems in a two-dimensional grid†.

Spectral parameter(s) Linear Polynomial

Eigenvalues (n = 1)

Type I Type II

{1, λ} λω

A−Bλ A0 +A1λ+ · · ·+Adλ
d

SEP/GEP PEP

Eigentuples (n > 1)

(i = 1, . . . , n)

Type III Type IV

λi λω =
∏n

i=1 λ
ωi
i

A00 +A10λ1 +A01λ2 A00 +A11λ1λ2 +A03λ
3
2

linear MEP polynomial MEP

† SEP = standard eigenvalue problem, GEP = generalized eigenvalue problem, and PEP = polynomial eigenvalue problem



Examples and applications
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(

1 2
3 4
3 4




︸ ︷︷ ︸
A00

+



2 1
0 1
1 3




︸ ︷︷ ︸
A10

λ1 +



3 4
2 1
0 1




︸ ︷︷ ︸
A11

λ1λ2 +



1 2
4 2
2 1




︸ ︷︷ ︸
A02

λ2
2

)
z = 0

(ω1, ω2) labels λ
ω and indexes Aω

rectangular 3× 2 coefficient matrices

• Identification of misfit-versus-latency models

• Model order reduction in the H2-norm



Extension to the block Macaulay matrix
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M(λ)z = (A00 +A10λ1 +A01λ2)z = 0

⇓




z λ1z λ2z λ2
1z λ1λ2z λ2

2z λ3
1z λ2

1λ2z λ1λ2
2z λ3

2z

M(λ) A00 A10 A01 0 0 0 0 0 0 0
λ1M(λ) 0 A00 0 A10 A01 0 0 0 0 0
λ2M(λ) 0 0 A00 0 A10 A01 0 0 0 0
λ2
1M(λ) 0 0 0 A00 0 0 A10 A01 0 0

λ1λ2M(λ) 0 0 0 0 A00 0 0 A10 A01 0
λ2
2M(λ) 0 0 0 0 0 A00 0 0 A10 A01







z
λ1z
λ2z
λ2
1z

λ1λ2z
λ3
1z

λ2
1λ2z

λ1λ
2
2z

λ3
2z




= 0

block Macaulay matrix

(Vermeersch and De Moor, 2022)



Two solution approaches
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null space based approach




z
λ1z
λ2z


λ1 →




λ1z
λ2
1z

λ1λ2z




column space based approach

Q




R14 R13 R12 R11

R24 R23 R22 0
R34 R33 0 0
R44 0 0 0


 = N

(Vermeersch and De Moor, 2022)
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Conclusion
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• Multivariate polynomials are omnipresent in science and engineering

• There exist many different solution approaches

• Depending on the application, there could be a lot of structure available
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