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Abstract. We present a novel approach to multivariate feature ranking in con-
text of microarray data classification that employs a simple genetic algorithm in 
conjunction with Random forest feature importance measures. We demonstrate 
performance of the algorithm by comparing it against three popular feature 
ranking and selection methods on a colon cancer recurrence prediction problem. 
In addition, we investigate biological relevance of the selected features, finding 
functional associations of corresponding genes with cancer.  
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1 Background 

    High-throughput technologies, such are mass-spectrometry, microarrays and next-
generation sequencing, recently empowered biomedical researchers with capabilities 
to study biological phenomena at the molecular level. Consequently, these technolog-
ical advances facilitated development of targeted therapies and non-invasive diagnos-
tic tests for certain diseases [1]. However, ever-increasing utilization of these tech-
niques also gave rise to plethora of new problems that seriously challenge traditional 
views on data analysis. The data sets resulting from high-throughput experiments are 
often characterized by a large number of highly correlated features, severe sig-
nal/noise ratios and a small number of biologically very heterogeneous samples. The 
described problems are especially prominent when analyzing diseases that display 
complex patterns of molecular changes, such as cancer. These issues eventually pro-
moted extensive utilization of machine learning algorithms in the field. In this work 
we present a method that aids identification of relevant predictor variables in this 
context by combining optimization capabilities of genetic algorithms with robust 
Random forest feature importance estimation.      



Genetic algorithms [2],[3] (GA) are class of search and optimization meta-
heuristics inspired by the process of natural selection. They represent a potential solu-
tion to the problem at hand as an individual (also called chromosome) that is defined 
over several, usually binary, variables, called genes. A set of individuals constitutes a 
population, from which the fittest individuals are selected to be combined and some-
times otherwise altered in order to produce a next generation of solutions. The fitness 
value reflects the desired quantitative aspect(s) of an individual, and is obtained 
trough application of a user-defined fitness function. This is essentially an iterative 
stochastic process that terminates when the optimization objective is achieved or 
when certain stopping criterion is met.  Applications of the genetic algorithms in bio-
informatics include amongst others: multiple sequence alignment [4], RNA structure 
prediction [5] and biomarker discovery [6].  

The Random forest [7] (RF) is popular classification method that has been applied 
to numerous scientific fields so far. It essentially operates by constructing an ensem-
ble of fully-grown decision trees built on different bootstraps extracted from the data, 
with additional randomness injected in algorithm by selecting splitting variables from 
random subsets of all possible candidate splits. Random forests are especially suitable 
for dealing with problems characterized by high dimensionality and severe correlation 
between predictors. They also produces internally estimated feature importance scores 
(for discussion on different methods together with their possible biases see [8]) that 
take into account interactions between features, which is a utility of great interest in 
many applications. The later capability is often exploited for multivariate feature se-
lection, as well as in explanatory analyses (“opening a black-box”). These two ad-
vantages are the main reason behind growing popularity of the method in bioinfor-
matics, where it has been used for analysis of microarray data [9] and DNA sequenc-
ing [10] , among other applications.      

 
 

2 Materials and Methods 

2.1 A hybrid approach to feature ranking problem 

 
The proposed algorithm is depicted in Figure 1. It is essentially wrapper approach 

to feature selection/ranking [11]. We represent subset of biological genes to be used 
for subsequent classification (chromosome in GA) as a vector of binary values. The 
initial generation is created randomly, with probability of 1% for each feature to be 
selected in single chromosome. Prior to a GA generation run we take class-balanced 
bootstrap [12] from the original data, after which subsets are created for every chro-
mosome given their particular selections of features. These subsets are then used for 
training Random forest classifiers, whose out-of-bag accuracy values are then fed 
back to the genetic algorithm as a fitness of corresponding chromosomes.  We apply 
bootstrapping aiming to mitigate the GA potential for over-fitting, which is an espe-



cially severe problem when the later is used in wrapper-based feature selection con-
text [13]. Also, this procedure should promote “longevity” of solutions that are robust 
against small perturbations in data, and thus generalize well.  Settings of other param-
eters of GA and RF are provided in Table 1.   

 
Fig. 1. Workflow of the feature ranking using hybrid approach 

When GA converges to the general region of maximal fitness; longevity and classi-
fication performance of particular genes are continuously rewarded until the end of 
algorithm execution. In particular, the importance of a biological gene is increased by 
corresponding RF-FI value during every generation and for every chromosome where 
the gene is present. This principle essentially mimics usage of gene conservation 
scores for prediction [14]. Formally, if sijk is a binary function that indicates if feature 
j (j=1..f, here f stands for number of biological genes) is selected in chromosome i (i 
= 1..c, here c=100) during generation k (k = 0..g , here g=200), rijk is the random 
forest feature importance measure (note that rijk=0 if sijk=0) and 1 is an unit vector of 
size 1xf; vector of importance across all of the genes and for a single generation be-
comes : 
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That is, values of sijk multiplied by rijk are summed across chromosomes for each 

gene, resulting in a gene importance vector for given generation. Accordingly, the 
final gene importance vector is: 
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,where k starts from 100, which is the approximate moment when the algorithm starts 
exploring the general area of a solution (half of the total number of generations).  

Finally, to assess utility of our method for aiding microarray classification we 
compare it against three additional feature selection methods that are often used in 
microarray analyses: 

• Wilcoxon rank-sum test :  Features are ranked by values of the test obtained by 
comparing a vector of single variable values corresponding to positive cases and 
that corresponding to negatives. Final subset of features can be than selected ac-
cording to predefined p-value or cut-off . 

• t-test : Similarly to former. 
• Random forest feature importance : The features are ranked by difference between 

out-of-bag mean square error obtained by single trees when values of a feature are 
shuffled to that achieved on unaffected data. To produce global estimate these val-
ues are averaged over the entire ensemble and divided by standard deviation.  As 
before, the cut-off for selecting feature subset can be chosen arbitrary or by statisti-
cal modeling. 
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Type of selection Stochastic universal sampling 

Sigma scaling  On 

Sigma scaling coefficient 1 

Size of the population 100 

Number of generation 200 

Type of crossover Uniform 

Probability of crossover 0.7 

Type of mutation Simple (flipping a value of single bit) 

Probability of mutation per bit 0.5/number of genes 

R
F 

  

Feature importance estimation method Permutation accuracy importance 

Number of trees in ensemble 10 

Number of variables randomly selected for a split Square root of total number of variables 

Minimal number of observations in a leaf 1 

Table 1. The parameter setting of the genetic algorithm and random forest classifiers that are 
used within fitness function 

 



 Once we have variables ordered by all four methods, we train classifier on the whole 
training set, selecting the first five, ten and fifty top-ranked features from each list. 
After this, resulting classifiers (12 in total) are tested against independent test set.  
The classifier of choice is a Random forest, with the number of trees set to one hun-
dred. 

2.2 Data sets 

We demonstrate our method using three publicly available microarray data sets of 
colon cancer samples that have been generated on Affymetrix HG U133 2.0 Plus 
platform. For all three, we consider cancer recurrence as an outcome of interest. Two 
data sets [15] have been merged to be used for training, while the third set [16] was 
used for testing. Further details on data can be found in Table 2. 

   
Data set GEO accession no. GSE17536 GSE17537 GSE5206 

Author Smith (MMC) [15] Smith (VMC) [15] Aronow [16] 

Preprocessing method MAS5 MAS5 RMA 

No. positive outcomes 36 20 16 

No. negative outcomes 109 35 58 

Role in the study a part of  training set  a part of  training set the test set 

Table 2.   Details on the used data sets 

 
 

3 Results and Discussion 

The ROC curves obtained on the test set using four different feature selection 
methods and three different numbers of selected features are depicted in Figure 2. The 
corresponding AUC (area under the curve) values can be found in Table 3. It is im-
mediately apparent from these that, in this particular setup, our method outperforms 
the other three regardless to the number of features selected. Furthermore, most of 
AUC gain obtained with the hybrid approach seems to be concentrated in regions of 
low false positive rates. This is often of great importance in the real-world applica-
tions, due to the high costs associated with confirmatory functional experiments.  

Additionally, these results are comparable or better than that reported in literature 
for the same classification problem. For example, the genetic signature reported in 
Wang et al. [17] achieves AUC of 0.74 on the data set that has been used in the study, 
while further refinement of the same method [18] reaches an AUC of 0.66 on an ex-
ternal validation set. Also, a study by Lin et al. [19] reports AUCs of 0.73 and 0.80 
obtained on the two data sets using genetic signatures augmented with the clinical 
data.    



 
Fig. 2. ROC curves obtained on the test set using four different feature ranking methods and 
three different numbers of selected features 

 

Method 

Number of features 

5 10 50 

Hybrid GA/RF approach 0.7575 0.7985 0.8572 

Random forest feature importance 0.5571 0.5765 0.6546 

Wilcoxon rank sum test 0.6342 0.6325 0.6352 

T-test 0.6121 0.6433 0.7936 

Table 3.   Values of area under the ROC curve for classifiers using different number of top-
ranked variables as suggested by four feature ranking methods. The best values per number of 
selected features are indicated in bold.  

 
To investigate a possible functional relation of resulting highly ranked genes to 

colorectal cancer, we also performed a functional analysis using the Ingenuity Path-
way Analysis suite. Out of the twenty top ranked genes, eight (ALDH1A3, DNAJA3, 
FAM65C, HOXA7, MCM8, TM4SF1, PXDN, SEC31A) have been reported to be 
cancer-related. ALDH1A3, DNAJA3 and HOXA7 play a role in apoptopis, an im-
portant hallmark in oncogenesis. However, TM4SF1 is the only gene to be reported 
specifically for colorectal cancer recurrence. Interestingly a gene of unknown func-
tion, TSPAN11, was found which belongs to the same protein family of tetraspanins 
as TM4SF1. We blasted the nucleotide sequence of TSPAN11 to find sequence pa-
ralogs. One of the top ranking hits was CD151 which has been shown to show differ-
ential expression in colorectal cancer [20]. However we can't exclude the possibility 
that the oligoprobe on the microarray platform shows aspecific hybridization in rela-
tion to CD151 and TSPAN11 due to their high sequence similarity. 

 



4 Conclusions and the Future Work 

We propose and demonstrate a novel method for feature ranking that combines ge-
netic algorithm-facilitated search and Random forest feature importance measures. 
We tested it against three feature ranking algorithms in context of microarray-based 
colon cancer classification, achieving superior results in terms of area under the ROC 
curves. Furthermore, we observe functional association of several genes from top of 
our prioritized list with cancer, indicating that the method might be usable in wider 
context of biomarker discovery research.  

However, as these genes have been judged predictive thought “guilt-by-
association” rather than by proving their causality given the disease, further analyses 
are needed to establish the utility of the method beyond feature ranking.  In the future, 
we also plan to test this hybrid approach in different high-throughput setups and for 
various biological classification problems. In addition, we will further investigate the 
idea of utilizing artificial “conservation scores” in optimization by genetic algorithm 
in general, perhaps for guiding the search process via a fitness function.     
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