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ABSTRACT
If the inputs of a convolutive system are hard or expensive to
measure, one can resort to blind system identification (BSI).
BSI tries to identify a system using only output information.
By computing a structured canonical polyadic decomposition
of a cumulant tensor, the sought system coefficients can be
extracted. However, these structured decompositions may be
cumbersome to model. Here, we propose an alternative ap-
proach based on compressed sensing which captures the con-
volution structure in a known matrix. This allows us to obtain
the system coefficients from an unstructured CPD of a smaller
tensor that is implicitly available.

Index Terms— independent component analysis, canon-
ical polyadic decomposition, tensor, compressed sensing,
blind system identification

1. INTRODUCTION

As opposed to classical identification techniques, blind sys-
tem identification (BSI) tries to estimate a system using out-
put measurements only. This is especially useful when the
inputs are hard or even impossible to measure, as is often the
case in domains such as telecommunications, acoustics and
biomedical data processing [1–3]. Blindly identifying a sys-
tem is infeasible without making some assumptions, either
on the input signals or on the system itself. Though there
are many assumptions possible, we will assume independent
inputs, which has proven to be a useful approximation in var-
ious applications [2]. The term BSI will thus be used here
to denote blind identification of systems with independent in-
puts.
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The common independent inputs assumption bridges the
gap between BSI and independent component analysis (ICA).
In its most basic form, ICA attempts to retrieve the different
statistically independent components from an instantaneous
mixture. The convolutive extension of ICA is usually mod-
eled as a linear finite impulse response (FIR) system with in-
dependent inputs. In this way ICA and BSI are linked, even
though there is a slight difference in terminology as ICA fo-
cuses on retrieving the input signals whereas BSI concentrates
on estimating the system coefficients. For overdetermined
systems, both approaches are interchangeable. However, if
the system is underdetermined, an estimate of the mixing co-
efficients may not suffice to uniquely extract the input signals.

Tensor-based methods for instantaneous ICA usually in-
volve second- or higher-order statistics and have already been
studied well [2, 4, 5]. For convolutive mixtures however, rel-
atively few algebraic results are available [6–9]. The existing
tensor-based approaches can be classified as either time or
frequency domain methods. In time domain methods higher-
order statistics are computed, which will contain a particular
structure due to the convolutive nature of the mixture. How-
ever, this structure often remains unexploited or is cumber-
some to model. Frequency domain methods try to deal with
this structure by transforming the convolutive problem to a
set of instantaneous mixtures in different frequency bands [3].
This simplifies the further analysis as conventional techniques
can be used for each instantaneous mixture. However, this
strategy suffers from several disadvantages. For instance, the
different solutions to the instantaneous problems may be dif-
ferently permuted, which has been coined the permutation
ambiguity problem. Several attempts to deal with this have
been proposed, for instance in [8, 10]. A more detailed dis-
cussion of the advantages and disadvantages of time domain
and frequency domain methods can be found in [3].

In this paper, a time domain method will be presented, in
which the structure will be exploited using a compressed sens-
ing (CS) approach. Compressed sensing, also called compres-
sive sampling, is able to reconstruct signals with far fewer
measurements than traditional methods use [11]. To do this,
the sought signal has to be compressible, which will be sat-



isfied due to the low-rank canonical polyadic decomposition
(CPD) structure present in our case.

After introducing the notation, the CPD will be discussed.
Next, the actual problem statement is presented, after which
the developed method is introduced. Finally, some experi-
ments are conducted.

Notations Scalars are denoted by lowercase letters (e.g., a),
vectors by bold lowercase letters (e.g., a), matrices by bold
uppercase letters (e.g., A), and tensors by uppercase calli-
graphic letters (e.g., A). The outer product is denoted by ⊗.
The Kronecker product is denoted by ⊗. The complex con-
jugate is given by a bar atop, e.g., ā and the Moore-Penrose
pseudoinverse is given by ·†. Estimates are written with a hat,
e.g., P̂. The mathematical expectation is denoted by E {·}
and the Frobenius norm is given by ||·||F.

2. CANONICAL POLYADIC DECOMPOSITION

The polyadic decomposition (PD) writes a tensor as a linear
combination of rank-1 terms:

A =

R∑
r=1

λru
(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r (1)

=
r
λ;U(1),U(2), . . . ,U(N)

z
,

in which the factor matrix U(n) has R columns u
(n)
r and λ

is a vector containing the scaling coefficients λr. We say that
an N th order tensor has rank 1 if and only if it equals the
outer product of N nonzero vectors. By extension, the rank
of a tensor A is defined as the minimal number of rank-1 ten-
sors yielding A in a linear combination. If R in equation (1)
is minimal, and A thus has rank R, we call the decomposi-
tion canonical. Other terms sometimes used for this decom-
position are CANDECOMP and PARAFAC [12, 13]. Contrary
to a decomposition of a matrix in rank-1 terms, the CPD of
higher-order tensors is essentially unique under fairly mild
conditions [14–16].

3. PROBLEM STATEMENT

Consider a discrete linear time-invariant system with R in-
puts, M outputs, and with system coefficients hmr[l] with
l ∈ {0, . . . , L} for the filter from input r to output m. The
mth output signal of this system can now be written as

xm[n] =

R∑
r=1

L∑
l=0

hmr[l]sr[n− l] + vm[n],

in which sr[n] represents the rth input and vm[n] denotes ad-
ditive noise on the mth output channel. To blindly identify
this system, we make following assumptions:

A) The inputs sr[n] are stationary, non-Gaussian, mutually
independent and the samples within each input are in-
dependent and identically distributed (i.i.d.).

B) The additive noise is randomly sampled from a Gaus-
sian distribution and is independent of the input signals.

4. CONVOLUTIVE ICA AS CS

We will turn to fourth-order cumulants to blindly retrieve the
system coefficients, which is a common approach in tensor-
based methods for instantaneous mixtures [2]. To take the
time shifts due to the convolution into account, the spatio-
temporal cumulant is computed here. This leads to a 7th-
order tensor Cx ∈ CM×M×M×M×(2L+1)×(2L+1)×(2L+1). If
we use the shorthand xmx,τy for xmx

[t+τy], its elements can
be found by

cxm1,m2,m3,m4
(t1, t2, t3)

= Cum [xm1
, x̄m2,τ1 , x̄m3,τ2 , xm4,τ3 ]

= E {xm1,x̄m2,τ1 x̄m3,τ2xm4,τ3}
− E {xm1

x̄m2,τ1}E {x̄m3,τ2xm4,τ3}
− E {xm1

x̄m3,τ2}E {x̄m2,τ1xm4,τ3}
− E {xm1

xm4,τ3}E {x̄m2,τ1 x̄m3,τ2} ,

in which m1,m2,m3,m4 ∈ {1, . . . ,M} and τ1, τ2, τ3 ∈
{−L, . . . , L}. In general, this cumulant tensor can be com-
plex. Here, we will only consider real signals for simplicity,
which will lead to a real cumulant tensor. In a next step, the
tensor is permuted and reshaped as in [6] so that a fourth-
order tensor Cx,4 ∈ RM×M(2L+1)×M(2L+1)×M(2L+1) is ob-
tained. Mathematically, its entries cx,4i1,i2,i3,i4 can be found as

cx,4m1,i2,i3,i4
= cxm1,m2,m3,m4

(t1, t2, t3),

with ip = (tp−1 + L)M + mp for p ∈ {2, . . . , 4}. Because
of the assumptions on the inputs and the additive noise, the
tensor Cx,4 admits a CPD consisting of R(L + 1) terms [6].
More specifically, it can be shown that

Cx,4 =
r
γ; H̃,H,H,H

z
, (2)

in which γ = 1L+1 ⊗ [γ1; . . . ; γR], with γr the fourth-order
cumulant of sr[t]. To illustrate the structure within the factor
matrices, first define the matrices

H(l) =

 h11(l) h12(l) · · · h1R(l)
...

...
...

hM1(l) hM2(l) · · · hMR(l)

 ,
for l ∈ {0, . . . , L}. The factor matrix H̃ can then be con-
structed as

H̃ =
[
H(0) H(1) · · · H(L)

]
∈ CM×R(L+1).
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Fig. 1. Block-Hankel structure of the factor matrix H.

The other factor matrix H has the circular block-Hankel
structure shown in Figure 1. Each block column is given by

H(l) =

0M(L−l),R
P

0Ml,R

 ∈ CM(2L+1)×R,

with l ∈ {0, . . . , L}. The matrix P ∈ CM(L+1)×R contains
all coefficients of the convolutive system and is given by

P =


H(0)
H(1)

...
H(L)

 =



h11(0) h12(0) · · · h1R(0)
...

...
...

hM1(0) hM2(0) · · · hMR(0)
h11(1) h12(1) · · · h1R(1)

...
...

...
hM1(L) hM2(L) · · · hMR(L)


.

Note that P is closely related to the factor matrix H̃.
Up to this point, the approach was similar to existing

methods for instantaneous instantaneous mixtures, in which
the cumulant tensor also admits a low-rank CPD [2]. How-
ever, in the convolutive case, far more structure is present in
the CPD from equation (2). To effectively compute this de-
composition, we would like to exploit the available structure.
Though this is possible in some toolboxes for tensor computa-
tions, the implementation can be cumbersome. Here, we pro-
pose to view the structured CPD as un unstructured CS prob-
lem. If we knew the entries of a tensorY = Jδ;P,P,P,PK ∈
RM(L+1)×M(L+1)×M(L+1)×M(L+1), with δ = [γ1; . . . ; γR],
the system coefficients could be easily obtained through an
unstructured CPD. Moreover, this would be a natural gen-
eralization of the instantaneous ICA case, in which each
factor matrix also is an unstructured collection of mixing
coefficients.

We will show that the tensor Y is indeed available, but
only implicitly. More specifically, its vectorized form is re-
lated to the vectorized form of Cx,4 by multiplication with a
sparse matrix:

BfullVec (Y) = Vec
(
Cx,4

)
. (3)

The definition of Bfull requires some explanation. A con-
ceptually simple (but not the most efficient) way to construct
Bfull is to start by constructing a related matrix. Consider the
matrix Ppad, which is a zero-padded version of P:

Ppad =

0ML,R

P
0ML,R

 .
Using this matrix, the tensor Q = Jδ;P,Ppad,Ppad,PpadK
can be constructed. Note that this tensor contains all elements
of Y , supplemented with zero entries. Let us first look at the
matrix Btmp of size M4(2L+ 1)3 ×M4(L+ 1)(3L+ 1)3 in
the relation

BtmpVec (Q) = Vec
(
Cx,4

)
.

This matrix Btmp is much easier to construct than Bfull. Let
us consider its tensorized version Btmp, which is an 8th-order
tensor of dimensionsM×M(2L+1)×M(2L+1)×M(2L+
1) × M(L + 1) × M(3L + 1) × M(3L + 1) × M(3L +
1). Its entries btmp

i1,i2,i3,i4,i1+`M,i2+`M,i3+`M,i4+`M
are equal

to 1 for ` ∈ {0, . . . , L}, i1 ∈ {1, . . . ,M} and i2, i3, i4 ∈
{1, . . . ,M(2L+ 1)}, and are 0 otherwise. The sparse and
binary structure of this possibly large tensor can be exploited.
By reshaping to a matrix again, Btmp is found. The next step
is the extraction of Bfull. As previously noticed, Vec (Q) con-
tains all elements of Vec (Y), supplemented with zero entries.
It thus suffices to drop the columns of Btmp corresponding to
these extra zero elements to obtain Bfull, which is straightfor-
ward to implement.

The dimensions of the sparse matrix can be reduced even
further, since not all entries of Cx,4 are needed in equation (3).
This also allows us to reduce the cumulant estimation cost.
Let us write Vec

(
Cx,4

)
red. for the vector containing only the

relevant entries of Cx,4 to obtain

BVec (Y) = Vec
(
Cx,4

)
red. . (4)

The matrix B is obtained from Bfull by dropping the zero rows
of the latter. The structure of B for a system withM = 3,L =
1 and R = 2 is illustrated in Figure 2. Note that the structure
from the original CPD in equation (2) is now ported to the
known matrix B. This matrix always has (ML)4 fewer rows
than columns, which can be verified by checking the number
of entries of Y and Vec

(
Cx,4

)
red. in Table 1. This implies that

equation (4) is underdetermined, which is where CS comes in.
To obtain Vec (Y) from Vec

(
Cx,4

)
red., the (vectorized) tensor

Y has to be sufficiently compressible in some way. This is
obviously the case if R is not excessively large since it can
be written as a CPD consisting of R terms. In this way, the
M4(L + 1)4 entries of Y can be described by 4RM(L + 1)
parameters (ignoring scaling indeterminacies), and even by
RM(L+ 1) parameters if symmetry is taken into account.

Solving equation (4) whilst imposing a vectorized CPD
structure on Vec (Y) can be done using optimization algo-
rithms. From the decomposition of Y , the matrix P and thus



Table 1. Number of entries in the full and reduced (vector-
ized) cumulant tensors and the desired tensor Y for convolu-
tive systems with M outputs, R inputs and a maximum delay
of L.

Tensor Number of elements

Cx,4 M4(2L+ 1)3

Vec
(
Cx,4

)
red. M4(2L+ 1)(2L2 + 2L+ 1)

Y M4(L+ 1)4

Fig. 2. Structure of sensing matrix B for a system with M =
3, L = 1 and R = 2. Each dot represents a value of 1 at that
location in the matrix. All other values are zero.

the system coefficients can be extracted up to permutation and
scaling of the columns of P.

As noticed before, an interesting feature of this ap-
proach is that the structure due to the convolution has been
ported from the factor matrix H in decomposition (2) to the
known coefficient matrix B in the CS equation (4), with
Vec

(
Cx,4

)
red. having fewer entries than Cx,4 in (2).

5. EXPERIMENTS

In our experiment, the obtained performance is expressed as
the relative error norm (REN) of the matrix P after optimal
scaling and permutation, mathematically described by

REN
(
P̂
)

= 20 log10


∣∣∣∣∣∣P− P̂∆optΠopt

∣∣∣∣∣∣
F

||P||F

 (dB),

in which ∆opt and Πopt represent the optimal scaling and per-
mutation matrices respectively. The fully structured tensor
decomposition was computed using the structured data fusion
framework of Tensorlab [17–19].

The considered system has M = 3 outputs, R = 2 in-
puts and a maximum delay of L = 1. The measured out-
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Fig. 3. Accuracy of both the fully structured CPD and the CS
approach.

puts consist of 104 samples. The inputs are real signals ran-
domly sampled from a uniform distribution on [−0.5, 0.5].
The system coefficients are randomly sampled from a stan-
dard normal distribution. The obtained average accuracy over
100 Monte Carlo runs is shown for various signal-to-noise
ratio (SNR) values in Figure 3, for both a fully structured de-
composition and the CS approach. For each experiment, the
optimization algorithm was initialized 5 times with randomly
chosen system coefficients from a standard normal distribu-
tion. The minimum of these 5 results was selected. The figure
shows that the CS approach and a fully structured CPD yield
comparable accuracy.

Computational requirements will be discussed in a full pa-
per. For now, we argue that the computation time of the CS
approach will not largely exceed that of a full structured de-
composition, and may even improve on it. This is because the
solution to (4) has lower rank and contains less structure than
decomposition (2). Moreover, the sensing matrix B can be
efficiently implemented since it is both sparse and binary.

6. CONCLUSION

Using a CS approach, the structure of the tensor decompo-
sition arising in blind system identification can be ported to
a known matrix. The remaining system of equations has no
further structure apart from the low-rank CPD assumption,
which simplifies the modeling of the problem. A numerical
experiment has illustrated that this approach attains similar
accuracy as the fully structured decomposition.
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