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1 Background

Data from biomedical domains often have implicit hierarchical structure that is
usually ignored by practitioners interested in constructing and evaluating pre-
dictive models from it. A typical example is genomic data, where a single gene
can harbor many mutations while it is at the same time a part of higher-order
construct (e.g., chromosome). In such a case different features can be defined
over distinct levels of hierarchy. In parallel, a target variable can reflect this
intrinsic property of the data, potentially resulting in a biased model.

This happens if the rows (i.e., examples) are inter-dependent, even though the
data consists of a single table where each example is described as a fixed-length
feature vector. The interdependencies exhibit themselves on different levels of
granularity, where all inter-dependent examples have an identical value for a
specific feature as well as the same value for the target variable. Thus the feature
value appears correlated with the target variable whereas in reality the feature
value is correlated with the hierarchical structure of the data. Failing to consider
the interdependencies during learning could cause the algorithm to produce a
model that simply identifies a pattern that is correlated with the hierarchical
structure of the data as opposed to a pattern that is correlated with the target
variable.

The described issue figures in the state-of-the-art variant prioritization algo-
rithm called eXtasy[1]. This method incorporates predictors defined over three
distinct levels of data granularity - gene level, mutation level and data record
level (mutation/phenotype combination), where many data instances share the
same values of higher order features (e.g. genes). Here the bias materializes as
learning, to a certain degree, to recognize genes which constitute the training
set, rather than extracting general characteristics of disease causing mutations.
This results in degradation of the performance on the test set.
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2 Methods

We propose a straightforward sampling-based solution for elimination of the de-
scribed bias. It is implemented and tested within the Random forest framework
[2](the eXtasy core model), but it easily generalizes to other types of ensemble
learners as well. In particular, instead of extracting a bootstrap[3] from the com-
plete training set to build a single tree on, we first stratify the training examples
according to the distinct values of the feature over which the coarsest granularity
level is defined. In the case of the eXtasy data, that is the gene identifier. After
stratification we randomly select just one data instance from each partition to
form the in-bag sample. This prevents algorithm from learning to recognize a
particular value of the higher-order feature, as only one example having it will
be present in the sample. The procedure differs from the stratification approach
that is typically used with the Random forest, where a bootstrap replicate is
extracted from each strata to assure that all of them are well-represented.

To ensure a fair comparison, we test the method on the original eXtasy
benchmark data using the same evaluation scheme as in the original study. That
is, we randomly divide the complete benchmark data set on the gene-level such
that two-thirds of the genes belong to the training set and one-third are in the
test set. Furthermore, we consider two test scenarios. In the first one we compare
two sampling schemes on the unaltered test set, effectively repeating the eXtasy
benchmark. In the second one we randomly undersample the positives from the
test set in order to mimic the class distributions we would expect to see in
the wild; where only one out of 8000 non-synonymous mutation in a genome
is potentially disease-causing[4]. We repeat the aforementioned procedure 100
times to stabilize the values of the performance metrics.

3 Results and Conclusions

Under the original eXtasy benchmark scenario, Random forest trained with the
hierarchical sampling achieves precision of 0.84, while classical approach results
in 0.71. In the same time, the sensitivity drops from 0.86 to 0.78. However, in-
creased Matthews correlation coefficient (from 0.75 to 0.78) indicates that the
same sensitivity can be achieved with the hierarchical sampling while maintain-
ing higher precision, by setting an appropriate decision threshold. Furthermore,
the realistic class balance scenario underlines this difference even more, as preci-
sion doubles (from 0.0024 to 0.0053) with hierarchical sampling, while sensitivity
drops from 0.88 to 0.81. In other words, the improved version of eXtasy classifies
approximately 188 out of 8000 variants as disease causing, with the probability
of capturing the real one equal to 0.81 (i.e. sensitivity). In the same time, the
standard eXtasy calls 417 out of 8000 variants, with the probability of hit being
0.88.

Hence, the hierarchical sampling leads to a notable improvement in the model
performance in terms of the precision, especially in the most important operating
regions for this particular application (i.e. top of prioritized list, see Fig 1.). Also,
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as it uses less data (per single tree) than standard Random forests, it results in a
more parsimonious model. Finally, we hypothesize that the gain in performance
might be even bigger for certain classes of problems. That is, if the number
of distinctive values of the coarsest grain concept is much smaller than total
number of data records, overfitting on these concepts is more likely to occur.
Therefore, such problems could potentially greatly benefit from the proposed
sampling scheme.
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Fig. 1. Precision-recall curves obtained by the application of the eXtasy on the bench-
mark data (left panel) and the data with the realistic class distribution (right panel).
Each panel displays two curves - the one corresponding to the standard Random for-
est classifier training with bootstrapping and the one corresponding to hierarchical
sampling based training.
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