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Abstract—Regular Cochlear implant (CI) fitting is an impor-
tant aspect of hearing restoration of CI recipients. CI stimulation
parameters such as the so-called T- and C-levels are tuned to
the recipient’s needs and are crucial in hearing performance.
Electrically evoked auditory steady state responses (EASSRs)
are neural responses elicited by amplitude modulated stimulation
pulse trains. They can be measured via electroencephalography
(EEG) and have shown to be possible objective measures for CI
fitting, which could lead to an automation of the fitting procedure
and hence improve clinical care. However, artifacts in the EEG
recording, originating from the CI stimulation, hamper EASSR
detection. A number of stimulation artifact removal methods
have been introduced and applied with different levels of success.
EEG recordings with clinically relevant stimulation parameters,
especially from ipsilateral recording channels, remain difficult to
analyze. In this paper, we present a novel approach, which models
EASSR and stimulation artifact using a system identification
procedure. We use the apparent latency to compare its perfor-
mance with that of the benchmark approach based on linear
interpolation. The observed results suggest better stimulation
artifact removal and EASSR detection with the new approach,
especially for ipsilateral EEG recording channels.

Index Terms—Cochlear implant, stimulation artifact, EASSR,
objective, automatic

I. INTRODUCTION

To this day, over 5% of the world’s population (430 million)
suffer from ”disabling” hearing loss and require rehabilitation
measures. It is estimated that by 2050 this number may even
rise above 700 million people [1]. Cochlear implants (CI)
have successfully been used to restore hearing in individuals,
suffering from severe to profound hearing loss.

In a CI, the hearing sensation is recreated by electrically
stimulating the auditory nerve with pulse trains, capturing the
characteristics of sound or speech, recorded with an external
microphone. The electrical stimulation occurs clinically be-
tween electrodes that are inserted into the cochlea and two
extracochlear electrodes (monopolar (MP) stimulation mode),
at typical pulse rates of 900pps and consists of biphasic,
symmetric stimulation pulses [2].

An important part of CI rehabilitation is the recurring
”fitting” of the implant. In these regular fitting sessions,
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starting a few weeks after implantation, the CI stimulation
parameters are tuned to the subjective needs/characteristics of
the recipient. Especially the so-called Threshold- and Comfort-
levels, T- and C-levels respectively, which are the per electrode
minimal and maximal current levels of the stimulation, are of
great importance for hearing performance and require careful
tuning. The fitting procedure is a time-consuming process
where the outcome is highly dependent on the clinician that
performs it and the feedback provided by the CI recipient.
However, some CI recipients may not be able to respond
appropriately (e.g., infants) or may be under anesthesia and
hence not able to respond at all. Furthermore, the long duration
of multiple fitting sessions with an audiologist and the need
for highly trained experts often represent a bottleneck in the
hearing restoration pipeline. Therefore, in order to provide
reliable clinical care and enable fitting without necessary
interaction with the CI recipient, objective measures need to
be introduced.

Investigations with normal-hearing subjects have shown
that auditory steady state responses, i.e., a neural response
following the amplitude modulation (AM) of an acoustic
stimulation pulse train, where the nerves ”lock” their activity
to the phase of the periodic acoustic stimuli (phase-locked
response), can be used to objectively determine threshold
levels which correlate well with the subjectively determined
threshold levels [3]. Electrically evoked auditory steady state
responses (EASSRs) could therefore be used to objectively
determine stimulation levels in CI recipients [4] [5]. They
are measured via electroencephalography (EEG) and their
presence can be detected at the modulation frequency of the
stimulus, using statistical methods such as F-test or Hotelling
T 2 [6] [4]. The main challenge with detecting EASSRs are
artifacts, originating from the CI stimulation pulses. They
overlap with the desired response in time as well as frequency
domain and can be several orders of magnitude larger than of
the desired response [7]. These stimulation artifacts hinder the
EASSR detection in the EEG, as they also have a component
at the modulation frequency and may falsely be identified
as EASSR, when solely analyzing the spectrum of the EEG.
Signal processing methods to remove the stimulation artifacts
are therefore required to correctly identify the presence of
EASSRs.

In the past, different stimulation artifact removal methods
for EASSR detection have been introduced and used in prac-



tice with different levels of success. Linear interpolation (LI)
as introduced in [8] is the most commonly used method in
practice [4] [5] [8] [9] [10] [11]. As the artifact is time-locked
to the stimulus pulses and decays with increasing distance to
the pulses, the signal samples that are furthest away from the
previous and closest to the following pulse are possibly free of
artifact. These samples are retained from the original recording
and the remaining ones in between are either removed (set to
zero) or linearly interpolated. LI has shown good results for
recordings, where the stimulation artifact duration is shorter
than the inter-pulse interval. It therefore often works reliably
for EASSRs elicited with lower stimulation rates (e.g., 500pps)
and for contralateral EEG recordings [7]. Recent results have
also shown success for recordings with clinically relevant
stimulation rates (900pps), but only for contralateral recording
channels [9].

Other stimulation artifact removal methods include template
subtraction and spatial filtering approaches. Template subtrac-
tion requires an additional EEG recording to construct stimula-
tion artifact templates, which are subsequently subtracted from
the actual EEG recordings. Although promising results could
be achieved even with clinically relevant stimulation rates
[12], the necessity of an additional EEG recording is a major
disadvantage for clinical implementation. Spatial filtering ap-
proaches such as independent component analysis are widely
used in artifact removal in EEG, e.g., for transient CI responses
such as CAEPs, EABR and ECAP ( [13] [14] [15]) and also
for EASSRs [16] [17]. The results for EASSR detection are
mixed, as the nature of the stimulation artifact does not allow
perfect determination of independent components. Rejection
of artifact components may then lead to undesired removal of
neural response [16].

All aforementioned methods perform the final EASSR de-
tection in the frequency domain by checking the amplitude
and phase at the modulation frequency. One method, that lays
the foundation for the new approach that we present here,
performs EASSR detection in the time domain. In [18] the
separation of stimulation artifact and EASSR is formulated
as a system identification problem, which is solved via state
estimation with Kalman filtering. Here, the EEG recording is
assumed to be a linear combination of stimulation artifact and
EASSR. By fitting an artifact and neural response model to
the recorded data, the estimated model parameters can be used
to identify the EASSR and separate it from the stimulation
artifact. In [18] the approach was only applied to clinically
less relevant CI stimulation rates and the artifact model was
much simplified and is hence not generally applicable to all
EASSR recordings.

In this paper, we formulate a generalized system model,
where both the EASSR and the stimulation artifact are fully
estimated from the recordings. This allows wide application
without any a priori assumptions of expected stimulation
artifact shape. We apply the new EASSR detection approach
to one clinically relevant pilot dataset and compare its results
to that of LI. Preliminary results are presented and discussed.

II. MATERIALS AND METHODS

A. Dataset

EEG recordings were collected for one adult CI recipient,
implanted to the left side. Stimuli were generated using custom
software and directly delivered to the implant using the NIC4
research interface platform (Cochlear Ltd.). The AM pulse
trains consisted of symmetric biphasic cathodic-first pulses,
with equal phase width of 25µs and interphase gap of 8µs
and were presented at pulse rates of 900pps between intra-
cochlear electrode 15 and extracochlear MP1+2 (MP mode).
Stimulations with modulation frequencies of 37, 40 and 43Hz
were used with a modulation depth of 50 current levels (CL)
between an a priori determined C-level and C-50 CL.

A Biosemi ActiveTwo Hyper-Rate EEG recording system
with sampling rate of 262.144kHz was used to perform the
8-channel recordings. Six recording electrodes were placed
according to the international 10-20 system at P9, P10, Iz,
Cz, Fz, Fpz and two extra electrodes at the left and right
mastoid respectively (MaL, MaR). A signal of approximately
5 minutes per modulation frequency was recorded.

The EEG signals were low-pass filtered with the system’s
built-in analog third-order antialiasing filter having a -3 dB
point at 50 kHz. Off-line referencing with Cz was performed
and detrending with a second-order polynomial was applied.
The signals were then, based on the stimulation triggers, split
into epochs of 1.024s duration and 5% of the epochs with
the highest peak-to-peak amplitudes were rejected. The mean
epoch for MaR, MaL, P9, P10 and Iz was used for the
further analysis.

B. Method

1) Apparent latency: In order to reliably detect EASSRs,
even in the presence of residual stimulation artifact, the
apparent latency is determined from a range of recordings with
different modulation frequencies [3] [5] [4]. Latency values
around 35-55ms are to be expected for EASSRs elicited from
modulation frequencies around 40Hz, whereas latencies of
0ms indicate that residual stimulation artifact is present [19]
[20]. The apparent latency is technically the equivalent to the
group delay of the stimulated/measured system. EASSRs can
therefore be detected by identifying the transfer function of
a finite impulse response (FIR) system as introduced in the
following section.

2) System model: Fig. 1 depicts the block diagram of the
modelled EEG recording. The upper system (FIR1) represents
the EASSR, of which the group delay is to be determined.
The input m[k] is the modulating component of the stimulus
at discrete time k as defined in (3). This system is assumed
to have a linear phase response in the range of the used input
modulations. The output r[k] is the EASSR to be identified.

The lower system (FIR2) represents the stimulation artifact.
The input u[k] of the system represents the stimulus pulse train
as defined in (8) and the output a[k] represents the estimated
stimulation artifact.
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Fig. 1. Block diagram of modelled EASSR recording

The sum of stimulation artifact, EASSR, a DC component,
to compensate for offset and drift, and additive noise v[k]
result in a model ẑ for the actual EEG recording z.

ẑ[k] = r[k] + a[k] +DC + v[k]. (1)

Following the diagram in Fig. 1, the EASSR is modeled as

r[k] =Mk · bresp

=
[
m[k] m[k − 1q] ... m[k −Mq]

]
· bresp

(2)

with the modulation component of the stimulus being

m[k] = sin(2πfmkTs +
π

2
). (3)

Here, fm denotes the modulation frequency and Ts = 1
Fs

is
the sampling interval of the EEG recording system. Elements
of Mk are shifted/downsampled by q samples, as especially
the particularly high sampling rate of the used recording
system, may otherwise lead to identifiability issues. When
setting up the system of equations as in (12), the columns,
corresponding to the shifted inputs, may be close to linearly
dependent, hence a shift with q > 1 is used to decrease the
condition number of the regressor matrix.

The phase shift θ and amplitude A of the EASSR are then
determined via the transfer function of FIR1 evaluated at the
modulation frequency fm

FIR1(z = ej2πfm) =[
1 e−jq2πfm e−j2q2πfm ... e−jMq2πfm

]
· bresp

(4)

A(fm) = |FIR1(z = ej2πfm)| (5)

θ(fm) = ∠FIR1(z = ej2πfm). (6)

The stimulation artifact is modeled similarly as

a[k] =Uk · barti

=
[
u[k] u[k − 1] ... u[k −N ]

]
· barti.

(7)

Here, u[k] models the AM-stimulus with parameters Ac and
M determined by the subject-specific C-level

u[k] = Ac · (1 +M ·m[k]) · s[k] (8)

Ac =
C + (C − 50)

2
(9) M =

C − (C − 50))

C + (C − 50))
. (10)

One important aspect of this model is that unlike the actual
physical stimulation with biphasic cathodic-first pulses, s[k] is
defined here as monophasic pulse train, with one sample per
stimulation pulse, at a pulse rate of fc.

s[k] =

{
1, for mod(kTs, 1

fc
) < Ts

0, otherwise
. (11)

This is due to the fact, that the biphasic pulse train itself does
not have a component at fm. However, non-linearities of the
system introduce an asymmetry in the sampled pulses, which
effectively leads to the artifact component at the modulation
frequency [7]. As we are using a linear model, the input u[k]
requires a component at fm, which is introduced through the
monophasic s[k].

The combined model for all K + 1 sampling points k is
given in matrix-vector notation as

ẑ =
[
M U 1

]︸ ︷︷ ︸
H

·

bresp

barti

xDC


︸ ︷︷ ︸

x

+v
(12)

with ẑ =
[
ẑ[0] ẑ[1] ... ẑ[K]

]ᵀ
and other quantities simi-

larly defined. The DC component is added in form of a column
vector of ones and scaled by xDC .

As described, in order to calculate the apparent latency,
at least two recordings with distinct modulation frequencies
are required. The introduced system model in (12) allows
combining these, as done in (13) for the three recordings of
this study.

ẑ =

ẑ37ẑ40

ẑ43

 , H =

 M37 U37 1
M40 U40 1
M43 U43 1

 (13)

with superscripts referring to the modulation frequencies. This
provides an advantage in identifying and disentangling EASSR
and stimulation artifact, compared to all other artifact removal
methods, where each recording is analyzed individually.

3) Kalman filtering: As in [18] we use Kalman filtering
(KF) to determine x. This approach can be of advantage, as
it may deal with possible system dynamics, such as change in
attention of the subject or adaption in the auditory pathway.
The KF produces then for every sample an updated optimal
solution for the coefficients.

The state-space model of the KF is given as

xk+1 = Fkxk +wk

zk = Hkxk + v[k]
(14)

where Hk is the k-th row of H. The unknown state vector
xk at discrete time index k consists of the coefficients as
introduced in (12) and may vary over time according to
the state transition matrix Fk. As the system dynamics are
unknown and no assumptions about them can be made, the
state vector is assumed to follow a random walk model and



is subject to process noise wk, which is assumed to be zero-
mean Gaussian white noise with covariance matrix Qk, i.e.,

Fk = IN+M+3 (15)

and

Qk = diag(qresp0, qresp1, ..., qrespM , qarti0, ..., qartiN , qDC).
(16)

Here, qresp, qarti and qDC represent the assumed variances
for the EASSR, stimulation artifact and DC states respectively
and can be seen as tuning parameters of the algorithm.
Lower values allow smoother but slower convergence of the
states and may lead to more stable results. Higher values
allow faster updates and hence more responsiveness to the
system dynamics but less reliable convergence. Due to higher
uncertainties and faster dynamics in the stimulation artifact,
the variances qarti are tuned to be larger than qresp to allow
faster responsiveness.

In order to reduce the complexity of the system model,
recording samples, occurring close to the CI stimulation pulses
are removed/skipped. This reduces processing time and avoids
non-linearities, which are assumed to be present around the
stimulation pulse.

4) Parameter tuning: The results presented in this paper
were achieved with system model and KF parameters as shown
in TABLE I.

III. RESULTS AND DISCUSSION

Fig. 2 shows the determined latencies from LI and the newly
introduced approach, applied to the mean epoch signal of the
selected recording electrode. One-sample Hotelling T2 was
applied to determine if the estimated EASSR per modulation
frequency differed significantly from the background activity.
A significance level of 5% was used and when the p-value of at
least one recording exceeded this level, the determined latency
was deemed non-significant, indicated by reduced opacity and
a red frame around the plot point. These results are ignored
during box-plot creation and only drawn for completeness.

The first box, indicated with LI 500, shows the results
for LI, with a short interpolation between 100µs before and
400µs after the stimulation pulse. It is clearly seen that the

TABLE I
REQUIRED PARAMETER SETTINGS FOR SYSTEM MODEL CREATION AND

KALMAN FILTER TUNING.

Parameter Description Value
M Order of FIR1 4
N Order of FIR2 370
q Shift in EASSR model 724

Skipping Skipped observation From 100µs before
interval samples to 450µs after pulse

qresp0−M Response state variance 1e-10
qarti0−N Artifact state variance 1e-6
qDC DC state variance 1e-6
Rk Observation noise variance Recording noise level
x0 Initial state estimates 0
P0 Initial error covariance 1e5 · I

Fig. 2. Apparent latency values as determined by different EASSR detec-
tion methods. Ipsilateral contralateral and central electrodes. Non-
significant results with less opacity and red frame.

short interpolation is only sufficient for electrode Iz , as only
here the determined apparent latency is in the expected range.
The remaining electrode signals after LI are still dominated
by the stimulation artifact, seen by the low apparent latency
values, flat phase responses in Fig. 3 and higher amplitudes at
modulation frequencies as shown in Fig. 4.

The results for LI with a long interpolation between 100µs
before and 1000µs after the stimulation pulse are shown
in box LI 1100. The increase of the interpolation length
from 500µs to 1100µs leads to sufficient artifact removal
in the contralateral electrodes MaR and P10. However, the
determined latencies for ipsilateral electrodes MaL and P9
remain low after LI. With an interpolation length of 1.1ms and
inter-pulse interval of Tp = 1

900 = 1.11ms, it becomes evident
that the stimulation artifact exceeds the inter-pulse interval in
the ipsilateral recordings and can hence not fully be removed
via LI.

As the KF produces a state or coefficient estimate x
respectively for every discrete time index k, a phase shift
and amplitude, as described in (4) - (6), can be calculated
for every k. To ensure good convergence, the average of the
last 5% of the estimated state values are used to calculate
the phase response and hence apparent latency of the EASSR.
The resulting values indicate that for all recording electrodes,
the stimulation artifact could sufficiently be removed. The
phase responses in Fig. 3 are linear and very similar for all
recording electrodes. P10 is deemed non-significant due to the
recording with fm = 43Hz, as seen in Fig. 3 and 4. However,
this may result from the specific significance testing for KF,
where for every iteration step a p-value can be calculated.
When more than 10% of all calculated p-values are above the
defined significant level of 5%, the recording is deemed non-
significant. However, this is mostly the case for small k, when
the estimate has not converged yet. The estimated phases and
amplitudes for P10 (Fig. 3 and Fig. 4) are similar to those
of the other recording electrodes, which may suggest correct
estimation also for P10. When compared to LI 500 with an
interpolation length similar to the number of skipped samples
used with KF, it is clear that the majority of stimulation
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artifact removal stems from the modelling of FIR2 and not
the skipping of samples.

IV. CONCLUSION

In this paper a new approach to CI stimulation artifact
removal and EASSR detection has been presented. It aims to
identify the EASSR and stimulation artifact separately which
allows separation in the EEG recording. The identification of
the systems via finite impulse response estimation allows gen-
eralization without any a priori assumptions of the stimulation
artifact shape as in [18]. Preliminary results show that the
approach is applicable for clinically relevant stimulation rates
in MP mode and can even remove stimulation artifacts that
are longer than the inter-pulse interval. This would make it the
first method in the field, which is major step towards objective
and hence automatic fitting of CI recipients. Further validation
with more subject data needs to be performed to confirm the
results. Furthermore, future research should focus on how this
approach performs for lower stimulation levels.
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