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Abstract. Kernel PCA is a powerful feature extractor which recently
has seen a reformulation in the context of Restricted Kernel Machines
(RKMs). These RKMs allow for a representation of kernel PCA in terms
of hidden and visible units similar to Restricted Boltzmann Machines.
This connection has led to insights on how to use kernel PCA in a gen-
erative procedure, called generative kernel PCA. In this paper, the use
of generative kernel PCA for exploring latent spaces of datasets is inves-
tigated. New points can be generated by gradually moving in the latent
space, which allows for an interpretation of the components. Firstly, ex-
amples of this feature space exploration on three datasets are shown with
one of them leading to an interpretable representation of ECG signals.
Afterwards, the use of the tool in combination with novelty detection
is shown, where the latent space around novel patterns in the data is
explored. This helps in the interpretation of why certain points are con-
sidered as novel.

Keywords: Kernel PCA · Restricted Kernel Machines · Latent Space
Exploration.

1 Introduction

Latent spaces provide a representation of data by embedding the data into an
underlying vector space. Exploring these spaces allows for deeper insights in the
structure of the data distribution, as well as understanding relationships be-
tween data points. Latent spaces are used for various purposes like latent space
cartography [11], object shape generation [21] or style-based generation [8]. In
this paper, the focus will be on how the synthesis of new data with genera-
tive methods can help with understanding the latent features extracted from a
dataset. In recent years, generative methods have become a hot research topic
within the field of machine learning. Two of the most well-known examples in-
clude variational autoencoders (VAEs) [9] and Generative Adversarial Networks
(GANs) [2]. An example of a real-world application of latent spaces using VAEs
is shown in [20], where deep convolututional VAEs are used to extract a biologi-



2 D. Winant et al.

cally meaningful latent space from a cancer transcriptomes dataset. This latent
space is used to explore hypothetical gene expression profiles of tumors and their
reaction to possible treatments. Similarly disentangled variational autoencoders
have been used to find an interpretable and explainable representation of ECG
signals [19]. Latent space exploration is also used for interpreting GANs, where
interpolation between different images allows for the interpretation of the differ-
ent features captured by the latent space, such as windows and curtains when
working with datasets of bedroom images [14]. Latent space models are espe-
cially appealing for the synthesis of plausible pseudo-data with certain desirable
properties. If the latent space is disentangled or uncorrelated, it is easier to in-
terpret the meaning of different components in the latent space. Therefore it is
easier to generate examples with desired properties, e.g. we want to generate a
new face with certain characteristics. More recently, the concept of latent space
exploration with GANs has been further developed by introducing new couplings
of the latent space to the architecture of the generative network, this allows for
control of local features for image synthesis at different scales in a style-based
design [8]. These adaptations of GANs are known as Style-GANs. When applied
to a facial dataset, the features can range from general face shape and hair style
up to eyes, hair colour and mouth shape.

In this paper, kernel PCA is used as a generative mechanism [16]. Kernel PCA,
as first described in [15], is a well-known feature extractor method often used
for denoising and dimensionality reduction of datasets. Through the use of a
kernel function it is a nonlinear extension to regular PCA by introducing an im-
plicit, high dimensional latent feature space wherein the principal components
are extracted. In [18], kernel PCA was cast within the framework of Restricted
Kernel Machines (RKMs) which allows for an interpretation in terms of hid-
den and visible units similar to a type of generative neural network known as
Restricted Boltzmann Machines (RBMs) [3]. This connection between kernel
PCA and RBMs was later used to explore a generative mechanism for the kernel
PCA [16]. A tensor-based multi-view classification model was introduced in [7].
In [13], a multi-view generative model called Generative RKM (Gen-RKM) is
proposed which uses explicit feature-maps in a novel training procedure for joint
feature-selection and subspace learning.

The goal of this paper is to explore the latent feature space extracted by kernel
PCA using a generative mechanism, in an effort to interpret the components.
This has led to the development of a Matlab tool which can be used to visualise
the latent space of the kernel PCA method along its principal components. The
use of the tool is demonstrated on three different datasets: the MNIST digits
dataset, the Yale Face database and the MIT-BIH Arrhythmia database. As a
final illustration, feature space exploration is used in the context of novelty de-
tection [5], where the latent space around novel patterns in the data is explored.
This to help the interpretation of why certain points are considered as novel.
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In Section 2, a brief review on generative kernel PCA is given. In Section 3,
latent feature space exploration is demonstrated. Subsequently we will illustrate
how latent feature space exploration can help in interpreting novelty detection
in Section 4. The paper is concluded in Section 5.

2 Kernel PCA in the RKM framework

In this section, a short review on how kernel PCA can be used to generate new
data is given, as introduced in [16]. We start with the calculation of the kernel
principal components for a d-dimensional dataset {xi}Ni=1 with N data points
and for each data point xi ∈ Rd. Compared to regular PCA, kernel PCA first
maps the input data to a high dimensional feature space F using a feature map
φ(·). In this feature space, regular PCA is performed on the points φ(xi) for
i = 1, . . . , N . By using a kernel function k(x, y) defined as the inner product
(φ(x) · φ(y)), an explicit expression for φ(·) can be avoided. Typical examples

of such kernels are given by the Gaussian RBF kernel k(x, y) = e−‖x−y‖
2
2/(2σ

2)

or the Laplace kernel k(x, y) = e−‖x−y‖2/σ, where σ denotes the bandwidth.
Finding the principal components amounts to solving the eigenvalue problem
for the kernel matrix1 K, with matrix elements Kij = (φ (xi) · φ (xj)). The
eigenvalue problem for kernel PCA is stated as follows:

KH> = H>Λ, (1)

where H = [h1, . . . , hN ] ∈ Rd×N , the first d ≤ N components are used, is
the matrix with the eigenvectors in each column and Λ = diag{λ1, . . . , λd} the
matrix with the corresponding eigenvalues on the diagonal. In the framework
of RKMs, the points φ(xi) correspond to visible units vi and hi are the hidden
units. As in [16], the generative equation is given by:

v? = φ(x?) =

(
N∑
i=1

φ(xi)h
>
i

)
h?, (2)

where h? represents a newly generated hidden unit and v? the corresponding
visible unit. Finding x? in Eq. (2) corresponds to the pre-image problem [6]. In
[16], the authors give a possible solution by multiplying both sides with φ(xk),
which gives the output of the kernel function for the generated point in the input
space x? and the data point xk:

1 For simplicity, the mapped data are assumed to be centered in F . Otherwise, we
have to go through the same algebra using φ̃(x) := φ(x) −

∑N
i=1 φ(xi). This is the

same assumption as in [15].
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k̂(xk, x
?) =

N∑
i=1

k(xk, xi)h
>
i h

?. (3)

The above equation can be seen as the similarity between the newly generated
point x? and xk. This expression can be used in a kernel smoother approach to
find an estimate x̂ for the generated data point x?:

x̂ =

∑S
i=1 k̃(xi, x

?)xi∑S
i=1 k̃(xi, x?)

, (4)

where k̃(xi, x
?) is the scaled similarity between 0 and 1 calculated in (3) and

S the number of closest points based on the similarity k̃ (xi, x
?). Given a point

in the latent space h?, we get an approximation for the corresponding point x̂
in input space. This mechanism makes it possible to continuously explore the
latent space.

3 Experiments

Our goal is to use generative kernel PCA to explore the latent space. Therefore
a tool2 is developed where generative kernel PCA can easily be utilised for
new datasets. First kernel PCA is performed to find the hidden features of the
dataset. After choosing an initial hidden unit as starting point, the values are
varied for each component of the hidden unit to explore the latent space. The
corresponding newly generated data point in the input space is estimated using
the kernel smoother approach.

In the tool, a partial visualisation of the latent space projected onto two principal
components is shown. We continuously vary the values of the components of the
selected hidden unit. This allows the exploration of the extracted latent space
by visualising the resulting variation in the input space. The ability to perform
incremental variations aids interpretation of the meaning encoded in the latent
space along a chosen direction. In Fig. 1, the interface of our tool is shown .

2 Matlab code for the latent space exploration tool is available at https://www.esat.
kuleuven.be/stadius/E/software.php.

https://www.esat.kuleuven.be/stadius/E/software.php
https://www.esat.kuleuven.be/stadius/E/software.php
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Fig. 1: Interface of the Matlab tool for exploring the latent space. At the bottom,
the parameter values and position in the latent space can be chosen. In the top
right the latent space along two selected principal components is shown and on
the left the newly generated data point in the input space is visualised.

MNIST Handwritten Digits

As an example, the latent space of the MNIST handwritten digits dataset [10]
is explored, where 1000 data points each of digits zero and one are sampled. A
Gaussian kernel with bandwidth σ2 = 50, S = 15 and number of components d =
10. In Fig. 2, the latent space is shown along the first two principal components
as well as the first and third components.

In Fig. 3, digits are generated along the directions indicated on the plots of
the latent space in Fig. 2. This allows us to interpret the different regions and
the meaning of the principal components. Along direction A, corresponding to
the first principal component, we find an interpolation between the regions with
digits of zero and one. Direction B seems to correlate with the orientation of the
digit. This explains the smaller variation along the second principal component
for the zeros as rotating the digit zero has a smaller effect compared to the
rotation of digit one. The third direction, corresponding to component 3, seems
to be related to squeezing the zeros together, which explains the larger variance
for the zeros compared to the ones.
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Fig. 2: Latent space of the MNIST digits dataset for the digits 0 and 1. The
dotted lines indicate the direction along which new data points are generated.
(a) Data projected on the first two principal components (b) Data projected on
the first and third principal component.

Fig. 3: Exploration of the latent space of the MNIST digits data set. In the top
two rows images are generated along the directions A and B in Fig.2a and in the
bottom row the images are generated along direction C in Fig. 2b.

Yale Face Database

Another example of latent space exploration is done on the Extended Yale Face
Database B [1], where 1720 data points are sampled. A Gaussian kernel with
bandwidth σ2 = 650, S = 45 and number of components d = 20.

The latent space along the first two principal components is shown in Fig. 4e.
Four different regions within the feature space are highlighted from which cor-
responding images are generated. The dissimilarity between the images in the
various regions suggests the components capture different lighting conditions on
the subjects.
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Fig. 4: Exploring different regions of the latent space of the Yale Face Database.
(e) Data projected on the first two principal components for the Yale Face
Database. (a)-(d) Generated faces from the different regions.

Fig. 6: Exploring the space between the regions of the latent space in figure
4e.The top row shows images generated between regions A and B, while the
bottom row explores the space between regions C and D.

The tool allows us to gradually move between these different regions and see
the changes in the input space as shown in Fig. 6. Moving between regions A
and B shows increasing illumination of the subject. We can thus interpret the
first principal component as determining the global level of illumination. Note
that besides data points without a light source no variation of the intensity of
the lighting was varied while collecting the data for the Yale Face Database B.
Only the position of the light source was changed. Generative Kernel PCA thus
allows us to control the level of illumination regardless of the position of the light
source. The bottom row seems to indicate that the second principal component
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Fig. 5: Latent space of the Yale Facebase database B. (a) Points in orange indicate
data points with a negative azimuthal angle between the camera direction and
source of illumination, which corresponds to a light source to the right of the
subject and vice versa for positive azimuthal angle. (b) Points in red indicate the
hidden units of the same subject with lighting from different azimuthal angles.

can be interpreted as the position of the light source. In region C of the feature
space the points are illuminated from the right and region D from the left.This
interpretation of the second principal component seems indeed valid from Fig.
5a where the latent space is visualised with labels indicating the position of illu-
mination obtained from the Yale Face Database. Faces with a positive azimuthal
angle between the camera direction and the source of illumination are contained
in the top half of the figure. This corresponds to a light source left of the subject
and vice versa for a negative azimuthal angle. The first and second component
are thus disentangled as the level of illumination does not determine whether
the light comes from the left or the right. Furthermore in Fig. 5b the hidden
units corresponding to the same subject under different lighting conditions are
shown. The elevation of the light source is kept constant at zero elevation, while
the azimuthal angle is varied. We see from the plot that the points move not
strictly along the second principal component but follow a more circular path.
This indicates that varying the azimuthal angle correlates with both the first and
second principal component, i.e. moving the light source more to the side also
decreases the global illumination level as less light is able to illuminate the face.
We conclude that while in the original data set the position of the light source
and the level of illumination are correlated, kernel PCA allows us to disentangle
these factors and vary them separately when generating new images.

As a further example of generative kernel PCA, interpolation between 2 faces is
demonstrated. Kernel PCA is performed on a subset of the database consisting
out of 130 facial images of two subjects, the hyperparameters are the same
as above. Variation along the fourth principal component results in a smooth
interpolation between the two subjects, shown in Fig. 7. We also include an
example in the bottom row where the interpolation does not result in a smooth
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change between the subjects. This illustrates a major limitation of our method
as generative kernel PCA predominantly detects global features such as lighting
and has difficulty with smaller, local features such as eyes. This stems from the
fact that generative kernel PCA relies on the input data to be highly correlated
which in this example translates itself to the need of the faces to be aligned with
each other.

Fig. 7: Three examples of interpolation between two subjects of the Yale Face
Database B along the fourth component. The uttermost left and right pictures
in the rows represent the original faces.

MIT-BIH Arrhythmia database

Besides the previous examples of latent space exploration for image datasets,
kernel PCA is also applicable to other types of data. In this section, the MIT-
BIH Arrhythmia dataset [12] is considered consisting out of ECG signals. The
goal is to demonstrate the use of kernel PCA to extract interpretable directions in
the latent feature space of the ECG signals.This would allow a clinical expert to
gain insight and trust in the features extracted by the model. Similar research
was previously done by [19] where they investigated the use of disentangled
variational autoencoders to extract interpretable ECG embeddings. A similar
approach is used to preprocess the data as in [19].

The signals from the patients with identifiers 101, 106, 103 and 105 are used for
the normal beat signals and the data of patients 102, 104, 107, 217 for the paced
beat signals. This results in a total of 785 beat patterns which are processed
through a peak detection program [17]. The ECG signal is first passed through
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a fifth-order Butterworth bandpass filter with a lower cutoff frequency of 1Hz
and upper cutoff frequency of 60Hz. The ECG beats are sampled at 360Hz and a
window of 0.5 seconds is taken around each R-wave resulting in 180 samples per
epoch. A regular Gaussian kernel with bandwidth σ2 = 10 is used, with S = 10.
The first 10 principal components are used in the reconstruction.

In Fig. 8 the latent feature space projected on the first two principal components
is shown. Kernel PCA is also able to separate between the normal and paced
beats.
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Fig. 8: The latent space for 785 ECG beat signals of the MIT-BIH Arrhythmia
dataset projected on different principal components. The hidden units of both
normal and paced heartbeats are shown.

Fig. 9 shows the result in input space of moving along the first principal compo-
nents in the latent feature space. As original base point we take a normal beat
signal, i.e. corresponding to a hidden unit on the bottom right of Fig. 8a. The
smooth transition between the beat patterns allows for interpretation of the first
principal components. This allows a clinical expert to understand on what basis
the paced beats are separated by the principal components and if this basis has a
physiological meaning. In order to investigate the separated region of the latent
space at the top of Fig. 8b we start from a paced beat pattern and vary along
the third principal component. This allows us to see which sort of heartbeat
patterns are responsible for this specific distribution in the latent space.
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Fig. 9: Exploring the first three principal components of the latent feature space
for the MIT-BIH arrhythmia database for normal and paced beats. The red
line represents the newly generated datapoint compared to the original point
depicted in blue. The top, middle and bottom row represent the variation along
the first, second and third components respectively. Top and middle row start
with a normal heartbeat pattern and the bottom row with a paced signal.

4 Novelty detection

As a final illustration of latent space exploration using generative kernel PCA,
we consider an application within the context of novelty detection. We use the
reconstruction error in feature space as a measure of novelty [4], where Hoffmann
shows the metric demonstrates a competitive performance on synthetic distribu-
tions and real-world data sets. The novelty score is calculated for all data points,
where the 20% of data points with the largest novelty score are considered novel.
These points typically reside in low density regions of the latent space and are
highlighted as interesting regions to explore using the tool. we consider 1000
instances of the digit zero from the MNIST dataset. After performing kernel
PCA with the same parameters as in the previous section, we explore the latent
space around the detected novel patterns. The data projected on the first two
principal components is shown in Fig. 10.
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Fig. 10: The latent space for 1000 zeros of the MNIST digits data set. The cen-
tral cluster of points consists out of data points with a high novelty score, this
corresponds to a low density region in the latent space. The black dots indicate
the points in latent space which are sampled.

The generated images from the positions indicated by the black dots in Fig.
10 are shown in Fig. 11. The first row allows us to interpret the first principal
component as moving from a thin round zero towards a more closed digit. The
middle of the latent space is where the novel patterns are located which seems to
indicate most zeros are either thin and wide or thick and narrow. A low amount
of zeros in the data set are thick and wide or very thin and narrow. The bottom
row of Fig. 11 gives the interpretation for the second principal component as
rotating the digit. The novel patterns seem to be clustered more together and
as such have a less obvious orientation. Important to note is that we only look
at the first 2 components for the interpretation, while in practice the novelty
detection method takes all 20 components into consideration.

Fig. 11: Exploration of the latent space in Fig. 10. The top row indicates the
points generated from the horizontal black dots, while the bottom row corre-
spond to the vertical positions.
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Above experiment shows that latent space exploration methods can give addi-
tional insights for novelty detection. Both the generating mechanism, as well as
the novelty detection make use of the kernel PCA formulation. The two meth-
ods naturally complement each other: the novelty detection provides interesting
regions in the latent space to explore, at the same time helps the generative
mechanism in interpreting why certain points are considered as novel.

5 Conclusion

The use of generative kernel PCA in exploring the latent space is demonstrated.
Gradually moving along components in the feature space allows for the inter-
pretation of components and consequently additional insight into the underlying
latent space. This mechanism is demonstrated on the MNIST handwritten digits
data set, the Yale Face Database B and the MIT-BIH Arrhythmia database. The
last example showed generative kernel PCA to be a interesting method for ob-
taining an interpretable representation of the ECG beat embedding. As a final
illustration, feature space exploration is used in the context of novelty detec-
tion [5], where the latent space around novel patterns in data is explored. This
to aid the interpretation of why certain points are considered as novel. Possible
future directions would be the consideration of the geometry of the latent space.
Not moving in straight lines, but curves through high density regions. Another
direction would be to make use of different types of kernels as well as explicit
feature maps for more flexibility in the latent feature space.
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