
A FAST ITERATIVE ORTHOGONALIZATION SCHEME FOR THE
MACAULAY MATRIX ∗

KIM BATSELIER†, PHILIPPE DREESEN† AND BART DE MOOR †

Abstract. In this article we present a fast iterative orthogonalization scheme for two important
subspaces of the Macaulay matrix: its range and left null space. It requires a graded monomial or-
dering and exploits the resulting structure of the Macaulay matrix induced by this graded ordering.
The resulting orthogonal basis for the range will retain a similar structure as the Macaulay matrix
and is as a consequence sparse. The computed orthogonal basis for the left null space is dense but
typically has smaller dimensions. Two alternative implementations for the iterative orthogonaliza-
tion scheme are presented: one using the singular value decomposition and another using a sparse
rank revealing multifrontal QR decomposition. Numerical experiments show the effectiveness of the
proposed iterative orthogonalization scheme in both running time and required memory compared
to a standard orthogonalization. The sparse multifrontal QR implementation is superior in both
total run time and required memory at the cost of being slightly less reliable for determining the
numerical rank.

Key words. Macaulay matrix, orthogonal bases, range, null space, rank

AMS subject classifications. 15A03,15B05,15A18,15A23

1. Introduction. Many problems from algebraic geometry concerning multi-
variate polynomials can be phrased and solved in a numerical linear algebra setting.
A few examples are: solving a system of multivariate polynomials [3, 12], multivariate
polynomial division and elimination [4], computing an approximate LCM/GCD [2],
computing a numerical Gröbner basis and solving the ideal membership problem [5].
The algorithms described in these cited articles have the general structure as shown in
Algorithm 1.1. The goal is to compute some desired quantity X (e.g. the roots of the
polynomial system or a polynomial from which certain variables are eliminated). The
essential object in Algorithm 1.1 is the Macaulay matrix M(d). This matrix, defined
in Section 2, depends explicitly on the degree d ∈ N+ for which it is constructed.
Note that we use a different convention in this article compared to the previously
cited references. Coefficient vectors of polynomials will be column vectors in this ar-
ticle for the sake of readability as explained further on. The degree d? for which X
can be computed is in general not known beforehand. Algorithm 1.1 will therefore
iterate over increasing values of the degree. In each iteration, the Macaulay matrix
is constructed and orthogonal bases for either its range or left null space need to be
computed. These orthogonal bases are then used to compute X. Since the Macaulay
matrix is by definition rank-deficient, the first principal step is to determine its (nu-
merical) rank. The most robust way to determine the rank and find the orthogonal

∗Kim Batselier is a research assistant at the Katholieke Universiteit Leuven, Belgium.
Philippe Dreesen is supported by the Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT-Vlaanderen). Bart De Moor is a full professor at
the Katholieke Universiteit Leuven, Belgium. Research supported by Research Council KUL:
GOA/10/09 MaNet , PFV/10/002 (OPTEC), several PhD/postdoc & fellow grants, Flemish Gov-
ernment:IOF: IOF/KP/SCORES4CHEM,FWO: PhD/postdoc grants, projects: G.0588.09 (Brain-
machine), G.0377.09 (Mechatronics MPC), G.0377.12 (Structured systems),IWT: PhD Grants,
projects: SBO LeCoPro, SBO Climaqs, SBO POM, EUROSTARS SMART, iMinds 2012, Belgian
Federal Science Policy Office: IUAP P7/19 (DYSCO, Dynamical systems, control and optimization,
2012-2017),EU: ERNSI, FP7-EMBOCON (ICT-248940), FP7-SADCO (MC ITN-264735), ERC ST
HIGHWIND (259 166), ERC AdG A-DATADRIVE-B,COST: Action ICO806: IntelliCIS.
†Department of Electrical Engineering ESAT-SCD, KU Leuven / IBBT Future Health Depart-

ment, 3001 Leuven, Belgium

1

2 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

bases is the singular value decomposition (SVD) [13]. A less computational expen-
sive alternative is the rank-revealing QR decomposition. Both the SVD and the rank
revealing QR decomposition are considered in this article. If for the current iteration
the desired quantity X cannot be computed, then the degree d is incremented by one.

Algorithm 1.1. General Algorithm
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds

Output: desired output X
X ← ∅
d0 ← max(d1, . . . , ds)
while X = ∅ do
M(i)← construct Macaulay matrix for degree i
U ← orthogonal basis for range of M(i)
N ← orthogonal basis for left null space of M(i)
X ← try to compute desired output from U and/or N
if X = ∅ then
d← d+ 1

end if
end while

Previous implementations of this general algorithm do not exploit the structure of
the Macaulay matrix nor do they use earlier computations when recomputing the
orthogonal bases U,N for a higher degree. This is remedied by the iterative orthog-
onalization scheme presented in this article. The naive implementation of Algorithm
1.1 is considerably improved by

• reducing the computational complexity by working with a submatrix of M(d)
instead of the complete matrix,

• introducing an updating strategy for the orthogonal bases U,N which reuses
the orthogonal bases from the previous iteration,

• introducing a sparse implementation which uses a sparse matrix data struc-
ture to reduce the required memory.

The outline of this article is as follows. In Section 2 a short overview of required
definitions and notation is given. In Section 3 the main theorem and its proof are
presented from which the orthogonalization scheme is derived. The computational
complexity is analyzed in Section 4 for both Algorithm 1.1 and the proposed or-
thogonalization scheme. In Section 5 the application is discussed which will serve
to illustrate the effectiveness of the proposed method from numerical experiments in
Section 6. Finally, some concluding remarks are presented in Section 7.

2. Notation and Definitions. The vector space of all multivariate polyno-
mials over n variables up to degree d over C is denoted by Cn

d . Consequently the
ring of all multivariate polynomials in n variables is denoted by Cn. A canoni-
cal basis for this vector space consists of all monomials from degree 0 up to d. A
monomial xa = xa1

1 . . . xan
n has a multidegree (a1, . . . , an) ∈ Nn

0 and (total) degree
|a| =

∑n
i=1 ai. The degree of a polynomial p then corresponds with the highest total

degree of all monomials of p. Note that we can reconstruct the monomial xa from
its multidegree a. Furthermore, any ordering > we establish on the space Nn

0 will
give us an ordering on monomials: if a > b according to this ordering, we will also
say that xa > xb. The orthogonalization scheme derived in Section 3 requires the use
of a graded monomial ordering. Throughout the remainder of this article the follow-

ORTHOGONALIZATION MACAULAY MATRIX 3

ing graded ordering will be used. Note however that the iterative orthogonalization
scheme works for any graded ordering.

Definition 2.1. Degree negative lexicographic. Let a and b ∈ Nn
0 . We say

a >dnlex b if

|a| =
n∑

i=1

ai > |b| =
n∑

i=1

bi, or |a| = |b| and a >nlex b

where a >nlex b if, in the vector difference a − b ∈ Zn, the leftmost nonzero entry is
negative.

The ordering is graded because it first compares the degrees of the two monomials
and applies the negative lexicographic ordering when there is a tie. Once a monomial
ordering > is chosen, a polynomial can be uniquely identified with its coefficient vector
as illustrated in the following example.

Example 2.1. The polynomial f = 2 + 3x1 − 4x2 + x1x2 − 8x1x3 − 7x2
2 + 3x2

3 in
C2

3 is represented by the vector

f =



1 2
x1 3
x2 −4
x3 0
x2

1 0
x1x2 1
x1x3 −8
x2

2 −7
x2x3 0
x2

3 3


where the degree negative lex ordering of the monomials is indicated to the left of each
coefficient.

By convention a coefficient vector will always be a column vector. Note that this
is a different convention as used in [2, 4, 12]. This is for the sake of readability, it
avoids the need to use the transpose of all matrices in the proof of the main theorem.
Depending on the context we will use the label f for both a polynomial and its
coefficient vector. (.)T will denote the transpose of the matrix or vector and Ia the
square unit matrix of order a. Next we define the Macaulay matrix.

Definition 2.2. Given a set of polynomials f1, . . . , fs ∈ Cn, each of degree
di (i = 1, . . . , s) then the Macaulay matrix of degree d ≥ max(d1, . . . , ds) is the matrix
containing the coefficients of

(2.1) M(d) =
(
f1 x1f1 . . . xd−d1

n f1 f2 x1f2 . . . xd−ds
n fs

)
where each polynomial fi is multiplied with all monomials from degree 0 up to d− di

for all i = 1, . . . , s.
We will use the convention that M(d) is a q × p matrix whereas M(d + 1) is

q′ × p′. This implies of course that p′ = p+ ∆ p and q′ = q + ∆ q. The dimension of
the range of M(d) is the rank r and the dimension of its left null space m = q− r. An
orthogonal basis for the range of M(d) is hence q × r and will be denoted by U(d).
Likewise, an orthogonal basis for the left null space of M(d) is the q×m matrix N(d).
The Macaulay matrix is very sparse, especially for large degrees d. This sparsity is

4 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

quantified by the density of the matrix which is defined as the total number of nonzero
entries of M(d) divided by the total number of entries.

When a graded monomial ordering is used then there is always a column permu-
tation P of the Macaulay matrix M(d+ 1) such that

M(d+ 1) P =
(p ∆ p

q M(d) Ma

∆ q 0 Mb

)
where the Mb block contains all coefficients of monomials with total degree d+1. The
graded monomial ordering hence results in a sparse block quasi-Toeplitz structured
matrix. Now let

(2.2)
(∆ p

m N(d)TMa

∆ q Mb

)
= Q S V T

be the SVD of
(
MT

a N(d) MT
b

)T
. We denote the rank of this matrix by ∆ r. Suppose

without loss of generality that m+ ∆q > ∆p, then Q,S and V can be partitioned as

(∆ p

m N(d)TMa

∆ q Mb

)
=

(∆ r m′

m L1 K1

∆ q L2 K2

)(
Σ 0
0 0

) (
V T

1

V T
2

)
where Σ is diagonal and contains ∆r nonzero singular values. This partitioning will
be crucial in the proof of the main theorem in the next section.

3. The Orthogonalization Scheme. Now, all notation is in place to present
the following main theorem. The iterative orthogonalization scheme of the Macaulay
matrix is a direct application of this theorem.

Theorem 3.1. Let U(d), N(d),Ma,Mb, L1, L2,K1,K2 be the matrices as defined
in Section 2. Then the following relationships hold:

U(d+ 1) =
(
U(d) N(d)L1

0 L2

)
and N(d+ 1) =

(
N(d)K1

K2

)
.

Proof. For the sake of readability the degree (d) will be dropped from the notation
M(d), U(d), N(d). We start with the observation that the matrices

M(d+ 1) =
(
M Ma

0 Mb

)
,

(
U Ma

0 Mb

)
share the same range and left null space. Applying r Householder reflections onto the
first r columns of the rightmost matrix results in

(3.1)


q ∆ q

r UT 0
m NT 0
∆ q 0 I∆ q

 (r ∆ p

U Ma

0 Mb

)
=


r ∆ p

Ir UTMa

0 NTMa

0 Mb

.
The orthogonal matrix can be moved to the right-hand side to obtain

(3.2)
(r ∆ p

q U Ma

∆ q 0 Mb

)
=

(r m ∆ q

q U N 0
∆ q 0 0 I∆q

) 
r ∆ p

Ir UTMa

0 NTMa

0 Mb

.

ORTHOGONALIZATION MACAULAY MATRIX 5

From (3.1) it is straightforward to see that the rank increase

∆r , rankM(d+ 1)− rankM(d))

is given by

∆r = rank
(
NTMa

Mb

)
since

rankM(d+ 1) = rank
(
U Ma

0 Mb

)

= rank

Ir UTMa

0 NTMa

0 Mb

 .

The next step is to replace
(
MT

a N MT
b

)T by its SVD in (3.2) to obtain

(3.3)
(
U Ma

0 Mb

)
=
(
U N 0
0 0 I∆q

) (
Ir UTMa

0 QSV T

)
.

The Q can be factored out from the rightmost matrix in the following manner

(3.4)
(
Ir UTMa

0 QSV T

)
=


r ∆ r m′

r Ir 0 0
m 0 L1 K1

∆q 0 L2 K2

Ir UTMa

0 ΣV T
1

0 0

 .

Note that since ∆r is the increase in rank this implies that m′ = m + ∆q − ∆r =
m + ∆m is the dimension of the left null space of M(d + 1). Substituting (3.4) into
(3.3) results in

(3.5)
(
U Ma

0 Mb

)
=

(r ∆ r m′

q U NL1 NK1

∆q 0 L2 K2

) Ir UTMa

0 ΣV T
1

0 0

 .

The left matrix of the right-hand side is the product of two orthogonal matrices and
hence also orthogonal. The theorem follows from (3.5).

Observe that the orthogonal basis U(d + 1) retains a similar quasi-Toeplitz block
structure as M(d+ 1) and will therefore also be sparse. Theorem 3.1 can be immedi-
ately translated into Algorithm 3.1 to orthogonalize M(d). The algorithm starts for
the initial degree d0 , max(d1, . . . , ds). An orthogonal basis for the range and left null
space of M(d0) are computed from its SVD. The subsequent steps of the algorithm
are then to construct the extra rows

(
MT

a MT
b

)T and update the orthogonal bases
U(d), N(d) using Theorem 3.1. Considering the sparsity of M(d) and U(d), it would
be interesting to be able to use a sparse matrix data structure, like the column com-
pressed form [9, p.8]. This avoids storing the large amount of zero entries in memory.
A complete SVD is however not available for matrices using a sparse matrix data

6 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

structure but a rank revealing multifrontal QR decomposition [10] is. This allows us
to replace the rank test of (2.2) by

(3.6)
(
N(d)TMa

Mb

)
= Q R PT

where Q is orthogonal, R is upper triangular and P is a column permutation which
reduces fill-in of R. Furthermore, if

(
MT

a N(d) MT
b

)T is not of full column rank then
R can be partitioned as

R =
(
R11 R12

0 0

)

such that the numerical rank can be estimated from the number of nonzero diagonal
elements of R11. This naturally leads to an implementation of Theorem 3.1 with
matrices using a sparse matrix data structure. All SVDs are then replaced by sparse
rank revealing multifrontal QR decompositions and (3.5) is then given by

(
U Ma

0 Mb

)
=

(r ∆ r m′

q U NL1 NK1

∆q 0 L2 K2

) Ir UTMa

0 R11P
T
1 +R12P

T
2

0 0

 .

Algorithm 3.1. Iterative Orthogonalization of M(d)
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds, degree d
Output: orthogonal bases U(d), N(d)
d0 ← max(d1, . . . , ds)
U,N ← orthogonal bases for range and left null space of M(d0)
for i = d0 + 1 . . . d do

construct Ma,Mb for degree i
Q← SVD(

(
MT

a N MT
b

)T) or QR(
(
MT

a N MT
b

)T)(
L1 K1

L2 K2

)
← Q

U ←
(
U NL1

0 L2

)
N ←

(
NK1

K2

)
end for

It is now possible to adjust Algorithm 1.1 such that it uses the iterative orthog-
onalization scheme of Theorem 3.1. The pseudo-code for this update is shown in
Algorithm 3.2.

ORTHOGONALIZATION MACAULAY MATRIX 7

Algorithm 3.2. Updated Algorithm Macaulay matrix
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds

Output: desired output X
d← max(d1, . . . , ds)
U,N ← orthogonal bases for range and left null space of of M(d)
X ← try to compute desired output from U and/or N
if X = ∅ then
d← d+ 1

end if
while X = ∅ do

construct Ma,Mb for degree d
Q← SVD(

(
MT

a N MT
b

)T) or QR(
(
MT

a N MT
b

)T)
U,N ← update U,N using Q and Theorem 3.1
X ← try to compute desired output from U and N
if X = ∅ then
d← d+ 1

end if
end while

4. Computational Complexity. The most expensive computational step in
both Algorithm 1.1 and Algorithm 3.2 is the computation of the orthogonal bases. In
this section an estimate of the gain in computational complexity is derived for both
the SVD and sparse QR-based implementation.

4.1. SVD. We first provide an estimate on the total number of operations for
computing the SVD of a complete M(d). The number of rows q and the number of
columns p of M(d) are the following polynomials in d :

q(d) =
(
d+ n

n

)
=

dn

n!
+O(dn−1),

p(q) =
s∑

i=1

(
d− di + n

n

)
=

s dn

n!
+O(dn−1).

From these expressions it is easily seen that for most degrees the number of rows
will be smaller than the number of columns. We will assume from here on that the
number of columns is always bigger than the number of rows. In each iteration of
Algorithm 1.1 the SVD is computed from the complete Macaulay matrix. Not the full
SVD is required however. Only the left singular vectors Q and the diagonal matrix
S are needed. This takes about 4p(d)q(d)2 + 8q(d)3 operations [13, p. 254]. We
approximate both q(d), p(d) by their highest order term in order to have an estimate
on their order of magnitude. Substituting this into the expression for the number of
operations results in the following estimate for the computational cost of the SVD in
Algorithm 1.1

(4.1) 4
(
sdn

n!

) (
dn

n!

)2

+ 8
(
dn

n!

)3

=
4(s+ 2)

(n!)3
d3n.

The SVD-step in Algorithm 3.2 is applied on a (m + ∆q) × ∆p matrix. m(d) is a
polynomial of maximal degree n − 1. The reason for this is explained in algebraic

8 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

geometry where m(d) is called the projective Hilbert Polynomial [8, p.462]. The
degree of this polynomial is the dimension of the solution set of f1, . . . , fs, which
is maximally n − 1. Obviously, the highest order terms of ∆ p(d) and ∆q(d) are
sdn−1/(n − 1!) and dn−1/(n − 1!) respectively. Retaining the highest order terms in
the expression for the total amount of operations gives us the following estimate for
the cost of the SVD in Algorithm 3.2

(4.2) 4
(
sdn−1

(n− 1)!

) (
dn−1

(n− 1)!

)2

+ 8
(

dn−1

(n− 1)!

)3

=
4(s+ 2)
(n− 1)!3

d3n−3.

Dividing (4.1) by (4.2) leads to an estimated gain of d3/n3 operations when using
the iterative orthogonalization scheme. This gain can be quite substantial when the
degree d is large. Memory is still the bottleneck for orthogonalizing M(d) for large
degrees however. Although the SVD of a smaller submatrix needs to be computed,
it still grows with ≈ O(dn−1). This polynomial growth is unfortunately inherent to
problems which involve multivariate polynomials.

4.2. rank revealing QR decomposition. In order to describe the computa-
tional complexity of the rank revealing QR decomposition the assumption is made
that Businger-Golub column pivoting [7] is used. This serves as an upper bound on
the complexity since it does not take the sparsity pattern of the Macaulay matrix into
account. In practice, a sparse multifrontal QR decomposition algorithm can be used
which will exploit the structure.

For a q(d)× p(d) Macaulay matrix of rank r(d), the computational complexity of
the Businger-Golub QR factorization is given by 4p(d)q(d)r(d)−2r(d)2(p(d)+q(d))+
4r(d)3/3 [13, p. 250]. In this expression r(d) can be replaced by q(d) −m(d) where
m(d) is again a polynomial of maximal degree n− 1. Like before, only higher order
terms are retained for q(d), p(d) and substituted into 4p(d)q(d)r(d) − 2r(d)2(p(d) +
q(d)) + 4r(d)3/3 to obtain

(4.3) 4
sd3n

(n!)3
− 2(s+ 1)

d3n

(n!)3
+

4
3
d3n

(n!)3
=

2(3s− 1)
3(n!)3

d3n.

The same reasoning can be applied for the (m+ ∆q)×∆p submatrix which leads to

4
sd3n−3

((n− 1)!)3
− 2(s+ 1)

d3n−3

((n− 1)!)3
+

4
3

d3n−3

((n− 1)!)3
=

2(3s− 1)
3((n− 1)!)3

d3n−3

and the same gain of d3/n3 operations when using the iterative orthogonalization
scheme. Comparing (4.1) with (4.3) reveals that the QR decomposition will be about

6(s+ 2)
(3s− 1)

times faster than the SVD. This factor reaches 3 for s = 5 and then asymptotically
approaches 2 in the limit for large s.

5. Application. In Section 6 the performance for Algorithm 1.1 and its updated
version, Algorithm 3.2, will be compared for the following application.

Problem 5.1. Given a multivariate polynomial system f1, . . . , fs ∈ Cn with a
finite number of affine roots and a monomial xi (i ∈ {1, . . . , s}). Find a univariate
polynomial f(xi) which lies in the polynomial ideal 〈f1, . . . , fs〉.

ORTHOGONALIZATION MACAULAY MATRIX 9

The requirement that the polynomial system f1, . . . , fs has a finite number of
affine roots is essential since otherwise it is not guaranteed that for every monomial
xi such a univariate polynomial f(xi) exists. As described in [4], f(xi) lies in the
intersection

range(U(d)) ∩ span{1, xi, x
2
i , x

3
i , . . . , x

d
i }

for an unknown degree d. This requirement is easily understood:

f(xi) ∈ range(U(d))

since it belongs to the polynomial ideal 〈f1, . . . , fs〉 and

f(xi) ∈ span{1, xi, x
2
i , x

3
i , . . . , x

d
i }

implies that it is univariate in xi. The coefficient matrix of a canonical basis for
span{1, xi, x

2
i , x

3
i , . . . , x

d
i } will be denoted by E(d). Note that this matrix is orthogo-

nal. Algorithm 1.1 and 3.2 can then be used to find X = f(xi). Every iteration one
needs to check whether there is a non-empty intersection between the range of M(d)
and E(d). This can be done by inspecting the smallest principal angle between these
two vector spaces. When this angle is zero, f(xi) can then be computed as a basis
vector for the intersection. As described in [6, p. 582-583] and [14, p. 6], the sine of
the smallest principal angle between the range of U(d) and E(d) is the the smallest
singular value µd+1 of E(d)−U(d)U(d)T E(d). The columns of this q(d)× d+ 1 ma-
trix span the orthogonal projection of span{1, xi, x

2
i , x

3
i , . . . , x

d
i } onto the orthogonal

complement of range(U(d)). If there is a non-empty intersection, then an orthonor-
mal basis vector for this vector space is the right singular vector zd+1 corresponding
with µd+1. This basis vector is hence also the desired univariate polynomial f(xi).
Observe that E(d)− U(d)U(d)T E(d) can be replaced by N(d)N(d)TE(d) since

E(d)− U(d)U(d)T E(d) = (I − U(d)U(d)T)E(d)
= N(d)N(d)T E(d)

which means that U(d) never needs to be explicitly kept during the iterations. The
right singular vectors for N(d)N(d)TE(d) are identical to the right singular vectors
of the m(d) × (d + 1) matrix N(d)TE(d) which is much smaller than the original
q(d) × (d + 1) matrix. The complete algorithm to solve Problem 5.1 using the it-
erative orthogonalization scheme is presented in Algorithm 5.1. A tolerance τ is
introduced which is used to decide the numerical rank and whether the principal an-
gle is numerically zero. Note that some steps like the initial SVD/QR of M(d) and
the construction of the extra columns Ma,Mb are not mentioned anymore for the sake
of readability. They are assumed implicitly. Algorithm 5.1 to solve Problem 5.1 is
easily derived using the structure of Algorithm 1.1.

10 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

Algorithm 5.1. Solving Problem 5.1
Input: polynomials f1, . . . , fs of degrees d1, . . . , ds, monomial xi, tolerance τ
Output: univariate f(xi)
f(xi)← ∅
d← max(d1, . . . , ds)
N ← orthogonal bases for left null space of M(d)
E ← canonical basis for span{1, xi, x

2
i , x

3
i , . . . , x

d
i }

[W S Z]← SVD(N(d)T E(d))
if arcsin(µd+1) < τ then
f(xi)← zd+1

else
d← d+ 1

end if
while f(xi) = ∅ do
N ← update N using Theorem 3.1
E ← canonical basis for span{1, xi, x

2
i , x

3
i , . . . , x

d
i }

[W S Z]← SVD(N(d)T E(d))
if arcsin(µd+1) < τ then
f(xi)← zd+1

else
d← d+ 1

end if
end while

5.1. Choosing the numerical tolerance τ . We assume that all computations
are performed in double precision. This sets the machine precision to ε ≈ 2.22×10−16.
A crucial step in the iterative algorithm is the determination of the numerical rank.
The determination of an incorrect numerical rank during one of the iterations affects
all consequent iterations. A good choice for the numerical tolerance is therefore of
the utmost importance to guarantee a correct result.

For the SVD-based approach, numerical experiments indicate that a ‘standard’
choice of τ = max(q(d), p(d)) ||M(d)||2 ε works fairly well for most cases. Let σ1 ≥
. . . ≥ σm+∆p be the singular values of

(
MT

a N MT
b

)T , then the numerical rank ∆r is
chosen such that

σ1 ≥ . . . ≥ σ∆r ≥ τ ≥ σ∆r+1 ≥ . . . ≥ σm+∆p.

The approx-rank gap σ∆r/σ∆r+1 [15, p.920] then serves as a measure of how well the
numerical rank is defined. Indeed, if there is a large gap between σ∆r and σ∆r+1 and τ
lies between these two values then small changes in τ will not affect the determination
of the numerical rank. When the default value for the numerical tolerance fails, one
could try to determine the numerical rank such that the approxi-rank gap is maximal.
This will be explored in numerical experiments in Section 6.

The sparse multifrontal QR decomposition method from [10], SuiteSparseQR,
uses the numerical tolerance τ = 20 (m+ ∆p+ ∆q) εD where D is the largest 2-norm
of any row of

(
MT

a N MT
b

)T . The numerical rank is then estimated as the number of
nonzero diagonal entries. The rank-revealing QR decomposition is known to be less
reliable for the rank determination. It is reported in [10] that SuiteSparseQR is able
to correctly determine the correct numerical rank for about two-thirds of the rank
deficient matrices in the University of Florida Sparse Matrix Collection [11]. The

ORTHOGONALIZATION MACAULAY MATRIX 11

numerical rank for many of those matrices is ill-defined. If the numerical rank was
very well-defined (approxi-rank gap > 103), then 95 % of the time the numerical rank
was correctly determined.

We have observed that dense polynomial systems for which every possible mono-
mial has a nonzero coefficient tend to produce Macaulay matrices for which it is
difficult to determine the rank. The difficulty lies not in a small approxi-rank gap
but rather in a failing of the default choices for the tolerance. For these cases it is
recommended for the user to manually check either the singular values or the diagonal
elements of R. This is illustrated in the next section.

6. Numerical Experiments. The orthogonalization scheme of Algorithm 3.1
has been implemented in Matlab [16] and is freely available on request. All numerical
experiments were performed on a 2.66 GHz quad-core desktop computer with 8 GB
RAM using 64 bit Matlab. The effectiveness of the orthogonalization scheme is illus-
trated by comparing the run times of Algorithms 1.1 (using the SVD) and 5.1 when
solving Problem 5.1 for both the SVD and sparse QR-based approach. Let f̃(xi) be
the numerical result of either Algorithm 1.1 or 5.1 and f(xi) the exact result. Then
the forward error e , ||f̃(xi)−f(xi)||2 will serve as a measure for the numerical accu-
racy of the two algorithms. The exact result f(xi) was computed in Maple(TM) [1].
Since f̃(xi) is a unit vector, f(xi) is first divided by its 2-norm before computing e. In
addition to the run times, the required memory to store the matrices during the or-
thogonalization is reported for d = d?. For Algorithm 1.1 this is the memory required
to store M(d?). Algorithm 3.1 needs to store U(d?−1), N(d?−1),

(
MT

a MT
b

)T using
either a dense or sparse matrix data structure. The total amount of required memory
to store these three matrices will also be reported for the full and sparse case. Note
that for the elimination algorithm, as mentioned before, it is actually not necessary
to keep the U(d) matrices. The reported memory requirement in this section however
is for the full orthogonalization of M(d).

6.1. Example 1. In the first numerical experiment the capability of the algo-
rithms to deal with high total degrees is tested. The polynomial system consists of 3
polynomials in 3 unknowns of total degree 12 f1 : x12

1 + x12
2 + x12

3 − 4 = 0
f2 : x12

1 + 2x12
2 − 5 = 0

f3 : x6
1 x

6
3 − 1 = 0.

The corresponding univariate polynomials are all of degree 24 and are found at
d? = 24. The coefficient vectors of f1, f2, f3 are very sparse and hence the Macaulay
matrix is also very sparse. The density of the 2925×1365 matrix M(24) is 0.13%. The
sparse multifrontal QR method is therefore expected to perform better which is indeed
seen from Table 6.1. The sparse multifrontal QR method runs respectively 15 and 5
times faster compared to Algorithm 1.1 and the SVD-based Algorithm 5.1. The for-
ward errors e are all below the numerical tolerance τ ≈ 10−13(SVD), τ ≈ 10−12(QR).
Table 6.2 reports the required memory in order to find the orthogonal bases U,N for
d = 24. Surprisingly, the SVD-based iterative orthogonalization needs more mem-
ory than computing the SVD of M(24). In this particular case the orthogonal bases
U(23), N(23) and

(
MT

a MT
b

)T are very sparse. This explains why using a sparse
matrix data structure for the same matrices requires almost 300 times less memory.

12 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

Table 6.1
Run Times and Errors: Example 1

Alg. 1.1 Alg. 5.1 Alg. 5.1 e e e
SVD QR Alg 1.1 SVD QR

[seconds] [seconds] [seconds]
f(x1) 15.23 5.10 1.05 2.49e−16 7.56e−16 1.35e−15
f(x2) 14.84 4.79 1.00 8.71e−16 2.40e−16 5.98e−16
f(x3) 14.89 4.81 1.00 1.04e−15 4.66e−16 3.31e−15

Table 6.2
Required memory for inputs of orthogonalization: Example 1

d? M(d?) Alg. 3.1 full Alg. 3.1 sparse
[MB] [MB] [MB]

24 30.46 57.67 0.1966

6.2. Example 2. For the next numerical experiment the number of variables is
increased to 6 and the degrees are maximally 4:

x2
1 + x2

3 − 1 = 0
x2

2 + x2
4 − 1 = 0

x5 x
3
3 + x6 x

3
4 − 1.2 = 0

x5 x
3
1 + x6 x

3
2 − 1.2 = 0

x5 x
2
3 x1 + x6 x

2
4 x2 − 0.7 = 0

x5 x3 x
2
1 + x6 x4 x

2
2 − 0.7 = 0.

The univariate polynomials f(x1) up to f(x4) are of degree 4 and f(x5), f(x6) are of
degree 2. They are all found for d? = 10 at which M(10) is 9702× 8008. Again, the
polynomials of the given system are very sparse resulting in a density of M(10) of
0.037%. From Table 6.3 it is seen that the sparse multifrontal QR method is again the
fasted with the same numerical accuracy. The numerical tolerance for the SVD-based
approach is τ ≈ 10−12 and for the QR-based approach τ ≈ 10−11. Note that only
f(x1) and f(x5) are reported since the results are the same for the remaining variables.
The iterative QR method is approximately 36 and 4.5 times faster than Algorithm 1.1
and the iterative SVD method respectively. The gain in required memory when using
the sparse matrix data structure compared to the dense naive and dense iterative
orthogonalization is about 13 and 6 times respectively.

Table 6.3
Run Times and Errors: Example 2

Alg. 1.1 Alg. 5.1 Alg. 5.1 e e e
SVD QR Alg 1.1 SVD QR

[seconds] [seconds] [seconds]
f(x1) 1035.28 138.29 28.61 1.91e−14 1.09e−14 4.29e−14
f(x5) 1059.94 136.83 29.40 4.41e−14 2.31e−13 6.12e−15

ORTHOGONALIZATION MACAULAY MATRIX 13

Table 6.4
Required memory for inputs of orthogonalization: Example 2

d? M(d?) Alg. 3.1 full Alg. 3.1 sparse
[MB] [MB] [MB]

10 592.75 290.09 44.21

6.3. Example 3. The number of variables and polynomials is further increased
to 10 polynomials in 10 variables of total degree 2

5x1 x2 + 5x1 + 3x2 + 55 = 0
7x2 x3 + 9x2 + 9x3 + 19 = 0
3x3 x4 + 6x3 + 5x4 − 4 = 0

6x4 x5 + 6x4 + 7x5 + 118 = 0
x5 x6 + 3x5 + 9x6 + 27 = 0
6x6 x7 + 7x6 + x7 + 72 = 0
9x7 x8 + 7x7 + x8 + 35 = 0

4x8 x9 + 4x8 + 6x9 + 16 = 0
8x9 x10 + 4x9 + 3x10 − 51 = 0

3x1 x10 − 6x1 + x10 + 5 = 0.

The corresponding univariate polynomials are also all of second degree and are found
at d? = 6. The Macaulay matrix M(6) is then 8008× 10010 with a density of 0.05%.
Again, the run times and forward errors for only f(x1), f(x3), f(x5) are reported
in Table 6.5 for the same reason as in Example 6.2. The iterative sparse QR-based
method is respectively about 33 and 5 times faster than Algorithm 1.1 and the iterative
SVD-based method and requires about 10 times less memory. Numerical tolerances
are τ ≈ 10−12 for the SVD-based method and τ ≈ 10−11 for the QR-based method.
The forward errors are of the same order of magnitude or smaller than these tolerances.

Table 6.5
Run Times and Errors: Example 3

Alg. 1.1 Alg. 5.1 Alg. 5.1 e e e
SVD QR Alg 1.1 SVD QR

[seconds] [seconds] [seconds]
f(x1) 2234.77 372.26 66.92 4.85e−13 3.24e−13 1.92e−13
f(x3) 2218.01 365.34 65.77 2.76e−12 5.84e−12 3.92e−12
f(x5) 2234.98 365.51 66.07 4.30e−13 2.33e−13 8.40e−14

Table 6.6
Required memory for inputs of orthogonalization: Example 3

d? M(d?) Alg. 3.1 full Alg. 3.1 sparse
[MB] [MB] [MB]

6 611.57 505.64 50.32

6.4. Example 4. In this example we illustrate the failure of the default numer-
ical tolerances when working with dense polynomial systems. The polynomial system

14 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

consists of 3 polynomials, each of degree 4. Each polynomial consists of 35 terms,
corresponding to all possible monomials in 3 variables from degrees 0 up to 4. The
integer coefficients are uniformly drawn from the interval [−100, 100]. Normalizing
the coefficient vector of each polynomial such that it is a unit vector keeps the singular
values small. For this particular instance the rang test fails at degree d = 23. The
matrix

(
MT

a N MT
b

)T is then 570 × 340. We first discuss the SVD-based algorithm.
The numerical tolerance is τ = 1.26× 10−13. The singular values σ276 up to σ280 are

{0.1266, 1.72× 10−13, 1.30× 10−13, 1.05× 10−13, 5.01× 10−14}.

Using the default tolerance would determine the numerical rank to be 278 with a cor-
responding approxi-rank gap of 1.24. The numerical rank however is well-determined
to be 276 with an approxi-rank gap of 7.34 1011. It is clear from this example that
maximizing the approxi-rank gap over all pairs of consecutive singular values would
correctly retrieve the numerical rank. Care needs to be taken on how this maximiza-
tion is carried out since it is possible that there is more than one large gap.

The QR-based algorithm suffers from the same problem. In contrast to the sin-
gular values, the diagonal entries of R, denoted by rii, are not all positive nor sorted
in descending order. We therefore denote the values of |rii|, sorted in descending
order, by sj where j runs from 1 to min(m + ∆q,∆p). One can then do a similar
analysis on sj as with the singular values. At d = 10 the default numerical tol-
erance is τ = 1.11 × 10−12 and the last two nonzero elements of sj for d = 10 are
s78 = 0.044, s79 = 2.79×10−12. The numerical rank determined from using the default
tolerance is 79 while the singular values indicate it should be 78 with an approxi-rank
gap of 2.34× 1012. Maximizing the ratio of two consecutive nonzero sj values would
also in this case retrieve the correct numerical rank.

6.5. Example 5. The following polynomial system demonstrates the failure of
the rank revealing QR decomposition to correctly determine the rank. As will be
shown for the degree d = 8, this failure is not related to the default values of the
numerical tolerances. Consider the following polynomial system in C4

2 :
2x2

4 + 2x2
3 + 2 y2 + 2x2

1 − x1 = 0
2x3 x4 + 2x2 x3 + 2x1 x2 − x2 = 0

2x2 x4 + 2x1 x3 + x2
2 − x3 = 0

2x4 + 2x3 + 2x2 + x1 − 1 = 0.

At d = 7 the default tolerance for the QR-based orthogonalization fails. Inspecting
s120 = and s121 = shows that the numerical rank should be 120 instead of 121 although
the default tolerance is τ = 1.69 × 10−12. The SVD-based method confirms the
numerical rank of 120 with an approxi-rank gap of σ120/σ121 = 2.85 × 1014. At
d = 8 the numerical rank is estimated by the rank revealing QR to be 166. Indeed,
the numerical tolerance is τ = 2.27 × 10−12 and s166 =. The SVD-based algorithm
however shows that the numerical rank is 165 and well determined with an approxi-
rank gap σ165/σ166 = 2.10× 1014.

Remarkably, in spite of this wrong numerical rank, the QR-based elimination
algorithm still retrieves the correct univariate polynomials as demonstrated in Table
6.7. Both f(x1) and f(x4) are of degree 8 and are found at d = 8. The numerical
tolerances for d = 8 are ≈ 10−12 and all forward errors are a few orders of magnitude
larger. This indicates a loss of accuracy due to numerical computations. This loss
of accuracy is largest for the sparse QR-based algorithm. Due to the relatively small

ORTHOGONALIZATION MACAULAY MATRIX 15

size of
(
MT

a N MT
b

)T
, 252× 8, there is only a modest improvement in both total run

time and required memory (Table 6.8) when using the iterative orthogonalization.

Table 6.7
Run Times and Errors: Example 5

Alg. 1.1 Alg. 5.1 Alg. 5.1 e e e
SVD QR Alg 1.1 SVD QR

[seconds] [seconds] [seconds]
f(x1) 2.81 1.75 1.54 1.22e−10 1.37e−10 7.05e−8
f(x4) 2.97 1.61 1.69 7.46e−11 1.35e−10 1.90e−8

Table 6.8
Required memory for inputs of orthogonalization: Example 5

d? M(d?) Alg. 3.1 full Alg. 3.1 sparse
[MB] [MB] [MB]

8 3.62 2.23 1.01

7. Conclusion. We have presented an iterative algorithm which computes an
orthogonal bases for the range and the left null space of the Macaulay matrix. Both an
SVD-based and sparse QR-based implementation were discussed. Numerical experi-
ments indicate that the sparse QR-based implementation runs up to 30 times faster
and uses at least 10 times less memory compared to a naive full orthogonalization
using Algorithm 1.1. This significant gain in run time and required memory comes at
the cost of a slightly less reliable rank test compared to the SVD as demonstrated in
Example 5. The performance of the SVD-based implementation lies in between the
performance of Algorithm 1.1 and the QR-based implementation.

8. Acknowledgements.
REFERENCES

[1] Maple 16, Maplesoft, a division of Waterloo Maple Inc, 2012. Waterloo, Ontario.
[2] K. Batselier, P. Dreesen, and B. De Moor, A geometrical approach to finding multivari-

ate approximate LCMs and GCDs. Accepted for publication in Linear Algebra and its
Applications, 2012.

[3] K. Batselier, P. Dreesen, and B. De Moor, Prediction Error Method Identification is an
Eigenvalue Problem, Proc 16th IFAC Symposium on System Identification (SYSID 2012),
2012, pp. 221–226.

[4] K. Batselier, P. Dreesen, and B. De Moor, The Geometry of Multivariate Polynomial
Division and Elimination. Accepted for publication in SIAM Journal on Matrix Analysis
and Applications, 2012.

[5] K Batselier, P Dreesen, and B De Moor, Numerical Polynomial Algebra: The Canonical
Decomposition and Numerical Gröbner Bases. Submitted to SIMAX, 2013.

[6] Å Björck and G. H. Golub, Numerical Methods for Computing Angles Between Linear
Subspaces, Mathematics of Computation, 27 (1973), pp. pp. 579–594.

[7] P. Businger and G.H. Golub, Linear Least Squares Solutions by Householder Transforma-
tions, Numerische Mathematik, 7 (1965), pp. 269–276.

[8] D. A. Cox, J. B. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag,
third ed., 2007.

[9] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2),
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.

16 KIM BATSELIER, PHILIPPE DREESEN, BART DE MOOR

[10] , Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR
Factorization, ACM Transactions on Mathematical Software, 38 (2011).

[11] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Softw., 38 (2011), pp. 1:1–1:25.

[12] P. Dreesen, K. Batselier, and B. De Moor, Back to the roots: Polynomial system solv-
ing, linear algebra, systems theory, Proc 16th IFAC Symposium on System Identification
(SYSID 2012), 2012, pp. 1203–1208.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, 3rd ed., Oct. 1996.

[14] A.V. Knyazev and M.E. Argentati, Principal angles between subspaces in an A-based scalar
product: Algorithms and perturbation estimates, SIAM Journal on Scientific Computing,
23 (2002), pp. 2008–2040.

[15] T.Y. Li and Z. Zeng, A rank-revealing method with updating, downdating, and applications,
SIAM Journal on Matrix Analysis and Applications, 26 (2005), pp. 918–946.

[16] MATLAB R2012a, The Mathworks Inc., 2012. Natick, Massachusetts.

