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Abstract. This article introduces the canonical decomposition of the vector space of multivariate
polynomials for a given monomial ordering. Its importance lies in solving multivariate polynomial
systems and computing Gröbner bases. An SVD-based algorithm is presented which numerically
computes the canonical decomposition. It is then shown how by introducing the notion of divisibility
into this algorithm a numerical Gröbner basis can also be computed. In addition, a criterion for the
zero-dimensionality of the solution set of a multivariate polynomial system is derived and the ideal
membership problem is solved. Numerical experiments are presented and discussed.
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1. Introduction. Multivariate polynomials appear in a myriad of applications
[6, 8, 11, 30]. Often in these applications, the problem that needs to be solved is
equivalent with finding the roots of a system of multivariate polynomials. With the
advent of the Gröbner basis and Buchberger’s Algorithm [7], symbolic methods be-
came the standard tool for solving polynomial systems. These are studied in a branch
of mathematics called computational algebraic geometry [10, 11]. It however lacks a
strong focus towards numerical methods and symbolic methods have inherent diffi-
culties to deal with noisy data. Hence there is a need for numerically stable methods.
The domain of numerical linear algebra does have this focus and is already applied to
some problems involving univariate polynomials. For example, computing approxi-
mate GCD’s of two polynomials has been extensively studied with different approaches
[2, 9, 14, 41]. An interesting observation is that the matrices involved are in most
cases structured and some research therefore focuses on how methods can exploit this
structure [1, 4, 27, 31]. Contrary to the univariate case, the use of numerical linear
algebra methods for problems involving multivariate polynomials is not so widespread
[5, 19, 39, 40]. It is the goal of this article to introduce concepts from algebraic geom-
etry in the setting of numerical linear algebra. Central in this setting is the canonical
decomposition of the vector space of multivariate polynomials. Through this concept,
the interrelations between the ideal membership problem, finding a Gröbner basis,
checking the zero-dimensionality of the solution set of a polynomial system and sep-
arating the affine roots from the roots at infinity are demonstrated. In addition, an
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algorithm which primarily uses the singular value decomposition (SVD) is presented
and illustrated with numerical examples. All algorithms were implemented in Octave
[13] and are freely available on request. All numerical experiments were performed
on a 2.66 GHz quad-core desktop computer with 8 GB RAM using Octave and took
around 3 seconds or less to complete.

The outline of this article is as follows. First, some necessary notation is intro-
duced in Section 2. In Section 3, the Macaulay matrix is defined. An interpretation
of its row space is given which naturally leads to the ideal membership problem.
The rank of the Macaulay matrix results in the canonical decomposition described in
Section 4. An algorithm is described to compute this decomposition and numerical
experiments are given. Both cases of exact and inexact coefficients are investigated.
The notion of divisibility is introduced into the canonical decomposition in Section
5. This leads to some important applications: a condition is derived for the zero-
dimensionality of the solution set of a monomial system and the total number of
affine roots can be computed. Another important application is the computation of a
numerical Gröbner basis, described in Section 6. This problem has already received
some attention for the cases of both exact and inexact coefficients [28, 29, 32, 33, 34].
To our knowledge, no SVD-based method to compute a Gröbner basis has been pro-
posed yet. The results for monomial systems are then extended to general polynomial
systems. In Section 7 the ideal membership problem is solved by applying the insights
of the previous sections. Finally, some conclusions are given together with suggestions
for future research.

2. Vector Space of Multivariate Polynomials. The vector space of all mul-
tivariate polynomials over n variables up to degree d over C will be denoted by Cnd .
Consequently the polynomial ring is denoted by Cn. A canonical basis for this vector
space consists of all monomials from degree 0 up to d. Since the total number of
monomials in n variables from degree 0 up to degree d is given by

q(d) =
(
d+ n

n

)
,

it follows that dim(Cnd ) = q(d). A monomial xa = xa1
1 . . . xan

n has a multidegree
(a1, . . . , an) ∈ Nn0 and (total) degree |a| =

∑n
i=1 ai. The degree of a polynomial p,

deg(p), then corresponds with the highest degree of all monomials of p. It is possible to
order the terms of multivariate polynomials in different ways and results will depend
on which ordering is chosen. It is therefore important to specify which ordering is used.
For a formal definition of monomial orderings together with a detailed description of
some relevant orderings in computational algebraic geometry see [10, 11]. In the next
paragraph the monomial ordering which will be used throughout the whole of this
article is defined.

2.1. Monomial Orderings. Note that we can reconstruct the monomial xa

from its multidegree a = (a1, . . . , an). Furthermore, any ordering > we establish
on the space Nn0 will give us an ordering on monomials: if a > b according to this
ordering, we will also say that xa > xb.

Definition 2.1. Degree negative lexicographic. Let a and b ∈ Nn0 . We say
a >dnlex b if

|a| =
n∑
i=1

ai > |b| =
n∑
i=1

bi, or |a| = |b| and a >nlex b
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where a >nlex b if, in the vector difference a − b ∈ Zn, the leftmost nonzero entry is
negative.

Example 2.1. (2, 0, 0) >dnlex (0, 0, 1) because |(2, 0, 0)| > |(0, 0, 1)| which implies
x2

1 >dnlex x3. Likewise, (0, 1, 1) >dnlex (2, 0, 0) because (0, 1, 1) >nlex (2, 0, 0) and this
implies that x2x3 >dnlex x

2
1.

The ordering is graded because it first compares the degrees of the two monomials
and applies the negative lexicographic ordering when there is a tie. Once a monomial
ordering > is chosen we can uniquely identify the monomial with largest degree of a
polynomial f according to >. This monomial is called the leading monomial of f and
is denoted by LM(f). A monomial ordering also allows for a multivariate polynomial
f to be represented by its coefficient vector. One simply orders the coefficients in a
row vector, degree negative lex ordered, in ascending degree. The following example
illustrates.

Example 2.2. The polynomial f = 2 + 3x1 − 4x2 + x1x2 − 8x1x3 − 7x2
2 + 3x2

3 in
C2

3 is represented by the vector

f =
( 1 x1 x2 x3 x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

2 3 −4 0 0 1 −8 −7 0 3
)

where the degree negative lex ordering of the monomials is indicated above each coef-
ficient.

By convention a coefficient vector will always be a row vector. Depending on the
context we will use the label f for both a polynomial and its coefficient vector. (.)T

will denote the transpose of the matrix or vector (.).

3. Macaulay Matrix. In this section the main object of this article, the Macaulay
matrix, is introduced. Its row space is linked with the concept of an ideal in algebraic
geometry and this leads to the ideal membership problem.

Definition 3.1. Given a set of polynomials f1, . . . , fs ∈ Cn, each of degree
di (i = 1, . . . , s) then the Macaulay matrix of degree d ≥ max(d1, . . . , ds) is the matrix
containing the coefficients of

(3.1) M(d) =



f1
x1f1

...
xd−d1n f1
f2
x1f2

...
xd−ds
n fs


where each polynomial fi is multiplied with all monomials from degree 0 up to d− di
for all i = 1, . . . , s.

Example 3.1. For the following polynomial system in C22{
f1 : x1x2 − 2x2 = 0
f2 : x2 − 3 = 0
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the Macaulay matrix of degree three is

M(3) =



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

f1 0 0 −2 0 1 0 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
f2 −3 0 1 0 0 0 0 0 0 0
x1 f2 0 −3 0 0 1 0 0 0 0 0
x2 f2 0 0 −3 0 0 1 0 0 0 0
x2

1 f2 0 0 0 −3 0 0 0 1 0 0
x1x2 f2 0 0 0 0 −3 0 0 0 1 0
x2

2 f2 0 0 0 0 0 −3 0 0 0 1


.

Each row of the Macaulay matrix contains the coefficients of one of the fi’s. The
multiplication of the fi’s with the monomials xa results in the Macaulay matrix having
a quasi-Toeplitz structure. The Macaulay matrix depends explicitly on the degree d
for which it is defined, hence the notation M(d). It was Macaulay who introduced
this matrix, drawing from earlier work by Sylvester [37], in his work on elimination
theory, resultants and solving multivariate polynomial systems [24, 25]. For a degree
d the number of rows p(d) of M(d) is given by the polynomial

(3.2) p(d) =
s∑
i=1

(
d− di + n

n

)
=

s

n!
dn +O(dn−1)

and the number of columns q(d) by

(3.3) q(d) =
(
d+ n

n

)
=

1
n!
dn +O(dn−1).

From these two expressions it is clear that the number of rows will grow faster than
the number of columns as soon as s > 1. We denote the rank of M(d) by r(d) and
the dimension of its right null space by c(d).

3.1. Row space of the Macaulay Matrix. A first interesting observation is
the interpretation of the row space of M(d). The row spaceMd describes all n-variate
polynomials

(3.4) Md =
{ s∑

i=1

hi fi : hi ∈ Cnd−di
(i = 1, . . . , s)

}
.

This is closely related to the following concept of algebraic geometry.
Definition 3.2. Let f1, . . . , fs ∈ Cnd . Then we set

(3.5) 〈f1, . . . , fs〉 =
{ s∑
i=1

hifi : h1, . . . , hs ∈ Cnd
}

and call it the ideal generated by f1, . . . , fs.
The ideal hence contains all polynomial combinations (3.4) without any con-

straints on the degrees of h1, . . . , hs. In addition, an ideal is called zero-dimensional
when the solution set of f1, . . . , fs is finite. We will denote all polynomials of the
ideal 〈f1, . . . , fs〉 with a degree from 0 up to d by 〈f1, . . . , fs〉d. It is now tempting
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to interpret Md as 〈f1, . . . , fs〉d but this is not necessarily the case. Md does not
in general contain all polynomials of degree d which can be written as a polynomial
combination (3.4).

Example 3.2. Consider the following polynomial system in C34 −9 − x2
2 − x2

3 − 3x2
2x

2
3 + 8x2x3 = 0

−9 − x2
3 − x2

1 − 3x2
1x

2
3 + 8x1x3 = 0

−9 − x2
1 − x2

2 − 3x2
1x

2
2 + 8x1x2 = 0

The polynomial p = 867x5
1 − 1560x3 x2 x1 − 2312x2

2 x1 + 1560x3 x
2
1 + 2104x2 x

2
1 −

1526x3
1 + 4896x2 − 2295x1 of degree five is not an element of M5. This can easily

be verified by a rank test: append the coefficient vector of p to M(5) and the rank
increases which means that p does not lie inM5. Remarkably, p ∈M11 which implies
that a polynomial combination of degree eleven is necessary in order to construct p.
All terms of degrees six up to eleven cancel one another.

As the example shows, the reason for not all polynomials written as (3.4) of
degree d lying in Md is that it is possible that a polynomial combination of a degree
higher than d is required. The problem of determining whether a given multivariate
polynomial p lies in the ideal 〈f1, . . . , fs〉 generated by given polynomials f1, . . . , fs is
called the ideal membership problem in algebraic geometry.

Problem 3.1. Let p, f1, . . . , fs ∈ Cnd , then decide whether p ∈ 〈f1, . . . , fs〉.
Example 3.2 indicates that Problem 3.1 could be solved using numerical linear

algebra: one could append the coefficient vector of p to the Macaulay matrix M(d)
and do a rank test. The two most common numerical methods for rank revealing are
the SVD and a rank-revealing QR decomposition. The SVD is the most robust way
of determining the numerical rank of a matrix and is therefore the method of choice
in this article. As Example 3.2 also showed, it is not sufficient to do the rank test
only for the degree of the given polynomial p. The algorithm requires a stop condition
on the degree d for which M(d) should be constructed. This results in the following
proposition.

Proposition 3.3. There exists a degree dI such that the ideal membership prob-
lem can be decided by a rank-test of M(dI).

Upper bounds are available on this degree dI . They are sharp and doubly expo-
nential [22, 38] which renders them useless for practical purposes. In section 7 it will
be shown how Problem 3.1 can be solved numerically without the need of constructing
M(d) for the large upper bound on dI .

Remarkably, there is a different interpretation of the row space of M(d) such
that all polynomials of degree d are contained in it. This requires homogeneous
polynomials. A polynomial of degree d is homogeneous when every term is of degree
d. A non-homogeneous polynomial can easily be made homogeneous by introducing
an extra variable x0.

Definition 3.4. Let f ∈ Cnd of degree d, then its homogenization fh ∈ Cn+1
d is

the polynomial obtained from multiplying each term of f with a power of x0 such that
its degree becomes d.

Example 3.3. Let f = x2
1 + 9x3 − 5 ∈ C32 . Then its homogenization is fh =

x2
1 + 9x0x3 − 5x2

0.
The vector space of all homogeneous polynomials in n+ 1 variables and of degree

d will be denoted by Pn+1
d . This vector space is spanned by all monomials in n + 1
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variables of degree d and hence

dim (Pnd ) =
(
d+ n

n

)
which equals the number of columns of M(d). This is no coincidence, given a set of
non-homogeneous polynomials f1, . . . , fs we can also interpretMd as the vector space

(3.6) Md =
{ s∑
i=1

hi f
h
i : deg(hi) = d− di (i = 1, . . . , s)

}
where the fhi ’s are f1, . . . , fs homogenized and the hi’s are also homogeneous. The
corresponding homogeneous ideal is denoted by 〈fh1 , . . . , fhs 〉. The homogeneity en-
sures that the effect of higher order terms cancelling one another does not occur and
therefore guarantees that all homogeneous polynomials of degree d are contained in
Md. Or in other words,

Md = 〈fh1 , . . . , fhs 〉d

where 〈fh1 , . . . , fhs 〉d are all homogeneous polynomials of degree d contained in the
homogeneous ideal 〈fh1 , . . . , fhs 〉. We revisit Example 3.1 to illustrate this point.

Example 3.4. The homogenization of the polynomial system in Example 3.1 is{
fh1 : x1x2 − 2x2x0 = 0
fh2 : x2 − 3x0 = 0.

All homogeneous polynomials
∑2
i=1 hi f

h
i of degree three are described by the row space

of



x3
0 x1x

2
0 x2x

2
0 x2

1x0 x1x2x0 x2
2x0 x3

1 x2
1x2 x1x

2
2 x3

2

x0f1 0 0 −2 0 1 0 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
x2

0f2 −3 0 1 0 0 0 0 0 0 0
x0x1f2 0 −3 0 0 1 0 0 0 0 0
x0x2f2 0 0 −3 0 0 1 0 0 0 0
x2

1 f2 0 0 0 −3 0 0 0 1 0 0
x1x2 f2 0 0 0 0 −3 0 0 0 1 0
x2

2 f2 0 0 0 0 0 −3 0 0 0 1


which equals M(3) from Example 3.1.

Note that the homogeneous interpretation is in effect nothing but a relabelling of
the columns and rows of M(d). The fact that all homogeneous polynomials of degree
d are contained in Md simplifies the ideal membership problem for a homogeneous
polynomial to a single rank test.

Proposition 3.5. Let f1, . . . , fs ∈ Cnd and p ∈ Pn+1
d . Then p ∈ 〈fh1 , . . . , fhs 〉 if

and only if

(3.7) rank(
(
M(d)
p

)
) = rank( M(d) ).
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4. The Canonical Decomposition of Cnd . First, the canonical decomposition
is defined and illustrated with an example. Then, the SVD-based algorithm to com-
pute the canonical decomposition numerically is presented. This is followed by a
detailed discussion on numerical aspects which are illustrated by worked-out exam-
ples.

4.1. Definition. The interpretation of the row space immediately results in a
similar interpretation for the rank of M(d). Evidently, the rank r(d) counts the
number of linear independent polynomials lying in Md. More interestingly, the rank
also counts the number of linear independent leading monomials of Md. This can
be easily seen from bringing the Macaulay matrix M(d) into a reduced row echelon
form R(d). In order for the linear independent monomials to be leading monomials
a column permutation Q is required which flips all columns from left to right. The
reduced row echelon form then ensures that each pivot element corresponds with a
linear independent leading monomial. The r(d) polynomials which can be read off
from R(d) spanMd and will have an important interpretation. Interpreting the rank
r(d) in terms of linear independent leading monomials naturally leads to a canonical
decomposition of Cnd . The vector space spanned by the r(d) leading monomials of
R(d) will be denoted Ad. Its complement spanned by the remaining monomials will
be denoted Bd. These mononials that span Bd will be called the normal set or standard
monomials. This leads to the following definition.

Definition 4.1. Let f1, . . . , fs be a multivariate polynomial system with a given
monomial ordering. Then the decomposition of the monomial basis of Cnd into a set
of linear independent leading monomials A(d) and standard monomials B(d) is called
its canonical decomposition.

Naturally,

Cnd = Ad ⊕ Bd

and dim Ad = r(d),dim Bd = c(d). Again, note that the monomial bases for Ad and
Bd can also be interpreted for the homogeneous case.

Example 4.1. We revisit the following polynomial system{
f1 : x1 x2 − 2x2 = 0
f2 : x2 − 3 = 0

and fix the degree to three. First, the left-to-right column permutation Q is applied to
M(3),

M(3)Q =



x3
2 x1x

2
2 x2

1x2 x3
1 x2

2 x1x2 x2
1 x2 x1 1

f1 0 0 0 0 0 1 0 −2 0 0
x1f1 0 0 1 0 0 −2 0 0 0 0
x2f1 0 1 0 0 −2 0 0 0 0 0
f2 0 0 0 0 0 0 0 1 0 −3
x1 f2 0 0 0 0 0 1 0 0 −3 0
x2 f2 0 0 0 0 1 0 0 −3 0 0
x2

1 f2 0 0 1 0 0 0 −3 0 0 0
x1x2 f2 0 1 0 0 0 −3 0 0 0 0
x2

2 f2 1 0 0 0 −3 0 0 0 0 0


.



8 KIM BATSELIER, PHILIPPE DREESEN, AND BART DE MOOR

Now bringing M(3)Q into reduced row echelon form results in

R(3) =



x3
2 x1x

2
2 x2

1x2 x3
1 x2

2 x1x2 x2
1 x2 x1 1

1 0 0 0 0 0 0 0 0 −27
0 1 0 0 0 0 0 0 0 −18
0 0 1 0 0 0 0 0 0 −12
0 0 0 0 1 0 0 0 0 −9
0 0 0 0 0 1 0 0 0 −6
0 0 0 0 0 0 1 0 0 −4
0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 1 −2
0 0 0 0 0 0 0 0 0 0


from which the monomial basis of A3 can be read off: {x1, x2, x

2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2}.

In matrix form this monomial basis is

A(3) =



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Its complement B3 is spanned in this case by

B(3) =
( 1 x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x

2
2 x3

2

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)

with the corresponding normal set {1, x3
1}.

For the sake of readability the notation for A(d) and B(d) is used for both the set
of monomials and the matrices as in Example 4.1. The dependence of the canonical
decomposition on the monomial ordering is easily understood from Example 4.1. A
different admissible monomial ordering would correspond with a different column
permutation Q prior to bringing M(3) into the reduced row echelon form and this
would result in different monomials bases A(3) and B(3).

The importance of this canonical decomposition is twofold. As will be shown
in Section 6, the linear independent monomials A(d) play an important role in the
computation of a Gröbner basis of f1, . . . , fs. The normal set B(d) is intimately linked
with the problem of finding the roots of the polynomial system f1, . . . , fs. Indeed, it is
well-known that for a polynomial system f1, . . . , fs with a finite amount of projective
roots, the quotient ring Cn/〈fh1 , . . . , fhs 〉 is a finite-dimensional vector space [10, 11].
The dimension of this vector space equals the total amount of projective roots of
fh1 , . . . , f

h
s , counting multiplicities. From the rank-nullity theorem it then follows
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that

c(d) = q(d)− rank (M(d) )
= dim Cnd − dim 〈fh1 , . . . , fhs 〉d
= dim Cnd /〈fh1 , . . . , fhs 〉d
= dim Bd.

This function c(d) which counts the number of homogeneous standard monomials of
degree d is called the Hilbert function. This leads to the following proposition.

Proposition 4.2. For a zero-dimensional ideal 〈fh1 , . . . , fhs 〉 with m projective
roots (counting multiplicities) there exists a degree dc such that ∀ d ≥ dc

c(d) = m.

Furthermore, m = d1 · · · ds according to Bézout’s Theorem [10, p.97] when s = n.
This effectively links the degrees of the polynomials f1, . . . , fs with the nullity of the
Macaulay matrix. The roots can be retrieved from a generalized eigenvalue problem
as discussed in [35, 36]. In practice, one is only interested in the affine roots. How
these can be separated from the roots at infinity without computing a Gröbner basis is
discussed in [12]. Another interesting result is that if the nullity c(d) never converges
to a fixed number m then it will grow polynomially. The degree of this polynomial
c(d) then equals the dimension of the projective solution set [11, p.463].

It is commonly known that bringing a matrix into a reduced row echelon form is
numerically not the most reliable way of determining the rank of a matrix. In the next
section a more robust SVD-based method for computing the canonical decomposition
of Cnd and finding the polynomial basis R(d) is presented.

4.2. Numerical Computation of the Canonical Decomposition. As men-
tioned in the previous section, the rank determination of M(d) is the first essential step
in computing the canonical decomposition of Cnd . Bringing the matrix into reduced
row echelon form by means of a Gauss-Jordan elimination is not a robust method for
determining the rank. In addition, since the monomial ordering is fixed no column
pivoting is allowed which results in potential numerical instabilities. We therefore
propose to use the SVD for which numerical stable algorithms exist [17]. In addition,
an orthogonal basis U for Md can also be retrieved from the right singular vectors.
The next step is to find A(d), B(d) and the r(d) polynomials of R(d). The key idea
here is that each of these r(d) polynomials is spanned by the standard monomials
and one leading monomial of A(d). Suppose a subset A ⊆ A(d) and B ⊆ B(d), both
ordered in ascending order, are available. It is then possible to test whether the next
monomial larger than the largest monomial of A(d) is a linear independent leading
monomial. We will illustrate the principle by the following example.

Example 4.2. Suppose that the following subsets

A = {x1, x2}, B = {1}

of

A(3) = {x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2}, B(3) = {1, x3

1}

from Example 4.1 are available. The next monomial according to the monomial order-
ing is x2

1. The next possible polynomial from R(3) is then spanned by {1, x2
1}. If such
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a polynomial lies in M3 then x2
1 is a linear independent leading monomial and can

be added to A. If not, x2
1 should be added to B. This procedure can be repeated until

all monomials up to degree three have been tested. For the case of x2
1 there is indeed

such a polynomial present in R(3) as can be seen from Example 4.1: x2
1 − 4. This

polynomial therefore lies in both the vector spaces M3 and span(1, x2
1). Computing

a basis for the intersection between M3 and span(1, x2
1) will therefore reveal whether

x2
1 ∈ A(3).

Given the subsets A and B, testing whether a monomial xa ∈ A(d) corresponds
with computing the intersection betweenMd and span(B, xa). If we denote the matrix
containing the monomials (B, xa) by E and an orthogonal basis for Md by U , then
one way of computing the intersection would be to solve the following overdetermined
linear system

(4.1)
(
UT ET

)
x = 0.

If there is a non-empty intersection then (4.1) has a non-trivial solution x. The size
of the matrix

(
UT ET

)
can grow rather large ( q(d) × (r(d) + m), where m is

the cardinality of E). Using principal angles to determine the intersection involves
a smaller matrix ( q(d) × m) and is therefore preferred. An intersection implies a
principal angle of zero between the two vector spaces. The cosine of the principal
angles can be retrieved from the following theorem.

Theorem 4.3. Assume that the columns of UT and ET form orthogonal bases
for two subspaces of Cnd . Let

(4.2) U ET , = Y C ZT , C = diag(σ1, . . . , σm),

be the SVD of U ET where Y TY = Ir, Z
TZ = Im. If we assume that σ1 ≥ σ2 ≥ . . . ≥

σm, then the cosines of the principal angles associated with this pair of subspaces are
given by

cos(θk) = σk(U ET ).

Proof. See [3, p. 582].
Computing principal angles smaller than 10−8 in double precision is impossible

using Theorem 4.3. This is easily seen from the second order approximation of the
cosine of its Maclaurin series: cos(x) ≈ 1− x2/2. If x < 10−8 then the x2/2 term will
be smaller than the machine precision ε ≈ 2× 10−16 and hence cos(x) will be exactly
1. For small principal angles it is numerically better to compute the sines using the
following Theorem.

Theorem 4.4. The singular values µ1, . . . , µq of the matrix ET − UT U ET are
given by µk =

√
1− σ2

k where the σk are defined in (4.2). Moreover, the principal an-
gles satisfy the equalities θk = arcsin(µk). The right principal vectors can be computed
as

vk = ET zk, k = 1, . . . ,m,

where zk are the corresponding right singular vectors of ET − UT U ET .
Proof. Proofs can be found in both [3, p. 582-583] and [20, p. 6].
Testing for a non-empty intersection between the row spaces of U and E is hence

equivalent with inspecting the the smallest singular value µm of ET −UT U ET . The
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columns of this q(d) ×m matrix span the orthogonal projection of span(B, xa) onto
the orthogonal complement of Md. If there is a non-empty intersection, then the
reduced polynomial r can be retrieved as the right singular vector vm corresponding
with µm. The whole algorithm is summarized in pseudo-code in Algorithm 4.1. The
algorithm iterates over all n-variate monomials from degree 0 up do d, in ascending
order. The set containing all these monomials is denoted by T nd . The computational
complexity is dominated by the SVD of M(d) for determining the rank and computing
the orthogonal basis for Md. A full SVD is not required, only the diagonal matrix
containing the singular vales and right singular vectors need to be computed. This
takes approximately 4p(d)q(d)2+8q(d)3 flops. All subsequent SVD’s of ET−UT U ET
in Algorithm 4.1 have a total computational complexity of O(q(d)2).

Algorithm 4.1. Computation of the Canonical Decomposition of Cnd
Input: orthogonal basis U of Md, tolerance τ
Output: A(d), B(d) and polynomials R(d)
A(d), B(d), R(d)← ∅
for all xa ∈ T nd do

construct E from B(d) and xa

construct ET − UT U ET
[W S Z]← SVD(ET − UT U ET )
if arcsin(µm) < τ then

append xa to A(d)
append vTm to R(d)

else
append xa to B(d)

end if
end for

4.3. Numerical Experiments - Exact Coefficients. We first consider the
case of polynomials with exact coefficients. Determining the rank of M(d) is the first
crucial step in the algorithm. If a wrong rank is estimated from the SVD the sub-
sequent canonical decomposition will also be wrong. The default tolerance used in
the SVD-based rank determination is τ = k× eps(σ1) where k = max(p(d), q(d)) and
eps(σ1) returns the positive distance from the largest singular value of M(d) to the
next larger in magnitude double precision floating point number. The numerical rank
r(d) is chosen such that σr(d) > τ > σr(d)+1. The approxi-rank gap σr(d)/σr(d)+1 [23,
p. 920] then determines the difficulty of revealing the numerical rank. In practice, a
rather well-conditioning of determining the numerical rank of the Macaulay matrix for
nonzero-dimensional ideals is observed. Approxi-rank gaps are typically around 1010.
Small approxi-rank gaps of around unity indicate inherent ‘difficult’ polynomial sys-
tems. Scaling the polynomials such that their coefficient vector is a unit vector before
constructing the Macaulay matrix can also improve the approxi-rank gap somewhat.
The same tolerance τ can be used to test whether a principal angle is numerically
zero. We illustrate the algorithm with the following numerical example.

Example 4.3. Consider the following polynomial system in C34 x2
1 + x1 x3 − 2x2 + 5 = 0

2x3
1 x2 + 7x2 x

2
3 − 4x1 x2 x3 + 3x1 − 2 = 0
x4

2 + 2x2 x3 + 5x2
1 − 5 = 0
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with degrees d1 = 2, d2 = 4, d3 = 4. The canonical decomposition is computed for
d = 10 with Algorithm 4.1. Each polynomial is normalized and the 333×286 Macaulay
matrix M(10) is constructed. From its SVD the tolerance is set to τ = 1.47×10−13 and
the numerical rank is determined as 254 with an approxi-rank gap of ≈ 4×1013. This
implies that A(10) and B(10) will have 254 and 32 monomials respectively. Algorithm
4.1 indeed returns this number of monomials and corresponding polynomials R(10).
We will discuss in Section 6 why this canonical decomposition is correct. The principal
angles corresponding with the leading monomials A(10) are all around 10−15 and hence
the tolerance τ for the rank-test also works for the principal angles. The smallest
principal angle for a monomial of the normal set B(10) is 2.17× 10−9. Note that the
rank estimated from the reduced row echelon form of M(10) is 259 which is a strong
indication that the reduced row echelon form is not well-suited to compute A(10), B(10)
and R(10).

4.4. Numerical Experiments - Inexact Coefficients. When the polynomi-
als have inexact coefficients two cases need to be considered. First, suppose that the
measured noisy polynomials f̃1, . . . , f̃s are perturbations of the nonzero coefficients
of f1, . . . , fs. This means that in the Macaulay matrix no new nonzero entries are
introduced. It is therefore very likely that the rank and the computed canonical
decomposition for f̃1, . . . , f̃s will remain the same and R̃(d) lies ‘close’ to R(d).

Example 4.4. We revisit the polynomial system of Example 4.3 and perturb its
nonzero coefficients with random noise, uniformly drawn from the interval [0, 0.01].
The SVD of M̃(10) of the perturbed polynomial system also reveals a numerical rank of
254 with an approxi-rank gap of 5.05×1013. The exact same canonical decomposition
Ã(10), B̃(10) as for f1, . . . , fs is returned by Algorithm 4.1. The largest absolute error
in the coefficients of R̃(10), max |R(10) − R̃(10)|, is 0.2496. The average absolute
error is 3.744× 10−4 which means that R(10) is not perturbed much on average.

The case where new nonzero coefficients are introduced by noise is quite prob-
lematic. Suppose, for example, that a new nonzero term is added to f1 such that
deg(f̃1) = d1 + 1. Then we know from Bézout’s Theorem (n = s) that for some
degree c(d) will be (d1 + 1) · · · ds instead of d1 · · · ds. Hence, the rank of M(d) and
the canonical decomposition is expected to change dramatically.

Example 4.5. The term 0.0046x1 x
2
2 is added to f1 of Example 4.3. M̃(10) now

has a numerical rank of 236 with an approxi-rank gap of 1.67× 1013. The numerical
rank is therefore well-defined. If we would like to recover the numerical rank of the
original polynomial system f1, . . . , fs for f̃1, . . . , fs a numerical tolerance τ between
2.027× 10−16 and 1.682× 10−16 needs to be chosen. This is for all practical purposes
impossible.

The last case is when new nonzero coefficients are introduced but the degrees of
the perturbed system equal the degrees of the unperturbed system. We can now infer,
again using Bézout’s Theorem, that the numerical rank of M̃(d) will be the same as
of M(d). If we think in terms of the reduced row echelon form then it is clear that
new pivots will be introduced by the noisy coefficients and hence Ã(d) and B̃(d) will
be different from A(d) and B(d). There is even a possibility that Algorithm 4.1 fails
to compute a correct decomposition. The reason is made clear from the following
example.

Example 4.6. Again, we revisit the polynomial system of Example 4.3 but now
perturb each polynomial with noise uniformly drawn from the interval [0, 0.01] such
that each possible monomial has a nonzero coefficient. As a consequence, the co-
efficient vectors become very dense. The numerical rank of M̃(10) is, as predicted,
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again 254 with an approxi-rank gap of ≈ 5 × 1013. Even though the rank was esti-
mated correctly, Algorithm 4.1 fails to compute the correct decomposition Ã(d), B̃(d).
Ã(d) contains 256 monomials instead of 254. The reason lies in the fact that the
original numerical tolerance τ used for the rank-test is not appropriate anymore to
test perturbed principal angles. To make matters worse, it becomes impossible to set
a tolerance such that the ‘original’ decomposition A(d), B(d) is recovered. The first
wrong monomial of B̃(10) is x1 x3. This monomial should normally lie in Ã(10). The
principal angle to test whether x1 x3 lies in Ã(10) is 9.8 × 10−6. In order to recover
the right decomposition one should choose a tolerance such that this principal angle is
considered to be numerically zero. If Algorithm 4.1 is rerun with τ = 1.1× 10−5 then
indeed x1 x3 lies in Ã(10) but now x4

1 lies wrongfully in Ã(10). The principal angle
for this monomial is 8.6 × 10−6 < τ which means that no tolerance can recover the
original canonical decomposition.

The previous example shows that computing the canonical decomposition for a
polynomial system with noisy coefficients is an ill-posed problem. A small pertur-
bation leads to a non-continuous change of the solution. This will also have some
implications for the numerical computation of a Gröbner basis for a noisy polyno-
mial system. When an upper bound on the magnitude of the noise is known it is
possible to derive an upper bound on the perturbation of the principal angles. But
the example above already shows that it is impossible to try to recover the right
canonical decomposition of a polynomial system where the perturbations introduce
new nonzero monomials. However, it is possible to use this upper bound on the noise
to preprocess the perturbed polynomial system such that the result of Algorithm 4.1
improves significantly. The problem of determining the canonical decomposition is
well-behaved when only the nonzero coefficients of the original system are perturbed.
One could therefore set all coefficients smaller in magnitude than the upper bound on
the noise to zero before running Algorithm 4.1. This acts as a sort of regularization
of the problem.

Example 4.7. All coefficients of Example 4.6 which are smaller in magnitude
than 0.01 are set to zero. Algorithm 4.1 again recovers the correct canonical decom-
position Ã(10), B̃(10), R̃(10). The largest absolute error in the coefficients of R̃(10),
max |R(10) − R̃(10)|, is 0.21901 and the average absolute error is 2.18 × 10−4 which
is similar to the case of Example 4.4.

5. The Reduced Canonical Decomposition of Cnd . Introducing the notion
of divisibility naturally leads to the concept of a reduced canonical decomposition.
First, some new notation and concepts are introduced after which Algorithm 4.1 is
adjusted such that it produces the reduced decomposition. A numerical example is
then worked out and discussed.

5.1. The Reduced Monomials A?(d), B?(d) and Reduced Polynomials
G(d). The polynomial basis R(d) will grow unbounded with the rank r(d). It is
possible however to reduce this basis to a finite subset which generates the whole
ideal 〈f1, . . . , fs〉. It will be shown in Section 6 that for a sufficiently large degree, this
reduced polynomial basis is a Gröbner basis. First the reduced leading monomials
A?(d) are defined.

Definition 5.1. Given a set of linear independent leading monomials A(d), then
the set of reduced leading monomials A?(d) is defined as the smallest subset of A(d)
for which each element of A(d) is divisible by an element of A?(d).

Since there is a one-to-one mapping between leading monomials in A(d) and
polynomials of R(d), each element of A?(d) will also correspond with a polynomial.



14 KIM BATSELIER, PHILIPPE DREESEN, AND BART DE MOOR

Definition 5.2. For a given canonical decomposition A(d), B(d), R(d) the re-
duced polynomials G(d) are defined as the polynomials of R(d) corresponding with the
reduced monomial system A?(d):

G(d) = {r ∈ R(d) : ∀a ∈ A?(d), LM (r) = a}.

The reduced leading monomials A?(d) can be interpreted as a polynomial system
for which the Macaulay matrix can also be constructed. We will denote this matrix
by MA?(d) and it is essential for defining the reduced normal set B?(d).

Definition 5.3. Let A(d), B(d) be a canonical decomposition implied by f1, . . . , fs
and a given monomial ordering. Then the reduced normal set B?(d) is the normal set
obtained from the canonical decomposition implied by A?(d) and the same monomial
ordering.

Typically B?(d) ⊆ B(d). The following example illustrates why this is the case.
Example 5.1. The reduced monomial system A?(3) of the canonical decomposi-

tion in Example 4.3 is

A?(3) = {x1, x2}.

Its Macaulay matrix of degree 3 is

MA?(3) =



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


which is almost the same as A(3) except for the monomial x3

1. Note that this means
that the reduced normal set is

B?(3) = {1}.

The property that the reduced normal set B?(d) ⊆ B(d) holds in general. When
constructing the Macaulay matrix of A?(d) it is possible that columns corresponding
with standard monomials B(d) are filled. Hence these monomials will not be in B?(d)
anymore. Using the following lemma it is easy to determine the standard monomials
from MA?(d).

Lemma 5.4. Each standard monomial of B?(d) derived from the Macaulay matrix
MA?(d) always corresponds with a zero column of MA?(d).

Proof. This follows trivially from the structure of the Macaulay matrix.
Now a useful property on the zero-dimensionality of monomial ideals will be

derived. First, the concept of a pure component is introduced.
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Definition 5.5. We call a monomial xdk (1 ≤ k ≤ n) a pure component and
denote the set of these n monomials by Xd

n.
For example, X5

3 = {x5
1, x

5
2, x

5
3}. It is clear from the definition of the reduced

leading monomials that if pure components are present in A(d) that they will also be
present in A?(d). The following lemma determines the growth of B?(d).

Lemma 5.6. All monomials in n variables of degree

d ≥ dmax = n (d0 − 1) + 1

can be written as a product of an element of Xd0
n with another monomial.

Proof. The proof can be completely done in Nn0 since there is a bijection between
the exponents of monomials and Nn0 . We first show that for any degree d < dmax,
monomials can be found which cannot be written as a product of a pure component
and another monomial. For degree dmax − 1 = n (d0 − 1) we can write the following
monomial

(5.1) (d0 − 1, d0 − 1, . . . , d0 − 1)

which clearly cannot be written as a product of a pure component and another mono-
mial. It’s possible to come up with similar examples for all degrees between d0 and
dmax−1 by just subtracting the necessary amount of a component of (5.1). For degree
dmax = n (d0 − 1) + 1 we can write the following monomial

(5.2) (d0, d0 − 1, . . . , d0 − 1)

which is clearly the product of xd01 and xd0−1
2 . . . xd0−1

n . Any other monomial of degree
dmax can now be formed by rearranging (5.2) (subtracting from one component and
adding to another). If, however, one component is subtracted with a certain amount
then the other components should be increased such that the sum of all components
remains constant. From this it is easy to see that there will always be at least 1
component ≥ d0.

Furthermore, the presence of a pure component for each variable is a necessary
condition for the finiteness of B?(d). This is easily seen by an example. If there is
no pure component for the variable x1, then all subsequent powers of x1 will be zero
columns in MA?(d) and B?(d) will grow linearly.

A monomial system A?(d) has a projective solution set because it is already
homogeneous. It is shown in [11, p.452] that the dimension of this projective solution
set is always one less than its affine solution set. Hence, if the monomial ideal has a
finite number of affine roots it will have no projective roots whatsoever. We can now
state the following theorem relating the zero-dimensionality of a monomial system to
the presence of all pure components.

Theorem 5.7. A monomial system A?(d) has m affine roots, counting multiplici-
ties, if and only if it contains for each indeterminate xi (1 ≤ i ≤ n) a pure component.
It then also holds that from a certain degree: dim B?d = m.

Proof. This follows from Lemma 5.4 and 5.6.
In the same vein as MA?(d), the Macaulay matrix of the reduced polynomials

G(d) will be denoted MG(d).

5.2. Numerical Computation of A?(d), B?(d) and G(d). The definition of
A?(d) uses the complete set of linear independent leading monomials A(d). A straight-
forward way to find A?(d) would hence be to compute A(d) using Algorithm 4.1, find
A?(d) from A(d) and select the corresponding polynomials of R(d) to obtain G(d).



16 KIM BATSELIER, PHILIPPE DREESEN, AND BART DE MOOR

This is however not efficient since the whole canonical decomposition is computed
while only subsets are required. By using the defining property of A?(d) it is possible
to adjust Algorithm 4.1 such that it directly computes A?(d), B?(d) and G(d). The
algorithm iterates over a set of monomials X which is initially all monomials of de-
gree 0 up to d. The key idea is that each monomial of A(d) is a monomial multiple
of a monomial of A?(d). So as soon as a linear independent leading monomial xa

is found, all its monomial multiples do not need to be checked anymore and can be
removed from X . When the monomial xa is not linear independent it is also removed
from X and added to B?(d). When X is empty the algorithm terminates. Removing
monomial multiples of xa from X reduces the number of iterations significantly and
also guarantees that the computed B? is correct. The whole procedure is summarized
in pseudo-code in Algorithm 5.1. Again, the first SVD of M(d) is computationally
the most expensive step in the algorithm. The same arguments on the computational
complexity apply as for Algorithm 4.1.

Algorithm 5.1. Computation of A?(d), B?(d) and G(d)
Input: orthogonal basis U of Md, tolerance τ
Output: A?(d), B?(d) and polynomials G(d)
A?(d), B?(d), G(d)← ∅
X ← T nd
while X 6= ∅ do
xa ← smallest monomial in X according to monomial ordering
construct E from B?(d) and xa

construct ET − UT U ET
[W S Z]← SVD(ET − UT U ET )
if arcsin(µm) < τ then

append xa to A?(d)
remove xa and all its monomial multiples from X
append vTm to G(d)

else
append xa to B?(d)
remove xa from X

end if
end while

5.3. Numerical Experiments. Since Algorithm 5.1 is an adjustment of Algo-
rithm 4.1 the same comments on numerical issues apply. We revisit the polynomial
system of Example 4.3 and illustrate Algorithm 5.1 when the coefficients are exact
and perturbed.

Example 5.2. A(10) of Example 4.3 consists of 254 monomials. Running Algo-
rithm 5.1 on the polynomial system results in the following reduced canonical decom-
position:

A?(10) = {x1 x3, x
3
1 x2, x

4
2, x3 x

3
2, x

3
3 x2, x

5
1, x

5
3}

B?(10) = {1, x1, x2, x3, x
2
1, x2 x1, x

2
2, x2 x3, x

2
3, x

3
1, x2 x

2
1, x

2
2 x1, x

3
2, x3 x

2
2, x2 x

2
3, x

3
3,

x4
1, x

2
2 x

2
1, x

3
2 x1, x

2
3 x

2
2, x

4
3, x

3
2 x

2
1}.
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A?(10) consists of 7 monomials and the normal set B(10) is reduced from 32 to 22
monomials. G(10) consists of the following 7 polynomials

0.89803− 0.35921x2 + 0.17961x2
1 + 0.17961x1x3 = 0

−0.085592 + 0.12839x1 + 0.85592x2 − 0.34237x2
2 + 0.17118x2

1x2 + 0.29957x2x
2
3

+ 0.085592x3
1x2 = 0

−0.6742 + 0.6742x2
1 + 0.26968x2x3 + 0.13484x4

2 = 0

−0.025205− 0.77127x1 + 0.0040328x2 + 0.49401x3 + 0.023188x2
1 + 0.31254x1x2

−0.19156x2x3 + 0.0020164x2
3 − 0.15627x3

1 − 0.010082x2
1x2 + 0.0075614x3

2

−0.017643x3
3 − 0.025205x4

1 + 0.0010082x1x
3
2 + 0.0010082x3

2x3 = 0

−0.089289− 0.13951x1 − 0.71432x2 − 0.022322x3 + 0.39064x1x2 + 0.31251x2
2

−0.16742x2x3 − 0.26787x2
1x2 − 0.15626x1x

2
2 + 0.066967x2

2x3 − 0.27345x2x
2
3

+ 0.044645x2
1x

2
2 + 0.078128x2x

3
3 = 0

0.69381− 0.57918x2 + 0.0034475x3 + 0.37578x2
1 + 0.12066x2

2 − 0.030166x2
3

−0.0086188x3
1 − 0.15514x2

1x2 + 0.0017238x3
2 + 0.047404x4

1 − 0.0025856x1x
3
2

+ 0.0086188x5
1 = 0

0.19201 + 0.74673x1 − 0.062728x2 − 0.4885x3 + 0.025128x2
1 − 0.30287x1x2

−0.0059821x2
2 + 0.19451x2x3 + 0.062794x2

3 + 0.16707x3
1 + 0.0079195x2

1x2

+ 0.0018612x1x
2
2 − 0.0070246x3

2 − 0.0022368x2
2x3 + 0.0033854x2x

2
3

+ 0.0081701x3
3 + 0.025733x4

1 − 0.00070942x2
1x

2
2 − 3.8079× 10−5 x1x

3
2

−0.0019462x4
3 − 2.0865× 10−5 x2

1x
3
2 + 0.0002556x5

3 = 0.

When Algorithm 5.1 is run on the perturbed version of the polynomial system where no
new nonzero coefficients are introduced, the same reduced monomial bases Ã?(10), B̃?(10)
are found. The largest absolute error in the coefficients between G(10) and G̃(10) is
0.012. The average error on the coefficients is 6.19×10−4. As expected, if noisy coef-
ficients which introduce new monomials are not removed prior to running Algorithm
5.1, the results are not correct. This preprocessing step also ensures that Algorithm
5.1 recovers the original reduced monomial bases and polynomials.

6. Gröbner basis. In this section the link is made between the reduced poly-
nomials G(d) and a Gröbner basis of the ideal 〈f1, . . . , fs〉. This will lead to some
insights on the separation of the roots of a polynomial system into an affine part and
roots at infinity for the zero-dimensional case. A condition will be derived for this
case to determine the affine part of the normal set. We first give the definition of a
Gröbner basis.

Definition 6.1. Given a set of multivariate polynomials f1, . . . , fs and a mono-
mial ordering, then a finite set of polynomials G = {g1, . . . , gk} ∈ 〈f1, . . . , fs〉 is a
Gröbner basis of 〈f1, . . . , fs〉 if

∀ p ∈ 〈f1, . . . , fs〉,∃ g ∈ G such that LM(g) |LM(p).
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Note from the definition that a Gröbner basis depends on the monomial ordering.
One can think of a Gröbner basis as another set of generators of the ideal 〈f1, . . . , fs〉,
hence the name ‘basis’. It is a classic result that for each ideal 〈f1, . . . , fs〉 there exists
such a finite set of polynomials G [10, 11]. The finiteness of G relies on Hilbert’s Basis
Theorem [18]. This implies that there exists a particular degree d for which G ∈Md

which leads to the following proposition.
Proposition 6.2. For each set of multivariate polynomials f1, . . . , fs there exists

a particular degree dG such that for all d ≥ dG : G ∈Md.
dG is related to dI and hence also has doubly exponential upper bounds [26]. In

order to determine whether a set of polynomials is a Gröbner basis one needs the
notion of an S-polynomial.

Definition 6.3. Let f1, f2 be nonzero multivariate polynomials and xγ the least
common multiple of their leading monomials. The S-polynomial of f1, f2 is the com-
bination

S(f1, f2) =
xγ

LT(f1)
f1 −

xγ

LT(f2)
f2

where LT(f1),LT(f2) are the leading terms of f1, f2 with respect to a monomial or-
dering.

It is clear from this definition that an S-polynomial is designed to produce can-
cellation of the leading terms and that it has a degree of at most deg(xγ). A key
component of Buchberger’s Algorithm is constructing S-polynomials and computing
their remainder on division by a set of polynomials. It was Lazard [21] who had the
insight that computing this remainder is equivalent with bringing a matrix into trian-
gular form. This led to Faugere’s F4 and F5 algorithms [15, 16] which have become
the golden standard to compute an exact Gröbner basis.

The reduced polynomials G(d) computed from Algorithm 5.1 ensure by definition
that

∀ p ∈Md ∃ g ∈ G(d) such that LM(g) | LM(p).

This suggests that G(d) is a Gröbner basis when d ≥ dG. A criterion is needed to
be able to decide whether G(d) is a Gröbner basis. This is given by Buchberger’s
criterion which we formulate in terms of the Macaulay matrix M(d) and the reduced
monomial system A?(d).

Theorem 6.4 (Buchberger’s Criterion). Let f1, . . . , fs be a multivariate polyno-
mial system with reduced monomial system A?(d) and reduced polynomials G(d) for a
given degree d. Then G(d) is a Gröbner basis for 〈f1, . . . , fs〉 if M(d?) has the same
reduced leading monomials A?(d) for a degree d? such that all S-polynomials of G(d)
lie in Md? .

Proof. Saying that M(d?) has the same reduced leading monomials A?(d) is
equivalent with saying that all S-polynomials have a zero remainder on division by
G(d). This is exactly the stop-criterion for Buchberger’s Algorithm [11, p.85].

Note that Buchberger’s Criterion implies that for all degrees d ≥ dG, the Macaulay
matrix MG(d) has the same reduced canonical decomposition as MA?(d). This implies
the following useful corollary.

Corollary 6.5. Let f1, . . . , fs be a multivariate polynomial system with a finite
number of affine roots. Then ∀d ≥ dG its reduced monomial set A?(d) will contain
for each indeterminate xi (1 ≤ i ≤ n) a pure component. Furthermore, B?(d) is then
the affine normal set.
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Proof. This follows from Theorem 5.7 and Buchberger’s Criterion that ∀ d ≥ dG
both MG(d) and MA?(d) have the same reduced monomial decomposition.

If it is known that the solution set of a polynomial ideal is zero-dimensional,
then detecting pure components in A?(d) allows to determine the degree dG. It then
becomes possible to numerically compute all affine roots without the computation of
a Gröbner basis. This is described in further detail in [12].

Example 6.1. Again, we revisit the polynomial system in C34 from Example 4.3.
We assume the polynomial system has a zero-dimensional solution set and start to
compute the reduced canonical decomposition from d = 4. Algorithm 5.1 returns

A?(4) = {x1 x3, x
3
1 x2, x

4
2}

which already contains 1 pure component: x4
2. The next pure component, x5

1, is re-
trieved for d = 7 in

A?(7) = {x1 x3, x
3
1 x2, x

4
2, x2 x

3
3, x

5
1}.

The last pure component, x5
3, is found for d = dG = 10. The Gröbner basis is therefore

G(10) as given in Example 5.2. Indeed, computing an exact Gröbner basis in Maple
and normalizing each polynomial results in G(10).

The ill-posedness of the canonical decomposition under the influence of noise
directly affects the computation of a Gröbner basis. As shown by Nagasaka in [29],
it is impossible to define an approximate Gröbner basis in the same sense as an
approximate GCD or approximate factorization of multivariate polynomials. Our
numerical experiments indicate that it is probably best to apply the preprocessing
step of removing ‘small’ nonzero coefficients and then to treat the remaining noisy
polynomial system as ‘exact’. In addition, Gröbner basis polynomials typically have
large integer coefficients. It is even possible that these coefficients fall out of the range
of the double precision standard. In this case it would be necessary to perform the
computations in higher precision.

7. Solving the Ideal Membership problem. Solving the ideal membership
problem for a non-homogeneous polynomial p is a rank test of the Macaulay matrix
as in (3.7) for a sufficiently large degree. We can now give a more practical upper
bound for this degree.

Theorem 7.1. Consider the ideal membership problem as described in Problem
3.1. Let G = {g1, . . . , gk} be a Gröbner basis of 〈f1, . . . , fs〉 and

Gp = {g ∈ G : LM(g) | LM(p)} and d0 = max
g ∈Gp

deg(g).

Then

(7.1) dI ≤ dG + deg(p)− d0.

Proof. Since G is a Gröbner basis ∃ g ∈ G : LM(g) | LM(p) and Gp is there-
fore never empty. Determining whether p ∈ 〈f1, . . . , fs〉 is equivalent with checking
whether the remainder of p on division by G is zero. Due to Lazard we know that
determining this remainder is equivalent with the reduction of the matrix

Q

(
M(d)
p

)
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to triangular form for a sufficiently large d with Q the column permutation as de-
scribed in Section 4. Suppose that g ∈ Gp and deg(g) = d0. The degree dI is
then such that it guarantees that LT(p)

LT(g) g ∈ MdI
. In the first division step of the

multivariate division algorithm to compute the remainder, p will be updated to

p← p− LT(p)
LT(g)

g.

The multivariate division algorithm guarantees that the new p will have a smaller
multidegree (according to the monomial ordering) [11, p.65]. In the next division step,
another g ∈ G such that LT(g)|LT(p) is required. Since p has a smaller multidegree,
the new g is also guaranteed to lie in MdI

. Therefore, all remaining steps of the
division algorithm can be performed within MdI

and the ideal membership problem
can be solved.

This means that in practice one can iteratively compute the reduced canonical
decomposition of M(d) using Algorithm 5.1, do the rank test for the ideal membership
problem and increase the degree as long as the rank test fails. At some point dG can
be determined and the iterations can stop as soon as d = dG + deg(p)− d0.

Example 7.1. As already mentioned in Example 3.2 the given polynomial p =
867x5

1−1560x3 x2 x1−2312x2
2 x1+1560x3 x

2
1+2104x2 x

2
1−1526x3

1+4896x2−2295x1

lies in M11. At d = 11 all pure components are found in A?(11) which implies that
the polynomial system has a finite affine solution set and dG = 11. The rank test also
succeeds, the numerical rank for both matrices in (3.7) is 300.

8. Conclusions. This article introduced the canonical decomposition of the vec-
tor space Cnd . An SVD-based algorithm was presented which computes both the canon-
ical and reduced decomposition reliably. It was also shown how under the presence of
noise the problem of finding the canonical decomposition is ill-posed. A preprocessing
of the coefficients was proposed to deal with this ill-posedness. Furthermore, the link
between the polynomials G(d) and a Gröbner basis was made. This resulted in a new
condition to determine the affine normal set for zero-dimensional ideals. Finally, it
was shown how the ideal membership problem can be solved by means of a rank test.

The polynomial growth of the dimensions of the Macaulay matrix can quickly
restrict the computation of the SVD. Further research is needed whether it is possible
to devise algorithms which have the robustness of the SVD for rank revealing and
exploit both the sparsity and the structure of the Macaulay matrix.
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[30] L. Pachter and B. Sturmfels, eds., Algebraic Statistics for Computational Biology, Cam-

bridge University Press, August 2005.
[31] Victor Y. Pan, Structured matrices and polynomials: unified superfast algorithms, Springer-

Verlag New York, Inc., New York, NY, USA, 2001.
[32] T. Sasaki, A Theory and an Algorithm of Approximate Gröbner Bases, in 2011 13th In-
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