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Tensor decompositions with several block-Hankel
factors and application in blind system identification
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Abstract—Several applications in biomedical data process-
ing, telecommunications or chemometrics can be tackled by
computing a structured tensor decomposition. In this paper,
we focus on tensor decompositions with two or more block-
Hankel factors, which arise in blind multiple-input-multiple-
output (MIMO) convolutive system identification. By assuming
statistically independent inputs, the blind system identification
problem can be reformulated as a Hankel structured tensor
decomposition. By capitalizing on the available block-Hankel
and tensorial structure, a relaxed uniqueness condition for this
structured decomposition is obtained. This condition is easy
to check, yet very powerful. The uniqueness condition also
forms the basis for two subspace-based algorithms, able to
blindly identify linear underdetermined MIMO systems with
finite impulse response.

Index Terms—tensors, blind system identification, block-
Hankel structure, independent component analysis, canonical
polyadic decomposition, higher-order statistics, underdetermined
system.

I. INTRODUCTION

TENSOR decompositions are widespread in signal pro-
cessing [18], [3]. One of the most popular decompo-

sitions is the canonical polyadic decomposition (CPD), also
called PARAFAC or CANDECOMP, which writes a tensor as
a linear combination of a minimal number of rank-1 terms.
Computing a CPD is often done using optimization-based
methods, such as alternating least squares or all-at-once op-
timization methods, see e.g. [25], [2], [24], [31]. Because
the optimization problems arising in tensor decompositions
are generally nonconvex, these methods may converge to
local minima depending on the initialization. By contrast,
algebraic methods are guaranteed to find the exact solution
in the noiseless case, for instance using the generalized
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eigenvalue decomposition [6], [20], [9]. Moreover, algebraic
methods are usually faster than optimization-based methods
for reasonably sized tensors. The main downside of algebraic
methods is that they are only optimal in the noiseless case.
For high noise levels, optimization-based algorithms are more
accurate because they directly fit a CPD model to the noisy
data. Still, algebraic methods can be useful in this case to
provide a good initial value at low cost. The reasons above
motivate why algebraic methods for various (structured) tensor
decompositions have been developed, e.g. in [13], [6], [29].
In particular, an algebraic method for tensors with a block-
Toeplitz factor has been introduced in [27]. Here, we will
extend this result and consider algebraic methods for tensors
with at least two block-Hankel factors. Such tensors arise in
blind system identification [11]. More recently, tensors with
block-Hankel structured factors have also appeared in machine
learning [15], and structured CPDs have been studied in [12].

As a first contribution, we will formulate a uniqueness
condition for tensor decompositions with block-Hankel fac-
tor matrices. By exploiting the available structure, a more
relaxed yet easy-to-check uniqueness condition is obtained.
Our second contribution comprises the development of two
algorithms for computing tensor decompositions with several
block-Hankel factor matrices.

Since blind system identification (BSI) is an important
application of tensor decompositions with block-Hankel struc-
tured factor matrices, we will use it as motivating example
throughout this paper. BSI tries to identify a system using only
output values. To make this problem feasible, assumptions
have to be imposed on the inputs or on the system itself
[33]. Depending on the application, some possible assumptions
are statistically independent components [4], finite alphabet
[36], or constant modulus [34], [35]. BSI with statistically
independent inputs is closely related to ICA, a well-known
technique for extracting independent components from a set
of mixtures. The slight conceptual difference between BSI
and ICA is that the former focuses on estimating the mixing
system whereas the latter tries to reconstruct the inputs. For
overdetermined systems this amounts to the same, but for
underdetermined systems, knowledge of the mixing system
does not suffice to reconstruct the inputs.

ICA and BSI for instantaneous mixtures have applications
in various domains, such as biomedicine [4], [5], image
processing [16], and communication technology [4]. Tensor-
based methods for instantaneous mixtures are well established,
see [4] and references therein. In wireless telecommunications,
audio processing and several other domains, the convolutive
mixture model is often more appropriate [1], [4]. For this
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model, tensor-based algorithms have received relatively little
attention [11], [32], [38]. Only some of the existing approaches
formulate uniqueness conditions based on Kruskal’s result
[32], [38], [19]. We will show that by exploiting the available
structure, our uniqueness conditions are more relaxed.

The subspace-based methods presented in this paper are also
applicable to BSI. We mention that subspace-based methods
for convolutive ICA have already been proposed [39], [21].
However, the methods in [39], [21] essentially ignore the
tensor structure of the problem. For this reason, these methods
can only handle the overdetermined case (“more outputs
than inputs”) while the methods here can also deal with the
underdetermined case (“fewer outputs than inputs”) and are
guaranteed to find the decomposition in the exact case.

The remainder of the introduction will present the used no-
tation followed by a brief discussion of the CPD. To motivate
the study of tensor decompositions with block-Hankel factors,
we will review an existing cumulant-based approach for blind
identification of multiple-input-multiple-output (MIMO) finite
impulse response (FIR) channels [11] in Section II. Section III
then provides new uniqueness results for the resulting tensor
decomposition and Section IV presents new subspace methods
for the actual MIMO FIR identification. In Section V some
numerical experiments are conducted.

A. Notation

Scalars, vectors, matrices and tensors are denoted by lower
case (a), lower case boldface (a), upper case boldface (A)
and upper case calligraphic letters (A), respectively. The
rth column vector of A is denoted by ar. The symbols
⊗ and � denote the Kronecker and Khatri–Rao product,
respectively. The outer product of N vectors a(n) ∈ CIn is
denoted by a(1) ◦ · · · ◦ a(N) ∈ CI1×I2×···×IN , such that
(a(1) ◦ · · · ◦ a(N))i1,i2,...,iN = a

(1)
i1
a
(2)
i2
· · · a(N)

iN
.

The transpose, conjugate, conjugate-transpose and column
space of a matrix are denoted by (·)T , (·)∗, (·)H and range (·),
respectively. The symbols (·)⊥ and dim (·) denote the orthog-
onal complement and dimension of a subspace.

The identity matrix and all-ones vector are denoted by IR ∈
CR×R and 1R ∈ CR, respectively. The all-zeros vector and
matrix are denoted by 0R ∈ CR and 0R×S ∈ CR×S .

Finally, let T =
[
T(1)T , . . . ,T(N)T

]T
∈ CMN×P , where

T(n) ∈ CM×P , then

T =
[
T(2)T , . . . ,T(N)T

]T
∈ CM(N−1)×P ,

T =
[
T(1)T , . . . ,T(N−1)T

]T
∈ CM(N−1)×P .

In other words, T and T are obtained by deleting the top and
bottom block row of T, respectively.

B. Canonical Polyadic Decomposition

A rank-1 tensor X ∈ CI1×···×IN is defined as a tensor
which can be written as the outer product of non-zero vectors

u(n) ∈ CIn . Decompositions into a sum of rank-1 terms are
called Polyadic Decompositions (PDs):

X =

R∑
r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r . (1)

The rank of a tensor X is equal to the minimal number of
rank-1 tensors that yield X in a linear combination. Assume
that the rank of X is R, then (1) is called the Canonical PD
of X . The vectors {u(n)

r } are often stacked into the matrices

U(n) =
[
u
(n)
1 · · · u

(n)
R

]
∈ CIn×R,

which are called the factor matrices of the PD of X . Expres-
sion (1) can then be compactly written as

X =
r
U(1),U(2), · · · ,U(N)

z
.

The rank-1 tensors in (1) can be arbitrarily permuted without
changing the decomposition. The different factor vectors of a
rank-1 tensor can also be arbitrarily scaled provided that the
overall rank-1 term remains the same. We say that the CPD
is unique when it is only subject to these indeterminacies.

Regarding uniqueness of the CPD in this paper, it suffices
to consider results for third-order tensors of which the third
factor matrix U(3) has full column rank. For this problem the
following easy-to-check uniqueness result will be used.

Theorem I.1. Consider the PD of X ∈ CI1×I2×I3 in (1). If{
U(3) has full column rank R,

C2
(
U(1)

)
� C2

(
U(2)

)
has full column rank R,

then the rank of X is R and the CPD of X is unique [17],
[6], [7], [8].

In this theorem, Ck (A) is defined as the kth compound
matrix of an I × R matrix A [7], which is the

(
I
k

)
×
(
R
k

)
matrix containing the determinants of all k × k submatrices
of A. The determinants are arranged such that the submatrix
index sets are in lexicographic order.

II. BLIND SYSTEM IDENTIFICATION

Consider a linear time invariant FIR system with R inputs
and M outputs, having L + 1 coefficients per input-output
channel. Asssume that the mth output at the nth sample period
can be written as

ym(n) =

R∑
r=1

L∑
l=0

hmr(l)sr(n− l) + v(n),

in which {sr(n)} are unknown input signals, {hmr(n)} are
unknown channel coefficients and v(n) is an additive noise
term.

The goal of BSI is to determine {hmr(n)} based on
the observed data sequence {ym(n)}. Here, we make the
following assumptions:

1) The signals {sr(n)} are zero mean, non-Gaussian, in-
dependent and identically distributed (i.i.d.) stationary
processes. The input signals are mutually statistically
independent.
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2) The additive noise v(n) has zero mean, is Gaussian and
is independent of the input signals.

As in [21], [11], [10] we work with the fourth-order spatio-
temporal cumulants of the output signals:

cm1m2m3m4
(l1, l2, l3)

··= Cum
[
y∗m1

(n), ym2(n+ l1), y∗m3
(n+ l2), ym4(n+ l3)

]
=

R∑
r=1

γr

L∑
l=0

hm1r(l)∗hm2r(l + l1)hm3r(l + l2)∗hm4r(l + l3)

in which γr = Cum [s∗r(n), sr(n), s∗r(n), sr(n)], the subscripts
m1,m2,m3,m4 ∈ {1, . . . ,M} and l1, l2, l3 ∈ {−L, . . . , L},
and hmnr(l) = 0, ∀l 6∈ {0, . . . , L}. Because the fourth-
order cumulant of a Gaussian signal is zero, the additive
noise does not affect this tensor in theory. Computing this
cumulant leads to a 7th-order tensor C with size M in
the first four modes and size 2L + 1 in the last three.
Now permute this tensor by ordering the 7 dimensions as
{1, 2, 5, 3, 6, 4, 7}. Next, reshape this result into a fourth-order
tensor by combining the modes {2, 5}, {3, 6} and {4, 7} to
reveal the structure [11]. Doing so yields the fourth-order
tensor T ∈ CM×M(2L+1)×M(2L+1)×M(2L+1), which can be
written as

T =

R∑
r=1

γr

L∑
l=0

p(l)∗
r ◦ h(l)

r ◦ h(l)∗
r ◦ h(l)

r , (2)

in which p
(l)
r is the rth column of P(l), defined as

P(l) =

 h11(l) · · · h1R(l)
...

. . .
...

hM1(l) · · · hMR(l)

 ∈ CM×R,

for l ∈ {0, . . . , L+1}. The vector h(l)
r denotes the rth column

of H(l), which is given by

H(l) =

0M(L−l),R
P

0Ml,R

 ∈ CM(2L+1)×R, (3)

with l ∈ {0, . . . , L}. The matrix P is defined by

P =

P
(0)

...

P(L)

 ∈ CM(L+1)×R, (4)

and contains all system parameters. More precisely, the rth
column of P contains the parameters related to the rth system
input.

We use the simplified notation

T = JG∗,H,H∗,HK , (5)

in which

G =
[
P(0)Γ · · · P(L)Γ

]
∈ CM×R(L+1)

H =
[
H(0) · · · H(L)

]
∈ CM(2L+1)×R(L+1),

and the matrix Γ = diag (γ1, · · · , γr). Figure 1 illustrates the
banded block-Hankel structure of H.

P

P
. .
.

P

0 · · · 0

...
...

0 · · · 0

0 · · · 0

...
...

0 · · · 0

0 · · · 0
...

...

0 · · · 0

0 · · · 0

...
...

0 · · · 0





H =

Figure 1: Structure of the factor matrix H.

Let us now unfold T by first constructing the matrix slices
T(i1,i2) ∈ CM(2L+1)×M(2L+1) so that t(i1,i2)i3i4

= ti1i2i3i4 .

Define t(i1,i2) = Vec
(
T(i1,i2)T

)
, then decomposition (5) has

the following matrix representation

T =
[
t(1,1), . . . , t(1,M(2L+1)), t(2,1), . . . , t(M,M(2L+1))

]
= (H∗ �H)CT , (6)

where C = (G∗ �H) ∈ CM2(2L+1)×R(L+1).
In the complex case, equation (6) is a CPD with partial

Hermitian symmetry. As explained in [30], this structure can
be exploited by constructing the augmented matrix

Y ··=
[
T, t̃(1,1), t̃(1,2), . . . , t̃(M,M(2L+1))

]
= (H∗ �H)DT ∈ CM2(2L+1)2×2M2(2L+1) , (7)

in which t̃(i,j) = Vec
(
T(i,j)∗

)
and

D =

[
G∗ �H
G�H∗

]
∈ C2M2(2L+1)×R(L+1) . (8)

By considering Y instead of T, more relaxed uniqueness con-
ditions may be obtained. Note that exploiting partial Hermitian
structure is only possible in the complex case. When dealing
with real data, Y is equal to matrix T from equation (6).

For simplicity, we present equations (6) and (7) as equali-
ties. However, in practice, this model will only hold approxi-
mately due to estimation errors of the higher-order statistics.
Moreover, even though the cumulant of a Gaussian signal is
zero in theory, the additive noise will still have an influence
since we are dealing with finite signal lengths. These effects
cannot be avoided, but they are partially alleviated by solving
decompositions and linear systems in a least-squares sense.

Based on the matrix representation Y we will now present
a new uniqueness condition for the PD of T in (2) taking the
low-rank Khatri–Rao structure and the block-Hankel structure
of the problem into account. We will use T to derive all results,
but the results can easily be generalized to any tensor that
can be written as a CPD having at least two block-Hankel
structured factors.
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III. IDENTIFIABILITY CONDITION FOR BSI

In the instantaneous mixture case, which is a simplification
of our convolutive model, each output is a linear combination
of the different inputs without time lags. If R inputs are mixed
instantaneously, the fourth-order cumulant of the outputs is
a tensor of rank R [4]. The contribution of each input is
contained in a rank-1 term. By decomposing the cumulant
tensor into R rank-1 terms, i.e. computing the CPD, the rank-
1 tensors can be retrieved up to a permutation of the terms and
scaling of the factor matrices, as explained in Section I-B.

Let us now consider the convolutive mixture case. Due to
the time shifts in the convolution, the spatio-temporal cumulant
that has to be computed is larger. Moreover, the fundamental
blocks associated with each of the inputs are no longer rank-1
tensors, but tensors with Hankel structured factor matrices, as
can be seen in equation (2). Note that all terms in the second
summation are contributed by the same input and that h(l)

r is
the rth column of the (l + 1)th submatrix of H in Figure 1,
for l = 0, 1, . . . , L. Mathematically, the fundamental Hankel-
structured tensors are given by

T (r) = γr

L∑
l=0

p(l)∗
r ◦ h(l)

r ◦ h(l)∗
r ◦ h(l)

r ,

for r = 1, 2, . . . , R. Each of the R fundamental tensors
contributed by an input has rank L+1. The difference between
the instantaneous case and the convolutive case is illustrated
in Figure 2. We define the Hankel constrained rank of T as
the minimal number of Hankel structured tensors that yield T
in a linear combination. The Hankel-structured decomposition
is again subject to indeterminacies, which are similar to the
CPD case. The Hankel-structured tensors can be arbitrarily
permuted and the factors within the Hankel-structured tensors
can be arbitrarily scaled provided that the overall term remains
the same. We say that the Hankel-structured decomposition of
T in (2) is unique if all parameter matrices P̂ satisfying (2)
are related via

P̂ = PΠ∆,

where Π is a permutation matrix and ∆ is a nonsingular
diagonal scaling matrix. Note that the parameters γr depend
on the scaling matrices ∆, since the overall Hankel-structured
tensors have to remain the same. For simplicity of terminology,
we will say that P is unique in this case. The following
subsections will present a deterministic and generic uniqueness
condition for this Hankel-structured tensor decomposition (2)
up to the mentioned indeterminacies.

A. Deterministic uniqueness condition

Obtaining new uniqueness conditions will be a two-step
process. First, Lemma III.1 will capitalize on the block-Hankel
structure to reduce the convolutive mixture to an instantaneous
one. Second, Proposition III.2 will exploit the CPD structure
to find conditions for the actual identification of the system.

Because H has block-Hankel structure, it holds that

Hi = Hi+1,

= + · · · +

= T (1) + · · · + T (R)

Figure 2: Conceptual difference between a decomposition into
rank-1 terms (top) and a decomposition into Hankel structured
tensor terms (bottom). The hatched tensors have Hankel-
structured factors.

and consequently it follows that

Hi �Hi = Hi+1 �Hi+1. (9)

We can now apply an existing theorem to exploit the shift-
invariance shown in (9), as found in e.g. [22], [23]:

Lemma III.1. Consider the cumulant tensor T in (2) and the
augmented matrix representation Y = (H∗ �H)·DT , defined
in (7). Define the matrix N =

[
H0 H1 · · · HL HL

]
.

Assume that {
D in (8) has full column rank,
N∗ �N has full column rank.

Let K ∈ CM2(2L+1)2×R(L+1) be another matrix with the
same block-Hankel structure as H∗ �H, then range (K) =
range (H∗ �H) = range (Y) if and only if (H∗ �H) =
K (IL+1 ⊗A), in which A ∈ CR×R is a nonsingular matrix.

Note that the definition of the matrix N is motivated by
the conditions for essential uniqueness of the block-Hankel
decomposition of Y. The mathematical justification for this
definition can be found in [22], though formulated in a slightly
different way.

Using the lemma above, we can now formulate a uniqueness
condition for the Hankel-structured tensor decomposition in a
MIMO FIR identification context.

Proposition III.2. Consider the PD of T in (2) with Hankel-
constrained rank R. If

D in (8) has full column rank, (10a)
N∗ �N has full column rank, (10b)
C2 (P∗)� C2 (P) has full column rank, (10c)

then the Hankel constrained rank of T is R and the Hankel-
structured decomposition of T is unique.

Proof. Assume there exists an alternative solution with factor
matrix Ĥ ∈ CM(2L+1)×R(L+1) that has the same block-
Hankel structure as H. To prove uniqueness, it suffices to show
that P is unique under the conditions above.

Since N∗�N has full column rank, as assumed in (10b), it
follows that H∗�H also has full column rank. Let

(
Ĥ, D̂

)
,

generating a tensor that has Hankel-constrained rank R̂, be an
alternative solution such that

Y = (H∗ �H)DT =
(
Ĥ
∗
� Ĥ

)
D̂

T
. (11)
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Since H∗ �H and D have full column rank, we know from
(11) that R = R̂, that Ĥ

∗
�Ĥ and D̂ have full column rank and

that range (H∗ �H) = range
(
Ĥ
∗
� Ĥ

)
. The latter property

together with Lemma III.1 then implies that(
Ĥ
∗
� Ĥ

)
= (H∗ �H) (IL+1 ⊗AT) , (12)

in which A ∈ CR×R is nonsingular. Now define

Z =
[
Z(0), . . . ,Z(L)

]
= (H∗ �H) ,

Ẑ =
(
Ĥ
∗
� Ĥ

)
.

The submatrices of Z take the following form:

Z(0) =

[
0ML,R

P∗

]
�
[

0ML,R

P

]
∈ CM2(2L+1)2×R,

Z(l) =

 0M(L−l),R
P∗

0Ml,R

�
 0M(L−l),R

P
0Ml,R

 .
Using the relations above, the first block column of (12) can
be written as

Ẑ
(0)

= Z(0)AT =

([
0ML,R

P∗

]
�
[

0ML,R

P

])
AT.

Because the expression above is a matricized CPD [18], the
matrix Ẑ

(0)
can be seen as an unfolded tensor

Ẑ(0) =

s[
0ML,R

P∗

]
,

[
0ML,R

P

]
,A

{
.

Because we are not interested in the zero parts of this
expression, we extract the nonzero parts, which leads to a
reduced tensor Ẑ(0)

red =
∑R

r=1 p
∗
r ◦ pr ◦ ar. From assumption

(10c) and Theorem I.1 it follows that the CPD of Ẑ(0)
red is

unique. This then means that P is unique.
We can thus conclude that if assumptions (10a)–(10c) are

satisfied, the Hankel constrained rank is R and the Hankel-
structured decomposition is unique.

Note that in the proof above, the banded property of H has
not been used, nor has the symmetry of T . This implies that
the uniqueness analysis so far holds for any tensor admitting
a CPD with two block-Hankel structured factors. In general,
the generating blocks P may differ in different modes and
the entries of Z(0) above and below P may be nonzero. In
general, we allow Ẑ

(0)
of the form

Ẑ
(0)

= Z(0)AT =

([
K∗

P∗a

]
�
[

L
Pb

])
AT.

Such a matrix Ẑ
(0)

can again be seen as an unfolded tensor
Ẑ(0)

red =
∑R

r=1(pa)∗r ◦ (pb)r ◦ ar, extended with some extra
rows. The conditions in Proposition III.2 can be easily gen-
eralized to take into account that the generating submatrices
of the block-Hankel factors in different modes may differ. If
these generalized conditions hold, it follows that Pa and Pb

are unique.

B. Generic uniqueness results

We study the generic properties of the uniqueness conditions
stated in Proposition III.2. We say that the Hankel constrained
CPD of T in (2) is generically unique if the set of parameters
P and γ that generate a tensor T for which the Hankel-
structured decomposition is not unique is of Lebesgue measure
zero.

For each of the rank conditions (10a)–(10c) in Proposi-
tion III.2 we have to check when they are generically satisfied.
For a square matrix, checking whether it has full rank comes
down to checking whether its determinant is nonzero. Since
the determinant is a polynomial expression in its parameters,
we are effectively checking if an analytic function is nonzero.
For any tall matrix A, the same reasoning can be applied to
the square matrix ATA, which has full rank if and only if A
has full column rank. Consequently, checking whether a tall
matrix has full column rank is also equivalent to checking if
an analytic function is nonzero. To check this condition in the
generic case, we resort to the following tool (e.g. [14]).

Lemma III.3. Given an analytic function f : Cn → C. If
there exists an element x ∈ Cn such that f (x) 6= 0, then the
set {x | f (x) = 0 } is of Lebesgue measure zero.

This lemma essentially says that if we find one random
example of a matrix having full rank, we may conclude
that almost all matrices with the same structure will have
full rank. Consequently, it suffices to numerically check the
rank conditions for just one random example. We constructed
random matrices D, N and P that have the structure specified
in Proposition III.2 and then numerically checked for which
values of R the rank conditions in the proposition hold. All
results are shown in Table I.

Table I: For a given pair (M,L) the entry corresponds to the
maximal value of R for which conditions (10a)–(10c) hold.

L
2 3 4 5

Condition (10a) M

2 12 13 13 14
3 27 29 30 31
4 48 52 54 56
5 75 81 85 87

Condition (10b) M

2 14 24 34 45
3 31 54 78 102
4 56 96 138 182
5 87 150 216 285

Condition (10c) M

2 21 40 64 93
3 51 93 148 216
4 93 170 269 390
5 148 269 424 615

Combining all conditions, the upper bound for which Propo-
sition III.2 generically guarantees uniqueness of the Hankel-
structured decomposition of T is given in Table II. Note that
the values in Table II coincide with those of condition (10a).
To put it differently, the full column rank requirement of D is
the most restrictive one. To compare the obtained uniqueness
bound with existing results, the table also shows results from
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[32], [38]. Roughly speaking, in [32] it was observed using a
slightly different tensor that, if

M(L+ 1) ≥ R, (13)

then the MIMO FIR parameter matrix P in (4) is generically
unique. A frequency domain approach for convolutive ICA
based on fourth-order cumulants was proposed in [38] that
under some approximations obtains generic uniqueness of P
if

3 min (M,R) + min (2M,R) ≥ 2R+ 3. (14)

By inspection of Table II, it is clear that Proposition III.2
leads to more relaxed results, indicating that it exploits the
problem structure better.

IV. ALGORITHMS FOR BSI

In this section we explain that a tensor decomposition with
block-Hankel factor matrices such as (2) can be reduced to
an unstructured third-order CPD problem by exploiting the
subspace structure of the matrix Y defined in (7). This will
lead to subspace methods using either the channel or the noise
subspace. For simplicity, we will now consider the specific
case where H is banded, as shown in Figure 1. The algorithms
can be extended to general block-Hankel structured factors.

A. Channel Subspace Method

Consider the structured factor matrix H shown in Figure 1.
From the structure of H it follows that by constructing the
matrix EH ∈ CM(2L+1)(L+1)×M(L+1) as

EH =


E(1)

E(2)

...

E(L+1)


E(l) =

0M(L+1−l)×M(L+1)

IM(L+1)

0M(l−1)×M(L+1)

 ,
it holds that

EH P =


H(0)

H(1)

...

H(L)

 . (15)

In this expression, P is given in equation (4) and the matrices
H(l) ∈ CM(2L+1)×R are defined in equation (3).

Now define the matrix Z as

Z = H∗ �H ∈ CM2(2L+1)2×R(L+1),

Because of the Khatri–Rao structure of Z and the block-
Hankel structure of H, the counterpart of expression (15) is
given by

E (P∗ �P) =


Z(0)

Z(1)

...

Z(L)

 , (16)

in which E ∈ CM2(2L+1)2(L+1)×M2(L+1)2 is defined by

E =


E(1) ⊗E(1)

E(2) ⊗E(2)

...

E(L+1) ⊗E(L+1)

 , (17)

and the matrices Z(l) ∈ CM2(2L+1)2×R are obtained from
the partition

Z =
[
Z(0) Z(1) · · · Z(L)

]
.

Let the column vectors of U ∈ CM2(2L+1)2×R(L+1) constitute
a basis for range (Z). This matrix can be constructed numer-
ically by computing the dominant left singular vectors of the
matricized tensor Y from (7), i.e., the left singular vectors
corresponding to the largest R(L + 1) singular values. Since
the column spaces of U and Z are the same, there exists a
nonsingular matrix M ∈ CR(2L+1)×R(2L+1) such that

Z = UM. (18)

Let us partition M as follows

M = [M1, . . . ,ML+1] , Ml ∈ CR(L+1)×R,

then due to relation (18) we find that Z(0)

...

Z(L)

 = (IL+1 ⊗U)

 M1

...
ML+1

 .
By plugging in equation (16) we obtain

E (P∗ �P) = (IL+1 ⊗U)

 M1

...
ML+1

 , (19)

which is the R-column extension of the equation obtained in
[28]. Equation (19) is equivalent to

[IL+1 ⊗U,−E]


M1

...
ML+1

P∗ �P

 = 0. (20)

Since the matrices U and E are known, extracting P is
equivalent to solving this linear system under a Khatri–Rao
constraint on the last part of the solution. We can relax this
problem by first solving the system without imposing any
structure. If the conditions stated in Lemma III.1 are satisfied,
then we know that the unstructured solution to (20) is unique
up to right multiplication by a nonsingular matrix A ∈ CR×R.
This means that the unstructured solution to this linear system
will have the same column space as the structured solution. Let
Q ∈ C(R+M2)(L+1)2×R denote a matrix of which the columns
form a basis for the kernel of [IL+1 ⊗U,−E]. Finding Q can
be done numerically by computing the right singular vectors
of [IL+1 ⊗U,−E] associated with the smallest R singular
values. Partition Q into

Q =

[
Q1

Q2

]
,
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Table II: Maximum value for R for which the conditions from [38], [32] and Proposition III.2 generically guarantee uniqueness
of the channel parameter matrix P in (4).

L 2 3 4 5
M 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Condition (14) of [38] 3 6 8 11 3 6 8 11 3 6 8 11 3 6 8 11
Condition (13) of [32] 6 9 12 15 8 12 16 20 10 15 20 25 12 18 24 30
Proposition III.2 12 27 48 75 13 29 52 81 13 30 54 85 14 31 56 87

such that Q2 ∈ CM2(L+1)2×R has the same dimensions as
P∗ �P. It then remains to solve

Q2 = (P∗ �P)AT. (21)

We recognize an unfolded CPD in equation (21). Extracting
P from this equation is equivalent to computing the CPD
of the tensorized matrix Q2. If condition (10c) in Proposi-
tion III.2 is satisfied, this decomposition is unique. In the
exact case, the solution can be found using a generalized
eigenvalue decomposition [9], [20]. However, any algorithm
can be used to solve this CPD. Note that the convolutive shift
structure is no longer present in equation (21). What remains
is a linear instantaneous mixture of the system coefficients.
Consequently, the procedure up to equation (21) can be seen
as a reduction from a convolutive to an instantaneous mixture.
An overview of the channel subspace algorithm is given in
Algorithm 1.

Algorithm 1: Overview of the channel subspace algo-
rithm.

Data: (Augmented) matricized tensor Y of the form (7)
Result: Estimate of system coefficients P̂

1) Reduce to an instantaneous mixture
• Compute U so that range (U) = range (Y);
• Construct [IL+1 ⊗U,−E];
• Find Q of which the columns form a basis for the

kernel of [IL+1 ⊗U,−E];
2) Identify the system
• Compute the CPD in equation (21) using any CPD

algorithm;

B. Noise Subspace Method

While the previous channel subspace method considered the
column space of H∗ �H, the noise subspace method looks
at the space orthogonal to this to solve the BSI problem. A
necessary condition for this method is that M2(2L + 1)2 >
R(L+ 1).

Assume that H∗ �H has full column rank, then

dim
(

range (H∗ �H)
⊥
)

= M2(2L+1)2−R(L+1) =·· Q.

Let the column vectors of V = [v1, . . . ,vQ] ∈
CM2(2L+1)2×Q constitute a basis for range (H∗ �H)

⊥. Such
a basis can be found by computing the left singular vectors
of the matricized tensor Y from (7) corresponding to the Q
smallest singular values.

Due to the fact that vi ∈ range (H∗ �H)
⊥ we have

VH (H∗ �H) = 0.

We relax the Khatri–Rao structure and instead solve

VHB = 0, (22)

with B a matrix of full column rank having the same banded
block-Hankel structure as H∗ � H. Note that because V
forms a basis for range (H∗ �H)

⊥, it holds that range (B) =
range (H∗ �H). Using the matrix E from equation (17) again,
we can write

EQ =


B(0)

B(1)

...

B(L)

 , (23)

in which Q ∈ CM2(L+1)2×R is the generating block of B
and the matrices B(l) ∈ CM2(2L+1)2×R are obtained from the
partition

B =
[
B(0) B(1) · · · B(L)

]
.

Using (23), we can rewrite equation (22) as

WQ = 0, (24)

with W constructed as

W = (IL+1 ⊗VH)E.

Finding a nontrivial solution to (24) can be done numeri-
cally by computing the right singular vectors of W associated
with the R smallest singular values. Any nontrivial solution to
(24) will be unique up to right multiplication by a nonsingular
matrix A ∈ CR×R. More specifically, we know that B
has the same block-Hankel structure as H∗ � H and that
range (B) = range (H∗ �H). Assuming D and N∗ � N
have full column rank, it then follows from Lemma III.1 that
B (IL+1 ⊗A) = H∗ � H, with A ∈ CR×R a nonsingular
matrix. From the block-Hankel structure it then follows that
QA = P∗ �P. Note that Q and P∗ �P are the generating
blocks of B and H∗�H, respectively. Consequently, for any
nontrivial solution to (24) we can write

Q = (P∗ �P)A−1, (25)

from which P can be computed in a similar way as in the
previous section. An overview of the noise subspace algorithm
is given in Algorithm 2.
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Algorithm 2: Overview of the noise subspace algorithm.
Data: (Augmented) matricized Tensor Y of the form (7)
Result: Estimate of system coefficients P̂

1) Reduce to an instantaneous mixture
• Compute V so that range (V) = range (Y)

⊥;
• Construct W;
• Find Q of which the columns form a basis for the

kernel of W;
2) Identify the system
• Compute the CPD in equation (25) using any CPD

algorithm;

V. NUMERICAL EXPERIMENTS

As a proof of concept, the developed algorithms will first
be applied to some synthetic tensors. In a next experiment,
they will be applied to blind system identification.

A. Structured tensor decomposition

Consider a tensor A = JA,B,CK ∈ C15×15×25. Both
A and B have size 15 × 21 and are entirely fixed by
submatrices PA and PB of size 9× 7, which are repeated in
a banded block-Hankel structure just as the matrix P depicted
in Figure 1. For clarity, we mention that this corresponds to
M = 3, R = 7 and L = 2. In an identification context, this
would be an underdetermined system with 7 inputs and only 3
outputs. The entries of PA and PB, and the entries of the third
factor matrix C ∈ C25×21 have real and imaginary parts that
are randomly drawn from a standard normal distribution. In
the experiment, Gaussian noise was added to the constructed
tensor to obtain various signal-to-noise ratios (SNR). The
noisy tensor A is decomposed using the channel and the
noise subspace-based methods presented in this paper. For
both methods, the CPD in the second step of the algorithm,
given by equation (21) or (25), is computed once using a
generalized eigenvalue decomposition (GEVD) and once using
a nonlinear least squares algorithm (NLS). The error on the
result equals the mean of the relative errors on PA and PB,
taking the scaling and permutation ambiguities into account.
Mathematically, the relative error norm (REN) can be written
as

REN(PA,PB)

= 20 log10

(
RelErr(PA) + RelErr(PB)

2

)
[dB] ,

with

RelErr(PN) =

∣∣∣∣∣∣PN − P̂N∆opt,nΠopt,n

∣∣∣∣∣∣
F

||PN||F
,

in which ∆opt,n and Πopt,n represent the matrices for opti-
mal scaling and permutation, respectively. These ambiguity
matrices are determined using the cpderr command in
TENSORLAB [37]. The median result of 200 experiments for
each SNR value is shown in Figure 3. It can be seen that both
the channel and noise subspace algorithm perform better when

less noise is present, as expected, and they give very good
estimates at high SNRs. The figure also shows that computing
the CPD from (21) or (25) using a NLS algorithm yields
significant improvements over a GEVD computation at the
cost of a higher computational complexity. It can be verified
that when no noise is present, all depicted algorithms find the
solution up to machine precision.
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Figure 3: Comparison of the median performance of the
channel subspace method with a GEVD solution ( ) or a
NLS solution ( ) to (21), and the noise subspace method
with a GEVD solution ( ) or a NLS solution ( ) to (25)
for a (noisy) tensor with two different banded block-Hankel
factors.

B. Application to blind system identification

Consider a real linear FIR system with M = 5 outputs,
R = 4 inputs and L = 2. The inputs consist of 105 i.i.d.
samples randomly chosen from a uniform distribution on
[− 1

2 ,
1
2 ]. The system coefficients are randomly drawn from

a standard normal distribution. The additive noise in the
experiment is also randomly chosen from a standard normal
distribution and is subsequently scaled to obtain the desired
SNR value.

As explained, blind identification of the system amounts to
the computation of a Hankel-structured decomposition of a
tensor T = JG,H,H,HK with H as depicted in Figure 1.
The performance is evaluated by means of the relative error
norm, which reduces to

REN(P) = 20 log10


∣∣∣∣∣∣P− P̂∆optΠopt

∣∣∣∣∣∣
F

||P||F

 [dB] .

As in the previous experiment, ∆opt and Πopt represent the
matrices for optimal scaling and permutation, which are de-
termined using the cpderr command in TENSORLAB [37].
All reported values are the mean of 200 experiments.

First, we will compare our subspace methods with a direct
decomposition approach and with another subspace-based ap-
proach in the literature. Next, we will illustrate the use of our
presented method as an initialization method for optimization-
based methods that take all structure into account.

1) Comparison of methods: We compare the accuracy and
time complexity of our channel and noise subspace methods
with alternative methods.
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One straightforward way to find the system coefficients is
to directly decompose the full cumulant tensor T in rank-
1 terms and extract the system coefficients using clustering.
More specifically, because the CPD factors are only deter-
mined up to scaling and permutation, we have to permute the
columns of the estimated factors such that the block-Hankel
structured emerges. Only then it is possible to extract the
system coefficients from one of the block-columns of Ĥ. Since
we only need one block column, e.g., the first one, we can
cluster the columns of the factor matrix by selecting the R
columns of which the first ML entries have the smallest norm.
Note from the structure of H presented in Figure 1 that these
entries are zero in the exact case. From these vectors, P̂ can
be simply extracted. The decomposition of the full cumulant
tensor is computed using a GEVD or an NLS method. We
will refer to this method as the direct decomposition approach
(with GEVD or with NLS).

Another method has been presented by Liang in [21]. It
is a subspace-based method that exploits the block-Hankel
structure in one of the factor matrices. We apply this method
to our cumulant tensor T instead of the set of cumulant
matrices proposed in [21] to allow fair comparisons, but the
idea remains the same. After exploiting the structure, Liang
proposes to resolve the remaining ambiguities using either a
matrix pencil based approach or a CPD. We will use the latter
and will compute this CPD with both a GEVD and an NLS
method.

The accuracy of the different methods for various SNR
values is shown in Figure 4. It can be seen that all methods
perform poorly at low SNR values. This is due to perturbations
by added noise and the estimation error of the cumulant as
explained at the end of Section II. This also implies that
time-domain blind system identification in high noise regime
is a very difficult problem. As the SNR increases, the noise
influence lessens, but the cumulant estimation error remains.

It is clear from Figure 4 that the direct decomposition
method using a GEVD performs the worst. This is because the
method does not take any structure into account and because
it uses a GEVD, which is only optimal in the noiseless case.
The figure also shows that our NLS-based subspace methods
outperform all other methods. Following the same reasoning as
before, this is because the structure in two modes is exploited
and an NLS-type method is used in the second step of the
algorithm, as discussed in Section V-A. The other methods
yield comparable results. Note that for each method, the
variant using NLS outperforms the variant using a GEVD. For
high SNRs, exploiting structure also leads to better results. For
instance, the NLS variant of Liang’s method outperforms the
direct decomposition but is worse than the subspace method
presented in this paper, which exploits the structure in two
modes.

Apart from accuracy, we can also compare the computation
times of the different methods. The mean results over 200
experiments at an SNR of 15 dB are given in Table III. These
timings were obtained on a standard laptop and do not include
the computation of the higher-order statistics. The table shows
that our subspace methods are among the fastest algorithms
of all algorithms tested. Only the direct decomposition using
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Figure 4: Comparison of the mean performance for a blind
system identification problem with M = 5, R = 4 and
L = 2. The figure shows the channel subspace method
with GEVD ( ) and with NLS ( ), the noise subspace
method with GEVD ( ) and with NLS ( ), the direct
decomposition approach with GEVD ( ) and with NLS
( ), the approach from [21] using GEVD ( ) and using
NLS ( ).

Table III: Average computation time over 200 experiments
for various BSI methods computed on a standard laptop.
The considered system has parameters M = 5, R = 4 and
L = 2 and outputs of length 105 with 15 dB SNR. The table
only shows the decomposition time, i.e., the time needed to
compute the higher-order statistics is not included.

Method Time

Channel subspace method with GEVD 0.055 s
Channel subspace method with NLS 0.145 s
Noise subspace method with GEVD 0.069 s
Noise subspace method with NLS 0.154 s
Direct decomposition approach with GEVD 0.085 s
Direct decomposition approach with NLS 2.727 s
Liang’s approach [21] with GEVD 0.666 s
Liang’s approach [21] with NLS 0.861 s

Tensorlab [37] implementation with random initialization 1.741 s
Tensorlab [37] impl. with noise subspace (NLS) initialization 1.148 s
Method from [11] with random initialization 0.379 s
Method from [11] with noise subspace (NLS) initialization 0.368 s

the GEVD can compete in terms of time complexity, but does
not come close in terms of accuracy.

2) Subspace methods as initialization: We show that the
results of our subspace-based methods can also be used
as initialization for optimization-based methods. The two
optimization-based algorithms considered here are the single-
step least squares algorithm as presented in [11] and a fully
structured tensor decomposition implemented in TENSORLAB
[26], [37]. Both take the problem structure fully into account.

As opposed to subspace-based methods, optimization-based
methods avoid the use of the perturbed subspace by directly
comparing the decomposition to the (noisy) data tensor. Be-
cause of this, one expects better accuracy than the subspace-
based methods since errors cannot accumulate throughout
different steps of the algorithm. However, Figure 5a shows
that the randomly initialized optimization-based method im-
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plemented in TENSORLAB performs rather poorly. This is
because the random initialization is often not a good starting
point and the algorithm gets stuck in a local minimum. The
figure also shows that the method from [11] is more robust to
bad initializations. Rerunning the algorithm is possible, but is
time consuming and is no guarantee to a better solution. In
this experiment, the randomly initialized optimization-based
algorithms were run 4 times in each experiment to allow
several initializations. Of these 4 runs, the best result is
retained.

A more sensible approach to initialize the optimization-
based algorithms consists of using the developed subspace-
based methods, which offer a reasonably accurate initial
value. Figure 5 illustrates this approach for the optimization-
based method implemented in TENSORLAB and the method
presented in [11]. The figure indeed shows that this two-
step approach outperforms the others when the subspace-based
initialization is good. Using a GEVD or NLS-type method in
the second step of the noise subspace initialization method
yields comparable results. In terms of computation time, our
subspace-based methods were shown to be fast in the previous
experiment and consequently provide a cheap initialization.
Moreover, the optimization-based methods will need fewer
iterations to converge when properly initialized. This is illus-
trated in the bottom part of Table III: both optimization-based
method are faster when they are properly initialized (note that
the initialization method is also included in these computation
times).

VI. CONCLUSIONS

A new deterministic and generic uniqueness condition for
tensor decompositions with at least two block-Hankel struc-
tured factor matrices was introduced by exploiting the avail-
able structure. This condition is a significant improvement over
existing results. Using subspaces, two algebraic algorithms
were devised reducing a banded Hankel-structured tensor
decomposition to a third-order unstructured CPD.

This theory and the algorithms can be applied to linear
FIR blind system identification of systems with i.i.d. inputs,
which may even be underdetermined. It has been shown that
the subspace-based methods offer a cheap and accurate ini-
tialization for structured optimization-based methods through
numerical experiments.
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