
A Numerical Linear Algebra Framework for Solving

Problems with Multivariate Polynomials

KU LEUVEN
Faculty of Engineering Science
Department of Electrical Engineering
STADIUS
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Kim Batselier

Jury: Dissertation presented
Prof. dr. ir. Hendrik Van Brussel, chairman in partial fulfillment of the
Prof. dr. ir. B. De Moor, promotor requirements for the degree
Prof. dr. ir. J.A.K. Suykens of Doctor in Engineering
Prof. dr. ir. J. Vandewalle
Prof. dr. ir. K. Meerbergen
Prof. dr. ir. J. Schoukens

(Vrĳe Universiteit Brussel)
Prof. dr. B. Hanzon

(University College Cork)

September 2013

c© KU Leuven – Faculty of Engineering Science
Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wĳze ook zonder voorafgaande schriftelĳke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

D/2013/7515/89
ISBN 978-94-6018-703-2

Voorwoord

Dit doctoraatswerk zou nooit tot stand kunnen gekomen zĳn zonder de bĳdrage
van vele mensen.

Vooreerst wil ik mĳn promotor Prof. Bart De Moor bedanken. Niet alleen heeft
hĳ mĳ de kans gegeven om een doctoraat te starten maar daarnaast heeft hĳ mĳ
ook ingeleid in de wondere wereld van veeltermen en lineaire algebra. Ik zal niet
snel onze meetings vergeten waarin we het niet alleen hadden over oplossingen op
oneindig, de Hilbert functie en lineaire algebra maar ook over algemene relativiteit
en kwantummechanica.

Ik zou ook graag alle leden van mĳn begeleidingscommissie en examencommissie
willen bedanken. Prof. Yves Moreau, voor de interesse in mĳn onderzoek en de
feedback. Prof. Johan Suykens, voor de goede discussies tĳdens de Alma lunches,
de interesse in mĳn onderzoek en onmisbare feedback vooral tĳdens de eerste
jaren van het doctoraat. Prof. Joos Vandewalle, voor de raad en steun en het
vertrouwen dat hĳ me heeft gegeven voor het uitwerken van de Junior College
Wiskunde module. Prof. Karl Meerbergen, voor de hulp met numerieke aspecten
en mĳ in te wĳden tot de wereld van de Krylov subspace methodes. Prof. Johan
Schoukens en Prof. Bernard Hanzon voor het nalezen van de tekst en de kritische
vragen en opmerkingen en Prof. Hendrik Van Brussel om als voorzitter van mĳn
jury op te treden.

Ik had het geluk een compagnon te hebben tĳdens het doctoraat. Iemand waarmee
ik samen kon uitvissen hoe het nu zat met die Macaulay matrix en multivariate
veeltermen. Philippe, we hebben samen een lange weg afgelegd en het doctoraat
zou nooit zĳn geweest wat het nu is zonder jouw vriendschap en steun. Je hebt
bovendien niet alleen op professioneel vlak een lange weg afgelegd. Ik heb je ook
zien evolueren van vrĳgezel tot echtgenoot en van echtgenoot tot vader. Ik wens
dan ook jou, Gülin en Maren Mina het allerbeste toe!

I would also like to thank all colleagues and friends for the many enjoyable hours
we have spent together: Dries, Maarten, Pieter, Kris, Nico, Raf, Niels, Tillmann,
Marco, Carlos, Rocco, Mauricio, Siamak, Fabian, Xiaolin, Vilen, Raghvendra, Lei,

i

ii

Tom, Toni, Marko, Maarten Driesen, Jef, Eisuke, Kristien, Ozlëm, Claudia and
the many others.

Graag zou ik ook Ida Tassens, John Vos en Maarten en Liesbeth willen bedanken
voor de administratieve en technische ondersteuning tĳdens het doctoraat.

Ten slotte zou ik ook graag mĳn ouders, grootouders, broer en alle andere
familieleden willen bedanken voor de vele steun. Jiang Lai, thank you for all
your encouragement and support! Let us now continue to work for our happy
future together.

Kim Batselier,
Leuven 2013

Abstract

Multivariate polynomials are ubiquitous in engineering. Not only are they a
natural modelling tool, many parameter estimation problems can also be written
as finding the roots of a multivariate polynomial system. Most computational
methods in this setting are symbolical. In fact, a whole domain of research called
computer algebra sprung into being to develop and study symbolical algorithms
for problems with multivariate polynomials. This has somehow prevented the
growth of a numerical approach to these problems. This thesis bridges this gap
to numerical methods by developing a numerical linear algebra framework that
allows us to solve problems with multivariate polynomials. The two main tools
in this polynomial numerical linear algebra (PLNA) framework are the singular
value decomposition (SVD) and rank-revealing QR decomposition.

First, we consider three basic operations on multivariate polynomials: addition,
multiplication and division, and describe their corresponding operations in the
PNLA framework: vector addition, vector matrix multiplication and vector
decomposition along subspaces. Next, we introduce the Macaulay matrix and
provide interpretations for three of its fundamental subspaces: its row space,
its null space and its left null space. Orthogonal bases for these subspaces are
crucial for the numerical backward stability of the algorithms and hence a recursive
orthogonalization scheme is developed. This scheme exploits both the sparsity and
structure of the Macaulay matrix. We then introduce the canonical decomposition
of the vector space of multivariate polynomials. This concept will be crucial as it
provides a stop criterion for many of the algorithms that are developed. Finally, we
discuss 7 different applications with corresponding algorithms. These are finding a
Gröbner basis, computing all affine roots of a polynomial system, solving the ideal
membership problem, doing the syzygy analysis, multivariate elimination, finding
approximate least common multiples and greatest common divisors and removing
multiplicities of affine roots.

iii

List of symbols

Cn polynomial ring of polynomials in n variables over C

Cnd vector space of n-variate polynomials up to degree d

Pn polynomial ring of n+ 1-variate homogeneous polynomials

Pnd vector space of n+ 1-variate homogeneous polynomials of
degree d

f1, . . . , fs polynomial system of s polynomials in n variables

fh1 , . . . , f
h
s polynomial system of s homogeneous polynomials in
n+ 1 variables

D Divisor matrix for n-variate polynomials p, f1, . . . , fs

D row space of the divisor matrix D

M(d) Macaulay matrix of degree d for a polynomial system f1, . . . , fs

Md row space of the Macaulay matrix M(d)

M′d dual vector space of Md
Mod annihilator of Md
p(d) number of rows of M(d)

q(d) number of columns of M(d)

r(d) rank of M(d)

c(d) nullity of M(d)

l(d) nullity of M(d)T

N(d) orthogonal basis null space of M(d)

U(d) orthogonal basis row space of M(d)

K generalized Vandermonde matrix

∂j |z differential functional evaluated in a point z

A† Moore-Penrose pseudoinverse of matrix A

v

vi

Ad vector space spanned by linearly independent leading monomials
in Md

Bd vector space spanned by linearly dependent leading monomials
in Md

〈f1, . . . , fs〉 polynomial ideal generated by f1, . . . , fs√
I radical polynomial ideal of 〈f1, . . . , fs〉
S(f1, f2) S-polynomial of multivariate polynomials f1, f2

pred square-free part of a univariate polynomial p

LCM least common multiple

GCD greatest common divisor

Contents

Contents vii

1 Introduction 1

1.1 Motivating Problems . 3

1.1.1 Prediction Error Method System Identification 3

1.1.2 Maximum Likelihood Estimation of Mixtures of Multinomial
Distributions . 7

1.1.3 Blind Image Deconvolution 10

1.2 Contributions . 14

1.2.1 Polynomial Numerical Linear Algebra Framework 14

1.2.2 Bounds for the singular values and condition number of the
multiplication matrix and Macaulay matrix 14

1.2.3 Recursive orthogonalization algorithm for the Macaulay
matrix . 15

1.2.4 Interpretations and the introduction of the canonical decom-
position . 15

1.3 Chapter overview of the thesis . 15

2 Basic Operations on Polynomials 21

2.1 Multivariate polynomials as vectors 21

2.2 Multivariate polynomial Addition 22

2.3 Multivariate Polynomial Multiplication 23

vii

viii CONTENTS

2.3.1 Multiplication matrix . 23

2.3.2 Condition number . 25

2.4 Multivariate Polynomial Division 30

2.4.1 Divisor matrix . 31

2.4.2 Quotient Space . 32

2.4.3 Nonuniqueness of quotient 34

2.4.4 Nonuniqueness of remainder 34

2.4.5 The Geometry of Polynomial Division 38

2.4.6 Algorithm & Numerical Implementation 39

2.4.7 Numerical Experiments . 42

2.4.8 Division by a Gröbner Basis 43

2.4.9 Buchberger’s Algorithm . 44

3 Macaulay matrix 47

3.1 Definition . 47

3.2 Size, number of nonzero coefficients and density 49

3.3 Upper bound on largest singular value 51

3.4 Row space . 56

3.4.1 Affine interpretation . 57

3.4.2 Projective interpretation . 58

3.5 Left null space . 60

3.5.1 Syzygy analysis . 60

3.5.2 Degree of regularity . 65

3.6 Null space . 66

3.6.1 Link with projective roots 67

3.6.2 Dual vector space . 68

3.6.3 Removing multiplicities of affine roots 73

3.6.4 Conditions for existence of particular roots 74

CONTENTS ix

4 Fast Recursive Orthogonalization of the Macaulay matrix 77

4.1 Introduction . 77

4.2 Notation . 79

4.3 The Orthogonalization Scheme . 80

4.4 Computational Complexity . 83

4.4.1 SVD . 83

4.4.2 Rank revealing QR decomposition 85

4.5 Choosing the numerical tolerance τ 85

4.6 Numerical Experiments . 87

4.6.1 Example 1 . 87

4.6.2 Example 2 . 88

4.6.3 Example 3 . 91

4.6.4 Example 4 . 92

4.6.5 Example 5 . 93

5 The Canonical Decomposition of Cnd 95

5.1 The canonical decomposition of Cnd 95

5.1.1 Definition . 95

5.1.2 Importance of the canonical decomposition 98

5.1.3 Numerical Computation of the Canonical Decomposition . 99

5.1.4 Numerical Experiment - no perturbations on the coefficients 100

5.1.5 Numerical Experiment - perturbed coefficients 101

5.2 The Reduced Canonical Decomposition of Cnd 102

5.2.1 The Reduced Monomials A⋆(d), B⋆(d) and Polynomials G(d) 102

5.2.2 Numerical Computation of A⋆(d), B⋆(d) and G(d) 106

5.2.3 Numerical Experiments . 107

5.3 Border Bases . 108

x CONTENTS

6 Applications 113

6.1 Gröbner basis . 113

6.2 Affine root-finding . 117

6.3 Ideal Membership problem . 125

6.4 Iterative algorithm for finding l(d) and d⋆ 126

6.5 Multivariate Polynomial Elimination 129

6.5.1 The Geometry of Polynomial Elimination 130

6.5.2 Algorithm & Numerical Implementation 130

6.5.3 Numerical Experiments . 132

6.6 Approximate LCM and GCD . 133

6.6.1 Computing the LCM . 134

6.6.2 Computing the GCD . 136

6.6.3 Choosing the numerical tolerance τ 137

6.6.4 Numerical Experiments . 138

6.7 Removing Multiplicities . 142

7 Conclusions and Future Work 145

7.1 Concluding Remarks . 145

7.2 Future Research . 147

7.2.1 Numerical Analysis . 147

7.2.2 Curse of Dimensionality . 148

A Numerical Linear Algebra 149

A.1 Matrix Notation . 149

A.2 Vector and Matrix Norms . 150

A.3 Four Fundamental Subspaces . 151

A.4 Dual vector space . 151

A.5 Moore-Penrose pseudoinverse . 152

CONTENTS xi

A.6 Condition Number for matrix inversion and least squares 152

A.7 QR Decomposition . 154

A.8 Singular Value Decomposition . 155

A.9 Principal Angles . 156

A.10 Intersection of Subspaces . 157

A.11 CS Decomposition . 158

A.12 Projectors . 159

A.13 Sparse Matrices . 160

B Algebraic Geometry 163

B.1 Polynomials & Monomial Ordering 163

B.2 Homogeneous Polynomials and Coordinates 165

B.3 Ideals . 166

B.4 Varieties . 166

B.5 Gröbner Basis . 167

B.6 Least Common Multiples and Greatest Common Divisors 169

References 171

Chapter 1

Introduction

Many engineering problems require some kind of mathematical modelling step and
multivariate polynomials are a natural modelling tool. This results in problems
in which one needs to solve multivariate systems of polynomial equations, divide
multivariate polynomials, eliminate variables, compute greatest common divisors,
etc. The area of mathematics in which multivariate polynomials are studied is
algebraic geometry and has a rich history spanning many centuries [31]. Algebraic
geometry started with the task of finding all roots of a univariate polynomial
and this has led to some important breakthroughs in mathematics, e.g. the
introduction of complex numbers and the development of group theory. By the
late 1800s and early 1900s, many of the algebraic concepts that are used in this
thesis such as rings, polynomial ideals and the Hilbert Polynomial were known
and studied by Kronecker, Noether, Hilbert, Lasker, Macaulay and Sylvester
[45,60,61,85]. A milestone was the Ph.D. thesis of Bruno Buchberger [16], who in
1965 introduced the notion of a Gröbner basis. Hironaka independently discovered
this concept in 1964 and named it a standard basis [46]. Buchberger’s algorithm
to compute a Gröbner basis, together with the exponential increase of computing
power led to the development of computer algebra. The main focus in this
field of research is the design and implementation of symbolical algorithms for
the solution of problems in pure mathematics. Two important contributions in
this respect were a criterion for detecting unnecessary reductions in Buchberger’s
algorithm [17] and the insight that Buchberger’s algorithm could be interpreted
as performing Gaussian elimination on a large sparse matrix [56]. These two
important contributions would eventually result in Faugère’s F4 and F5 algorithms
[37,38] that symbolically compute Gröbner bases using multiple precision integers.
These algorithms are at the time of this writing the state of the art to compute
Gröbner bases. With this rapid development of computer algebra, the growth
of a numerical nonlinear (or polynomial) algebra was somehow prevented. The

1

2 INTRODUCTION

most important numerical method for solving multivariate polynomial systems
is numerical polynomial homotopy continuation (NPHC), developed in the 1990s
[64,76,75,87]. Although NPHC is often referred to as numerical algebraic geometry,
it is not possible to eliminate variables, compute approximate GCDs or perform
multivariate divisions nor is there a strong focus on numerical analysis. Indeed,
its main application is finding all the affine roots of a system of multivariate
polynomial equations. The true ‘birth’ of the numerical analysis of polynomial
algebra is the 1988 paper by Auzinger and Stetter [1]. They presented a direct
algorithm for the numerical computation, in floating point arithmetic, of all
isolated zeros of a multivariate polynomial system. Its two main ingredients are
Gaussian elimination and eigenvector computations. The case of multiple zeros,
where the eigenvalue problem is generalized to a kind of Jordan decomposition, is
described in [63]. Twenty years of research by Stetter and his collaborators into
the numerical analysis of polynomial algebra led to the seminal work ‘Numerical
Polynomial Algebra’ [78]. And although Stetter uses a lot of linear algebra
notation, he did not present an extensive linear algebra framework that allows
to solve problems with multivariate polynomials. The only exception being the
problem of solving a multivariate polynomial system. This brings us to the goal
of this thesis:

The goal of this thesis is to establish a numerical linear algebra
framework in which problems with multivariate polynomials can be
expressed and solved.

The emphasis is hereby on numerical linear algebra, viz. operations on vectors and
matrices, and on solving problems: elimination, division, computing approximate
LCMs/GCDs, affine root-finding, computing a Gröbner basis, etc.... We will refer
to this proposed framework as the Polynomial Numerical Linear Algebra (PNLA)
framework. To our knowledge, only one other person, Zhonggang Zeng, is also
using only numerical linear algebra to solve different problems such as elimination
[92], approximate GCDs [90,94], and finding the multiplicity structure of a multiple
root [28, 93]. Where applicable, we will compare his methods with the algorithms
that we present in this thesis.

With polynomial models appearing in nearly all areas of scientific computing and
coefficients coming in most cases from experimental data, it is justified to make
the following assumption.

Assumption 1.1 We assume throughout the thesis that all coefficients of all
multivariate polynomials are real numbers.

All of the algorithms in this thesis were numerically implemented in MAT-
LAB/OCTAVE and are freely available on request. Numerical experiments were
run on a 2.66 GHz quad-core desktop computer with 8 GB RAM.

MOTIVATING PROBLEMS 3

1.1 Motivating Problems

In order to motivate the need for the PNLA framework, we present 3 different real-
life problems and show how they can be stated in terms of multivariate polynomials.
More examples of polynomial models are described in [42] with applications in
Physics, Chemistry, Engineering, and Computer Science. The first problem we
will discuss is that of parametric system identification.

1.1.1 Prediction Error Method System Identification

In this section it is shown that prediction error methods (PEMs) [59] for finding
the parameters of Single-Input Single-Output (SISO) Linear Time Invariant (LTI)
models is equivalent to finding the roots of a multivariate polynomial system.

PEMs are polynomial system solving

Let the input and output of a system at time t be denoted by u(t) and y(t)
respectively and e(t) be a white noise sequence. We will assume that these signals
are sampled at discrete time steps. The collected past data up to time N are then
denoted by

ZN = {u(1), y(1), . . . , u(N), y(N)}.
The linear shift operator q−1 is defined such that its application on a signal k(t)
is described by

q−1 k(t) = k(t− 1).

The general form of a SISO LTI model can then be written as

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t), (1.1)

where A(q), B(q), C(q), D(q), F (q) are the following polynomials in the shift
operator q−1:

A(q) = 1 +
∑na
i=1(ai q

−i),

B(q) =
∑nb
i=1(bi q

−nk−i+1),

C(q) = 1 +
∑nc
i=1(ci q

−i),

D(q) = 1 +
∑nd
i=1(di q

−i),

F (q) = 1 +
∑nf
i=1(fi q

−i).

The number of coefficients of the polynomials A(q), B(q), C(q), D(q), F (q) are
na, nb, nc, nd, nf respectively. The degree of B(q) includes a time delay of nk > 0

4 INTRODUCTION

samples. The basic idea behind PEMs involves the description of the LTI model as
a one-step ahead predictor ŷ(t|t−1, θ) of the output y(t). The parameter vector θ
contains all coefficients of the polynomials in (1.1). The one-step ahead predictor
is given by

ŷ(t|t− 1, θ) =

[

I − A(q)D(q)

C(q)

]

y(t) +
B(q)D(q)

C(q)F (q)
u(t).

Prediction errors e(t, θ) are then defined as

e(t, θ) = y(t)− ŷ(t|t− 1, θ),

=
A(q)D(q)

C(q)
y(t)− B(q)D(q)

C(q)F (q)
u(t). (1.2)

The maximal lag n of (1.2) determines how many times this expression can be
written, given ZN . From rewriting (1.2) as

C(q)F (q)e(t, θ) = A(q)D(q)F (q)y(t) −B(q)D(q)u(t), (1.3)

the maximal lag n is found as

n = max(na + nd + nf , nk + nb + nd − 1, nf + nc).

Estimates for the model parameters, given ZN , are then found by minimizing the
prediction errors. Or in other words, as solutions of the following optimization
problem

θ̂ = argmin
θ

1

N

N
∑

t=1

l(e(t, θ)) (1.4)

subject to (1.2) where l refers to a suitable norm. We will assume the quadratic
norm l(e) = e2/2. By using Lagrange multipliers λ1, . . . , λN−n, the constraints
(1.2) can be added to the cost function

N
∑

t=1

e(t, θ)2

2N
+

N
∑

t=n+1

λt−1 [C(q)F (q)e(t, θ)− A(q)D(q)F (q)y(t) +B(q)D(q)u(t)] . (1.5)

The cost function (1.5) is clearly polynomial which shows that for the chosen
norm PEMs correspond to a polynomial optimization problem. Taking the partial
derivatives of (1.5) with respect to every unknown, viz. the model parameters and
Lagrange multipliers, and equating this to zero results in a multivariate polynomial
system of 2N − n+ na + nb + nc + nd + nf equations and unknowns. PEMs are
therefore mathematically equivalent to solving a multivariate polynomial system.
It is however possible to simplify the problem. Examining the cost function (1.5)
reveals that the prediction errors e(t, θ) occur quadratically. Hence, each partial
derivative with respect to an unknown e(t, θ) will result in an equation which is

MOTIVATING PROBLEMS 5

linear in that e(t, θ). This means that each of the N prediction errors can be easily
eliminated from the polynomial system resulting in N −n+na+nb+nc+nd+nf
equations and unknowns. The cost for eliminating N equations and variables
however is the increase of the degrees of the remaining polynomials. Equation
(1.3) reveals that the degree will increase with nf + nc + 1 where the +1 term is
due to the Lagrange multiplier.

Observe that we have established that in the PEM framework one needs to solve a
multivariate polynomial system in order to find estimates for the model parameters.
Multivariate polynomial systems typically have many solutions, all corresponding
with optimal solutions of the optimization problem 1.4. If we can find all solutions
of the polynomial system, then we also have the global optimum. Even better
would be, of course, to compute only the global optimum.

Output error model identification

In Chapter 6, using our affine root-finding algorithm, we will find the globally
optimal parameter estimates from (1.4) for the second order Output Error model

y(t) =
0.2q−1

(1 − 1.6 q−1 + .89 q−2)
u(t) + e(t). (1.6)

The system is excited with a white-noise input u(t) of 6 samples. This is a
very small amount of samples due to the fact that the number of polynomials
and variables in the polynomial system scale with the total number of samples
N . These samples are obtained from a zero-mean Gaussian distribution with
a standard deviation of 10. The system output y(t) is then calculated from (1.6)
using zero-mean Gaussian white noise e(t) with a standard deviation of 0.1. Given
the observed data u(1), . . . , u(6), y(1), . . . , y(6), we estimate the parameters of the
following model

y(t) =
b1 q
−1

(1− f1 q−1 + f2 q−2)
u(t) + e(t).

The unknown parameters that need to be estimated in this problem are

b1, f1, f2, e(1), e(2), e(3), e(4), λ1, λ2, λ3, λ4.

The cost function corresponding with finding all parameters of (1.6) is

1
12 (e(1)2 + e(2)2 + e(3)2 + e(4)2 + e(5)2 + e(6)2)+

λ1 (y(3) + f1 y(2) + f2 y(1)− b1 u(2)− e(3)− f1 e(2)− f2 e(1)) +

λ2 (y(4) + f1 y(3) + f2 y(2)− b1 u(3)− e(4)− f1 e(3)− f2 e(2)) +

λ3 (y(5) + f1 y(4) + f2 y(3)− b1 u(4)− e(5)− f1 e(4)− f2 e(3)) +

λ4 (y(6) + f1 y(5) + f2 y(4)− b1 u(5)− e(6)− f1 e(5)− f2 e(4)).

(1.7)

6 INTRODUCTION

Setting the partial derivatives of the cost function (1.7) with respect to the
prediction errors e(1), . . . , e(6) to zero results in the following linear expressions:

e(1) = 6λ1 f2,

e(2) = 6λ1 f1 + 6λ2 f2,

e(3) = 6λ1 + 6λ2f1 + 6λ3 f2,

e(4) = 6λ2 + 6λ3 f1 + 6λ4 f2,

e(5) = 6λ3 + 6λ4 f1,

e(6) = 6λ4.

By substituting these expressions into the remaining partial derivatives we have
effectively eliminated the prediction errors from the problem and obtain the
following multivariate polynomial system of 7 polynomials in 7 unknowns



























































































































































y(3) + f1y(2) + f2y(1)− b1u(2) − 6λ1 − 6λ2f1 − 6λ3f2

−6λ1f
2
1 − 6f1λ2f2 − 6f2

2λ1 = 0,

y(4) + f1y(3) + f2y(2)− b1u(3) − 6λ2 − 6λ3f1 − 6λ4f2

−6λ1f1 − 6λ2f
2
1 − 6f1λ3f2 − 6f2λ1f1 − 6λ2f

2
2 = 0,

y(5) + f1y(4) + f2y(3)− b1u(4) − 6λ3 − 6λ4f1 − 6λ2f1

−6λ3f
2
1 − 6f1λ4f2 − 6λ1f2 − 6f1λ2f2 − 6λ3f

2
2 = 0,

y(6) + f1y(5) + f2y(4)− b1u(5) − 6λ4 − 6λ3f1 − 6λ4f
2
1

−6λ2f2 − 6f1λ3f2 − 6λ4f
2
2 = 0,

λ1y(2)− 6λ2
1f1 − 6λ1λ2f2 + λ2y(3)− 6λ2λ1 − 6λ2

2f1

−6λ2λ3f2 + λ3y(4)− 6λ3λ2 − 6λ2
3f1 − 6λ3λ4f2

+λ4y(5)− 6λ4λ3 − 6λ2
4f1 = 0,

λ1y(1)− 6λ2
1f2 + λ2y(2)− 6λ2λ1f1 − 6λ2

2f2 + λ3y(3)

−6λ3λ1 − 6λ3λ2f1 − 6λ2
3f2 + λ4y(4)− 6λ4λ2

−6λ4λ3f1 − 6λ2
4f2 = 0,

−λ1u(2)− λ2u(3) − λ3u(4)− λ4u(5) = 0.

(1.8)

MOTIVATING PROBLEMS 7

1.1.2 Maximum Likelihood Estimation of Mixtures of Multino-

mial Distributions

Finding the maximum likelihood estimates of the model parameters of a mixture of
multinomial distributions also corresponds with solving a multivariate polynomial
system. The derivation is quite straightforward. As an application of the
maximum likelihood estimation of mixtures of multinomial distributions we will
discuss the detection of CpG islands in DNA.

Maximum likelihood estimation is polynomial system solving

Let n denote the number of distributions in the mixture and K the total number
of possible outcomes in an experiment. Each ith multinomial distribution is
characterized by K probabilities p(k|i) with i = 1 . . . n and k = 1 . . .K. These are
assumed to be known. The probability of an observed outcome yk is then given
by

pyk(x) = x1 p(k|1) + . . .+ xn p(k|n) =
n
∑

i=1

xi p(k|i), (1.9)

where x = (x1, . . . , xn) are the unknown mixing probabilities. Data are typically
given as a sequence of N observations. When all observations are independent
and identically distributed, the data can then be summarized in a data vector
u = (u1, . . . , uK). Each uk is the number of times the outcome yk is observed in
the sequence of N observations. We therefore have that u1 + u2 + . . .+ uK = N .
The likelihood function is then defined as follows.

Definition 1.1 Given a mixture of n multinomial distributions and a sequence of
N independent and identical distributed samples then the likelihood function L(x)
is given by

L(x) = py1
(x)u1py2

(x)u2 . . . pyK (x)uK =

K
∏

i=1

pyi(x)
ui . (1.10)

This likelihood depends on the parameter vector x and data vector u and is
therefore called the likelihood function. Observe that it is the assumption of
independent and identical distributed observations that allows us to factorize the
likelihood. Any reordering of the observations leads to the same data vector u and
has therefore no effect on the likelihood function. Multiplying probabilities leads
to very small numbers, which could result in numerical underflow. By taking the
logarithm of (1.10) the expression is changed to

l(x) = logL(x) =

K
∑

i=1

ui log pyi(x),

8 INTRODUCTION

which effectively transforms the product of probabilities into a sum. This avoids
the occurrence of any numerical underflow when multiplying probabilities. The
maximum log-likelihood estimate of x is the solution of the following optimization
problem

x̂ = argmax
x
l(x) (1.11)

which is equivalent with maximizing L(x) since the logarithm is a monotonic
function. The optimization problem (1.11) is solved by taking the partial
derivatives of l(x) with respect to each xi and setting these equal to zero. This
results in the following system of n rational equations in n unknowns















∂l(x)
∂x1

=
∑

i
ui
pyi

∂pyi
∂x1

= 0,

...
∂l(x)
∂xn

=
∑

i
ui
pyi

∂pyi
∂xn

= 0.

(1.12)

These are rational equations since each term contains a linear polynomial of the
form (1.9) in the denominator. Therefore, in order to find the solutions of (1.12) all
terms for each equation need to be put onto a common denominator. To improve
the readability the dependencies of pk on x were dropped in the notation. Like
for the system identification problem, such a polynomial system will have many
solutions. The global optimum can then be found by evaluating the log-likelihood
in all solutions that satisfy the constraints 0 ≤ x1, . . . , xn ≤ 1. Also observe that
it is in fact possible to eliminate 1 unknown. Using the relation x1 + . . .+ xn = 1,
it is possible to reduce the number of equations and unknowns to n− 1.

Detection of CpG islands in DNA

One application of a mixture model is the detection of CpG islands in DNA.
CpG islands are genomic regions that contain a high frequency of sites where
a cytosine (C) base in the DNA sequence is followed by a guanine (G) [13]. When
in the human genome the CG dinucleotide (often written as CpG) occurs, the C
nucleotide is typically chemically modified by methylation. This methyl-C in its
turn has a high probability of turning into a T, with the consequence that CpG
dinucleotides are more rare in the genome data than would be expected. Regions
of DNA that contain a high frequency of CpG would therefore indicate that there
is some selective pressure to keep them. This explains why CpG islands are usually
found around the promotors of many genes. They are typically a few hundred to a
few thousand bases long. In order to find a solution to the given problem we make
the following simplification: instead of focusing specifically on the occurrence of
CpG’s we count the occurrences of C and G instead. In this case, the total number
of possible outcomesK is 4, the 4 building blocks of DNA: {A,C,G,T}. A mixture
model of the DNA sequence is set up that mixes 3 distributions. Each one of these

MOTIVATING PROBLEMS 9

Table 1.1: probabilities for each of the distributions.

DNA Type A C G T

CG rich 0.15 0.33 0.36 0.16

CG poor 0.27 0.24 0.23 0.26

CG neutral 0.25 0.25 0.25 0.25

distributions represents a certain type of DNA: CG rich, CG poor and CG neutral.
The first type, CG rich, stands for DNA that is rich in both the C and G bases.
Therefore, the C and G bases sampled from this distribution will have higher
probabilities to occur relative to those for A and G. In a similar fashion the CG
poor and CG neutral type are characterized by specific probabilities. The complete
model is summarized in Table 1.1 and is obtained from [34] and [69]. Now suppose
that the following sequence of DNA is observed

CTCACGTGATGAGAGCATTCTCAGA

CCGTGACGCGTGTAGCAGCGGCTCA.

These observations can be summarized in the data vector u = (11, 14, 15, 10).
Deciding whether this particular segment came from a CpG island is based on
the occurrences of both the C and G bases. This information is encoded in the
mixing probabilities: x1, x2 and x3. These are the probabilities with which samples
are drawn from either the CG rich, poor or neutral distribution respectively and
comparing them relative to one another will allow us to answer the given problem.
For any general mixture model of k mixtures, the probability of making a certain
observation y is

p(y) =
k
∑

i=1

xi p(y | i),

where p(y|i) is the probability to observe y given that it is sampled from
distribution i. The probabilities of observing each of the bases A to T are therefore
given by

p(A) = 0.15 x1 + 0.27x2 + 0.25 x3,

p(C) = 0.33 x1 + 0.24 x2 + 0.25 x3,

p(G) = 0.36 x1 + 0.23 x2 + 0.25 x3,

p(T) = 0.16 x1 + 0.26 x2 + 0.25 x3,

10 INTRODUCTION

which can be reduced to

p(A) = −0.10 x1 + 0.02 x2 + 0.25,

p(C) = +0.08 x1 − 0.01 x2 + 0.25,

p(G) = +0.11 x1 − 0.02 x2 + 0.25,

p(T) = −0.09 x1 + 0.01 x2 + 0.25,

since x1 + x2 + x3 = 1. Each probability is described by a first order polynomial.
The maximum likelihood estimators for x1, x2 and x3 are found from the following
optimization problem

argmax
x1,x2,x3

l(x1, x2, x3)

where the log-likelihood is given by

l(x1, x2, x3) = 11 logp(A) + 14 logp(C) + 15 logp(G) + 10 logp(T).

The polynomial system that corresponds with (1.12) for this problem is therefore























−0.0289 x1 + 0.0047x2 + 0.00396 x3
1 − 0.0000136 x3

2 + 0.0120− 0.00131 x2
1

+ 0.000378x1 x2 − 0.0000357x2
2 − 0.00183 x2

1 x2 + 0.000276 x1 x
2
2 = 0,

0.0047x1 − 0.0008 x2 − 0.00062 x3
1 + 0.000002 x3

2 − 0.00187 + 0.00017x2
1

−0.000056 x1 x2 + 0.000006 x2
2 + 0.00028 x2

1 x2 − 0.000041 x1 x
2
2 = 0.

In Chapter 6, we will solve this polynomial system, find the estimates for x1, x2, x3

and decide whether the observed DNA sequence came from a CpG island.

1.1.3 Blind Image Deconvolution

In this section we will show how blind image deconvolution can be achieved by the
computation of a multivariate polynomial greatest common divisor (GCD). This
approach was first developed in [71], from which we give the following outline of
the problem. In many problems including communication, satellite imaging, and
synthetic aperture radar (SAR), the output observations consist of a desired input
that has been distorted by a blurring function. The output is typically described
as a convolution of an input data stream and the channel impulse response, both of
which are unknown. Similarly, in ordinary blurred images, the final picture can be
represented as a convolution between the desired picture and a blurring function
that results from camera motion and/or slow shutter speed. Blind identification
then consists of determining the input function and blurring function from the
output observation. Let p(i, j) represent the desired image, d(i, j) the blurring

MOTIVATING PROBLEMS 11

function, and n(i, j) additive noise. If f(i, j) represents the noisy blurred image
we can write

f(i, j) = p(i, j) ∗ d(i, j) + n(i, j),

where ∗ stands for the convolution operator. This expression can be written, using
2D z-transforms as the polynomial

F (z1, z2) = P (z1, z2)D(z1, z2) +N(z1, z2). (1.13)

It is clear from (1.13) that even in the absence of noise, knowing the output
F (z1, z2) alone is not sufficient to obtain the original image or blurring function.
In practice, it is either too costly to obtain a priori information about the imaged
scene and the distortion (as in astronomy or x-ray imaging) or it is simply
impossible (as in real-time video conferencing). Let us first assume there is no
additive noise and that there are two distinct blurring functions D1(z1, z2) and
D2(z1, z2). Then we have two blurred outputs

F1(z1, z2) = P (z1, z2)D1(z1, z2) and F2(z1, z2) = P (z1, z2)D2(z1, z2).

Suppose now that the two blurring functions are relatively co-prime, then the
desired image P (z1, z2) can be retrieved as the GCD of F1(z1, z2) and F2(z1, z2).
Or, in other words, if

GCD(D1(z1, z2), D2(z1, z2)) = 1,

then
P (z1, z2) = GCD(F1(z1, z2), F2(z1, z2)).

The restriction that D1(z1, z2), D2(z1, z2) are co-prime means that they do not
need to be free of common zeros. Indeed, take for example D1(z1, z2) = z1
and D2(z1, z2) = z2. They both share the common zero (0, 0) but are also co-
prime. Although the above formulation requires two distinct blurred images, it
is important to realize that this information can often be retrieved from a single
image. Assuming that the blurring function D(z1, z2) has a much smaller support
size (degree) compared to the image itself, then it is possible to restrict our
attention to two non-overlapping regions R1 and R2 that are large enough to
contain the blurring function and are sufficiently apart. From these two regions,
the blurring function D(z1, z2) can then be estimated as

D(z1, z2) = GCD(F1(z1, z2), F2(z1, z2)),

with
F1(z1, z2) ∈ R1 and F2(z1, z2) ∈ R2.

It is clear that computing the GCD symbolically in the presence of noise will
surely fail. Indeed, introducing a tiny perturbation to F1(z1, z2) or F2(z1, z2)
would ensure that the retrieved image GCD(F1(z1, z2), F2(z1, z2)) = 1. What
is therefore required is the computation of an approximate GCD, which allows
for the presence of noise. There are several formulations of approximate GCDs
[12,19, 36, 51, 68, 73,94]. A common definition is the following.

12 INTRODUCTION

Definition 1.2 ([12]) A polynomial g is said to be an ǫ-divisor of u and v if there
exist polynomials û and v̂ of degree n and m respectively, such that ||u − û||2 ≤
ǫ ||u||2, ||v − v̂||2 ≤ ǫ ||v||2 and g divides û and v̂ and is of maximal degree.

Or in other words, one allows for perturbations on u and v such that the perturbed
polynomials û, v̂ have an exact GCD of maximal degree. We will provide our own
formulation in Chapter 6 and explain how it is related to Definition 1.2. As an
application of our approximate GCD algorithm we will apply blind deconvolution
on two noisy images to reconstruct the desired image displayed in Figure 1.1 as
good as possible.

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 1.1: The desired image p(i, j).

The two filters applied to P (z1, z2) are the low-pass filter

D1(z1, z2) = 0.4694 + 0.0327 z1 + 0.5500 z2 + 0.4621 z21 − 0.2077 z1 z2 − 0.3066 z22,

and the high-pass filter

D2(z1, z2) = −0.3318+1.1431 z1−1.9563 z2 +0.4470 z21 +0.9350 z1 z2 +0.7630 z22.

Random uniformly distributed noise is added to both P (z1, z2)D1(z1, z2) and
P (z1, z2)D2(z1, z2) to obtain

F1(z1, z2) = P (z1, z2)D1(z1, z2) +N1(z1, z2) (Figure 1.2)

and
F2(z1, z2) = P (z1, z2)D2(z1, z2) +N2(z1, z2) (Figure 1.3)

with signal-to-noise ratios of 46dB for both images.

MOTIVATING PROBLEMS 13

We will show in Chapter 6 that our approximate GCD algorithm can indeed
retrieve an image p̂(i, j) that lies close to the original p(i, j).

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 1.2: The filtered and noisy image f1(i, j).

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 1.3: The filtered and noisy image f2(i, j).

14 INTRODUCTION

1.2 Contributions

In this section, we give an overview of the main contributions in this thesis. These
contributions will be related to the appropriate chapters in the next section.

1.2.1 Polynomial Numerical Linear Algebra Framework

We develop a numerical linear algebra framework and numerical algorithms to
solve the following problems:

1. polynomial addition, multiplication, division,

2. the computation of a Gröbner basis,

3. the computation of an approximate least common multiple (LCM) and
greatest common divisor (GCD) of two multivariate polynomials,

4. the computation of all affine roots of a system of multivariate polynomials,

5. solving the ideal membership problem,

6. finding all syzygies and the degree of regularity,

7. multivariate polynomial elimination,

8. removing multiplicities of roots.

Furthermore, we show that, contrary to the symbolical methods in computer
algebra, our numerical methods do not require an explicit computation of a
Gröbner basis to solve problems 4 up to 8.

1.2.2 Bounds for the singular values and condition number of

the multiplication matrix and Macaulay matrix

We derive bounds for the largest and smallest singular value and the condition
number of the multiplication matrix in terms of the coefficients of the polynomials.
Similarly, a bound is derived for the largest singular value of the Macaulay matrix.
These bounds are then also interpreted as being bounds for the product and sum
of products of multivariate polynomials. Furthermore, we are able to bound the
perturbations of the singular values of the Macaulay matrix when its entries are
perturbed by noise.

CHAPTER OVERVIEW OF THE THESIS 15

1.2.3 Recursive orthogonalization algorithm for the Macaulay

matrix

The computation of orthogonal bases for the row space and null space of the
Macaulay matrix is a central step in all algorithms of this thesis. The polynomial
growth of the dimensions of the Macaulay matrix make this infeasible when the
number of variables is large. We derive a recursive orthogonalization algorithm
that addresses this issue by exploiting both the sparsity and the structure of the
Macaulay matrix. Two implementations are provided: one using the SVD and one
using a sparse rank-revealing QR decomposition.

1.2.4 Interpretations and the introduction of the canonical

decomposition

The row space, null space and left null space of the Macaulay matrix are interpreted
in terms of multivariate polynomials. These interpretations are valuable for all
algorithms and bounds that are derived in this thesis. Since our framework uses
only linear algebra, it is also possible to interpret the problems that are addressed
in this thesis geometrically. For example, computing the quotient and remainder
during polynomial division corresponds geometrically with oblique projections of
a vector onto subspaces. In addition to these interpretations, we introduce the
notion of the canonical and reduced canonical decomposition of the vector space
Cnd .

1.3 Chapter overview of the thesis

We now present an overview of each of the chapters in relation to our contributions
and mention for each chapter relevant publications. This overview is also
represented visually in Figure 1.4.

Chapter 2: Basic Operations on Polynomials
This chapter lays the foundation of the PNLA framework by describing 3
basic operations on multivariate polynomials. These operations are addition,
multiplication and division and are shown to correspond with vector addition,
matrix-vector multiplication and vector decomposition respectively. Bounds
for the largest and smallest singular value and the condition number of the
multiplication matrix in terms of the coefficients of the polynomials are derived and
the divisor matrix is introduced. Through this divisor matrix, the nonuniqueness
of the quotient and remainder of polynomial division is explained and a geometric
interpretation is given to polynomial division. We present our division algorithm

16 INTRODUCTION

and demonstrate its effectiveness by means of numerical experiments. Finally, we
discuss how the divisions of Buchberger’s Algorithm, to compute a Gröbner basis,
can be implemented using matrix reductions.

Publications related to this chapter: [6, 8].

Chapter 3: Macaulay matrix
In this chapter, we introduce the most important matrix of this thesis, the
Macaulay matrix. We give expressions for its size and derive its density and
an upper bound for its largest singular value. This upper bound is then applied to
bound a sum of products of multivariate polynomials and to bound perturbations
on the singular values of the Macaulay matrix. Furthermore, 3 important
fundamental subspaces associated with the Macaulay matrix are discussed in
detail: its row space, left null space and null space. We interpret the row
space of the Macaulay matrix and discuss the related ideal membership problem
of algebraic geometry. The link between the left null space and the notion of
polynomial syzygies is revealed. Analyzing the growth of the left null space results
in the important notion of the degree of regularity. We discuss the right null
space in terms of the projective roots of the polynomial system and show how
multiplicities of roots can be exchanged for extra polynomials. We also proof
necessary conditions on the existence of zero roots and roots at infinity.

Publications related to this chapter: [7].

Chapter 4: Fast recursive orthogonalization of the Macaulay matrix
Orthogonal bases for both the row space and right null space of the Macaulay
matrix play an important part in all of the algorithms developed in this thesis. A
major bottleneck in the execution of these algorithms is the combinatorial growth
of the Macaulay matrix. Fortunately, as discussed in the previous chapter, the
matrix is very structured and very sparse. In this chapter we exploit both this
structure and sparsity in developing a fast recursive orthogonalization scheme.
This scheme allow us to update orthogonal bases for both the row space and right
null space of the Macaulay matrix. Two implementations of the recursive scheme
are discussed: one using a sparse rank-revealing QR decomposition and one using
a full SVD. The computational complexity for both implementations is compared.
We show through numerical experiments how the sparse implementation is far
superior over the full SVD: total run time is 15 up to 119 times faster and a factor
of 12 up to 500 times less storage space is required.

Publications related to this chapter: [5].

Chapter 5: The Canonical Decomposition of Cnd
In this chapter, we introduce both the canonical and reduced canonical decompo-
sition and the notion of a pure power. These concepts are directly linked with

CHAPTER OVERVIEW OF THE THESIS 17

both a Gröbner basis and the number of roots of a polynomial system and will
be needed when discussing several applications in Chapter 6. An algorithm is
presented that produces these decompositions through the repetitive computation
of intersections of subspaces. In addition, the effect of noise on the coefficients
of the polynomials on the resulting canonical decompositions is investigated. It
is shown that computing canonical decompositions is in fact an ill-posed problem.
We also discuss how border bases are used to deal with this ill-posedness and
provide an algorithm to compute them. The occurrence of pure powers in the
reduced canonical decomposition will play a key role in finding stop criteria for
the recursive algorithms in Chapter 6.

Publications related to this chapter: [7].

Chapter 6: Applications
In this chapter, we discuss 7 different applications and corresponding algorithms
to solve them in our PNLA framework:

• numerical computation of a Gröbner basis: we reveal the relation
between a Gröbner basis and the reduced canonical decomposition for the
zero-dimensional case. This leads to a simple stop-criterion for our recursive
Gröbner basis algorithm,

• affine root-finding: We show how the particular Vandermonde structure
of the null space of the Macaulay matrix allows to compute all affine roots
from an eigenvalue problem. A stop-criterion in terms of pure powers in the
reduced canonical decomposition is also derived. The root-finding algorithm
is then applied on both the system identification and maximum likelihood
estimation problem from Section 1.1,

• ideal membership problem: we show how the occurrence of a Gröbner
basis in the row space of the Macaulay matrix is essential for solving the
ideal membership problem. We derive an expression for the degree at which
the problem can be solved,

• syzygy analysis: we present a recursive algorithm that determines all
syzygies and as a result determines the degree of regularity,

• multivariate polynomial elimination: we discuss the geometric inter-
pretation of multivariate polynomial elimination and provide a numerical
elimination algorithm,

• approximate LCM/GCD: we introduce our own geometric definition of
an approximate LCM and GCD, together with corresponding algorithms. In
addition, we illustrate the connection of our definition with the commonly
used ǫ-GCD from the literature. Our approximate GCD algorithm is finally
applied to the blind image deconvolution problem from Section 1.1,

18 INTRODUCTION

• radical ideal: we develop an algorithm, based on a well-known theorem
from algebraic geometry, that removes the multiplicities of all affine roots by
adding extra polynomials to the polynomial system.

Publications related to this chapter: [3, 4, 6, 8, 33].

Chapter 7: Conclusion and Future Work
In this chapter, we summarize the thesis and give an overview of future research.

Appendix A: Numerical Linear Algebra
This appendix provides a short overview of all the numerical linear algebra concepts
that are used in the thesis.

Appendix B: Algebraic Geometry
This appendix provides a short overview of all the algebraic geometry concepts
that are used in the thesis.

CHAPTER OVERVIEW OF THE THESIS 19

Figure 1.4: An overview of the chapters and their interconnection.
Contributions are mentioned for each of the chapters in dashed boxes.

Chapter 2

Basic Operations on

Polynomials

In this chapter, we will describe how the three basic operations of addition,
multiplication and division of multivariate polynomials are described in the PNLA
framework. In addition, bounds are derived for the largest and smallest singular
value and the condition number of the multiplication matrix. The largest singular
value of the multiplication matrix will bound the product of two multivariate
polynomials and knowledge on its condition number will be crucial for the
computation of approximate LCMs and GCDs in Chapter 6. In addition, a
geometrical interpretation is given to multivariate polynomial division.

This chapter lays the foundation of the PNLA framework. Before discussing any
of the three basic operations on polynomials, we first explain how multivariate
polynomials are represented as vectors. It is also highly recommended to read
Appendix A and B to refresh some basic knowledge on linear algebra and algebraic
geometry.

2.1 Multivariate polynomials as vectors

The ring of multivariate polynomials in n variables is denoted by Cn. It is easy
to show that the subset of Cn, containing all multivariate polynomials of total
degrees from 0 up to d forms a vector space. We will denote this vector space
by Cnd . Throughout this thesis we will use a monomial basis as a basis for
Cnd . This monomial basis, together with a monomial ordering allows us then
to represent a multivariate polynomial f =

∑

α fαx
α by its coefficient vector.

21

22 BASIC OPERATIONS ON POLYNOMIALS

Details on monomial orderings and the degree negative lexicographic ordering used
throughout the thesis can be found in Appendix B Section B.1. The representation
of a multivariate polynomial by a vector will be obtained by simply ordering the
coefficients in a row vector according to the specified monomial ordering. The
following example illustrates this for the degree negative lexicographic ordering.

Example 2.1 The polynomial f = 2 + 3x1 − 4x2 + x1x2 − 8x1x3 − 7x2
2 + 3x2x3

in C2
3 can be written as

f =
(

2 3 −4 0 0 1 −8 −7 3 0
)

































1
x1

x2

x3

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3

































.

From here on, we will work implicitly with the monomial basis and therefore
represent a multivariate polynomial f , by abuse of notation, solely by its coefficient
vector

f =
(

1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

2 3 −4 0 0 1 −8 −7 3 0
)

.

By convention, a coefficient vector will always be a row vector.

With this one-to-one correspondence between a multivariate polynomial f and its
coefficient vector, the following relations hold:

||f ||1 =
∑

α |fα|,

||f ||2 =
√
∑

α |fα|2.

These two norms can be calculated in double precision with high relative accuracy.

2.2 Multivariate polynomial Addition

The addition of two multivariate polynomials f1, f2 of degrees d1, d2 respectively
is rather straightforward. This simply corresponds to vector addition. When the
total degrees are different, then care needs to be taken to do the addition in the
vector space Cnd with d = max(d1, d2).

MULTIVARIATE POLYNOMIAL MULTIPLICATION 23

Example 2.2 Let f1 = −2+5x1 +9x1x2−4x2
2 with d1 = 2 and f2 = 9+x1 +5x2

with d2 = 1, then their corresponding coefficient vectors in C2
2 are

f1 = (−2 5 0 0 9 −4),

f2 = (9 1 5 0 0 0).

The addition of the two coefficient vectors results in

f1 + f2 =
(

7 6 5 0 9 −4
)

,

which corresponds with the polynomial

7 + 6 x1 + 5 x2 + 9 x1x2 − 4 x2
2.

2.3 Multivariate Polynomial Multiplication

Next, we describe the multiplication of two multivariate polynomials in the PNLA
framework. This will turn out to be a vector matrix multiplication and generalizes
the convolution operation to the multivariate case. A generalization of the
multiplication operator to multiple polynomials will play a crucial role in the
remaining chapters.

2.3.1 Multiplication matrix

Given two polynomials h, f ∈ Cnd , then their product hf does not lie in Cnd anymore.
It is easy to derive that polynomial multiplication can be written in the PNLA
framework as a vector matrix product. Supposing deg(h) = m we can write

h f = (h0 + h1 x1 + h2 x2 + . . . + hk x
m
n) f

= h0 f + h1 x1 f + h2 x2 f + . . .+ hk x
m
n f.

This can be written as the following vector matrix product

h f =
(

h0 h1 . . . hm
)















f
x1 f
x2 f

...
xmn f















, (2.1)

where each row of the matrix in the right hand side of (2.1) is the coefficient vector
of f, x1f, x2f, . . . , x

m
n f respectively and xmn is the leading monomial of h, also

24 BASIC OPERATIONS ON POLYNOMIALS

denoted LM(h). The multiplication of f with a monomial results in all coefficients
of f being shifted to the right in its corresponding coefficient vector. Therefore
the matrix that is built up from the coefficients of f in expression (2.1) is a
quasi-Toeplitz matrix. We call it a quasi-Toeplitz matrix because the coefficients
will not lie on diagonals but close to the diagonal. So we use the word quasi-
Toeplitz in the sense of almost or nearly Toeplitz. In the univariate case (n = 1)
this multiplication matrix corresponds to the discrete convolution operator and is
predominantly used in linear systems theory. The polynomial f is then interpreted
as the impulse response of a linear time-invariant system and h as the input signal.
For this univariate case, assuming deg(f) = n, then writing out (2.1) results in

h f =
(

h0 h1 . . . hm
)















f0 f1 f2 . . . fn 0 0 . . . 0
0 f0 f1 f2 . . . fn 0 . . . 0
0 0 f0 f1 f2 . . . fn . . . 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 . . . f0 f1 f2 . . . fn















,

where the multiplication operator now is a Toeplitz matrix. We now formally
define the multiplication operator of a given polynomial.

Definition 2.1 Let f ∈ Cn with deg(f) = d0, then its multiplication matrix of
degree d ≥ d0 is the matrix containing the coefficients of

Mf (d) =



















f

x1f

x2f

...

xd−d0
n f



















(2.2)

where f is multiplied with all n-variate monomials from degree 0 up to d− d0.

The total number of rows of the multiplication matrix is
(

d−d0+n
n

)

and its

total number of columns is
(

d+n
n

)

. This means that Mf (d) will always be an
underdetermined matrix. We also have that

row(Mf (d)) = {hf | h, f ∈ Cn : deg(h) ≤ d− deg(fi)}. (2.3)

Or in other words: its row space contains all polynomials hf with a maximal total
degree of d. We will use the symbol Mf to denote row(Mf(d)). The following
example illustrates the multiplication of two polynomials in C2

2 .

MULTIVARIATE POLYNOMIAL MULTIPLICATION 25

Example 2.3 Let h = x2
1 + 2x2− 9 and f = x1x2− x2. The leading monomial of

h is x2
1. The multiplication h f is then given by

hMf(4) = =
(

−9 0 2 1 0 0
)























f

x1f

x2f

x2
1f

x1x2f

x2
2f























,

where the multiplication operator Mf (4) is















1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2 x4
1 x3

1x2 x2
1x

2
2 x1x

3
1 x4

2

0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1















.

Left-multiplying this matrix with the coefficient vector of h results in the vector

(

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2 x4
1 x3

1x2 x2
1x

2
2 x1x

3
1 x4

2

0 0 9 0 −9 −2 0 −1 2 0 0 1 0 0 0
)

,

which is indeed the coefficient vector of h f .

The description of multiplication of multivariate polynomials in this linear algebra
framework therefore leads in a natural way to the generalization of the convolution
operation to the multivariate case [15, 66]. In the same way, multivariate
polynomial division will generalize the deconvolution operation. Next, we derive
an expression for the largest and smallest singular value and the condition number
of the multiplication matrix.

2.3.2 Condition number

In this section, we derive bounds on the largest and smallest singular value and on
the condition number of a multiplication matrix. The upper bound on the largest
singular value will be a bound on the product of two multivariate polynomials and
the condition number will be important for the computation of an approximate
LCM and GCD. For a p × q multiplication matrix Mf1

(d) = (mij) we define the
absolute row sum as

ri =
∑

1≤j≤q

|mij |,

26 BASIC OPERATIONS ON POLYNOMIALS

and the absolute column sum as

cj =
∑

1≤i≤p

|mij |.

These two sums will be crucial for deriving the bounds. First we prove the following
lemma in which we bound the absolute column sum of the multiplication matrix
Mf1

(d) in terms of the coefficients of f1. In the following, deg(f) stands for the
degree of the multivariate polynomial f .

Lemma 2.1 Let f1 ∈ Cn with

• deg(f1) = d1,

• dm = min
aα 6=0

deg (aα x
α),

• dl the degree of the LCM of all monomials of f1 with nonzero coefficients

and Mf1
(d) = (mij) the p× q multiplication matrix of degree d. Then

max
1≤j≤q

cj ≤ ||f1||1

where equality is guaranteed from d ≥ dl − dm + d1.

PROOF. The structure of the multiplication matrix ensures that each column can
contain all coefficients of f1 at most once. Hence the largest cj that can be obtained
is ||f1||1. This happens when each nonzero coefficient of f1 is shifted to the least
common multiple of all its monomials with nonzero coefficients. The degree for
which each of these monomials is shifted to its LCM is d = dl − dm + d1. �

Example 2.4 Suppose

f1 = 2 x2 x4 + 2 x1 x3 + x2
2 − x3,

then d1 = 2 and dm = deg(x3) = 1. The least common multiple of all monomials
with nonzero coefficients is x1 x

2
2 x3 x4 and hence dl = 5. Using Lemma 2.1 we

then have that
max

1≤j≤q
cj = ||f1||1 = 6

for d ≥ 5− 1 + 2 = 6.

We now prove the following upper bound on the largest singular value of Mf1
(d).

MULTIVARIATE POLYNOMIAL MULTIPLICATION 27

Theorem 2.1 Let f1 ∈ Cn and Mf1
(d) its corresponding p × q multiplication

matrix of degree d. Then its largest singular value σ1 is bounded by

σ1 ≤ ||f1||1.

PROOF. Schur [74] provided the following upper bound on the largest singular
value

σ2
1 ≤ max

1≤i≤p,1≤j≤q
ri cj .

Lemma 2.1 ensures that the maximal cj is ||f1||1. Each row of the multiplication
matrix contains the same coefficients and therefore ri = ||f1||1 for any row i. From
this it follows that σ1 ≤ ||f1||1. �

Theorem 2.1 also provides an upper bound on the 2-norm of the product of two
polynomials which is better in practice than the bound given in [10, p. 222].

Corollary 2.1 Let f1, f2 ∈ Cn with degrees d1, d2 respectively, then the 2-norm of
their product is bounded from above by

||f1 f2||2 ≤ min (||f1||1 ||f2||2, ||f2||1 ||f1||2) .

PROOF. The commutativity of multiplying multivariate polynomials implies that
the product f1 f2 can be computed using the multiplication matrix as either

f1 f2 = f1Mf2
(d1 + d2),

or
f1 f2 = f2Mf1

(d1 + d2).

Theorem 2.1 bounds these vectors in 2-norm from above by ||f1||2 ||f2||1 and
||f1||1 ||f2||2 respectively. �

It is also possible to derive a lower bound on the smallest singular value of the
multiplication matrix.

Theorem 2.2 Let f1 ∈ Cn and Mf1
(d) = (mij) its corresponding p × q

multiplication matrix of degree d. Then its smallest singular value σmin is bounded
from below by

σmin ≥ 2|m00| − ||f1||1.

28 BASIC OPERATIONS ON POLYNOMIALS

PROOF. Johnson [48] provided the following bound for the smallest singular value
of a p× q matrix with p ≤ q

σmin ≥ min
1≤i≤p







|mii| −
1

2
(

p
∑

j 6=i

|mij |+
p
∑

j 6=i

|mji|)







. (2.4)

The structure of the multiplication matrix ensures that every mii equals m00 for
all rows i. We can therefore rewrite (2.4) as

σmin ≥ |m00| −
1

2
max

1≤i≤p







p
∑

j 6=i

|mij |+
p
∑

j 6=i

|mji|







. (2.5)

The maximal absolute column and row sum of the leftmost p× p block of Mf1
(d)

is bounded by
p
∑

j 6=i

|mij |+
p
∑

j 6=i

|mji| ≤ 2 ||f1||1 − 2 |m00|.

The −2 |m00| term comes from the fact that the diagonal element m00 cannot be
counted in these sums. Using this bound for the maximal absolute column and
row sum into (2.5) results in

σmin ≥ |m00| − 1
2 max

1≤i≤p

{

∑p
j 6=i |mij |+

∑p
j 6=i |mji|

}

,

≥ |m00| − 1
2 (2 ||f1||1 − 2 |m00|),

≥ 2 |m00| − ||f1||1,

which concludes the proof. �

This lower bound is trivial when 2|m00| ≤ ||f1||1. From Theorem 2.1 and Theorem
2.2 the following upper bound for the condition number of Mf1

(d) can be derived.

Corollary 2.2 Let f1 ∈ Cn and Mf1
(d) its corresponding p × q multiplication

matrix of degree d, then its condition number κ1(d) is bounded from above for the
nontrivial case by

κ1(d) ≤ ||f1||1
2|m00| − ||f1||1

. (2.6)

This upper bound can be quite an overestimation. In practice, the condition
number grows very slowly as a function of the degree d.

MULTIVARIATE POLYNOMIAL MULTIPLICATION 29

Example 2.5 Let

f1 = 55 + 9 x1 + 8 x2 + 7 x3 + 6 x2
1 + 5 x1 x2 + 4 x1 x3 + 3 x2

2 + 2 x2 x3 + x2
3,

then ||f1||1 = 100 and m00 = 55 and therefore

κ1 ≤
100

2× 55− 100
= 10.

Figure 2.1 displays the graphs of both the upper bound and the condition number
as a function of the degree d. The condition number starts from 1, since for
d = d1, σ1 = σmin = ||f1||2, and then grows sublinearly. Although the condition
number seems to converge to 3 in the limit for large d, this is not the case.

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

degree d

κ
1
(d)

upper bound

Figure 2.1: The condition number and its upper bound for Mf1
(d) in

Example 2.5 as functions of the degree d.

The observation that the condition number of Mf (d) grows slowly will be
important for the computation of an approximate GCD in Chapter 6. There,
a least-squares solution ĥ of the overdetermined linear system

Mf (d)
T hT = lT

30 BASIC OPERATIONS ON POLYNOMIALS

will be computed. A small condition number ofMf (d) then ensures a high relative

accuracy for the computed solution ĥ.

2.4 Multivariate Polynomial Division

Everybody is familiar with the polynomial division for the univariate case. It
is therefore quite surprising that this was generalized to the multivariate case
only 40 years ago [22]. In contrast to addition and multiplication, the division
of multivariate polynomials is a bit more involved. Similar to multiplication,
a specific matrix operator for division can be defined. However, the operation
of dividing a multivariate polynomial by a set of multivariate divisors will not
correspond to a vector matrix product. We will show in this section that the
division of multivariate polynomials corresponds to a vector decomposition using
oblique projections. We start with the formal definition in which LM(p) denotes
the leading monomial of a multivariate polynomial p with respect to a specified
monomial ordering.

Definition 2.2 ([22, p. 64]) Fix any monomial order > on Cn and let F =
(f1, . . . , fs) be a s-tuple of polynomials in Cnd . Then every p ∈ Cn can be written as

p = h1f1 + . . .+ hsfs + r (2.7)

where h1, . . . , hs, r ∈ Cnd . For each i, hifi = 0 or LM(p) ≥ LM(hifi), and either
r = 0 or r is a linear combination of monomials, none of which is divisible by any
of LM(f1), . . . ,LM(fs).

The generalization lies obviously in extending the polynomials p and f in the
univariate case to elements of Cn and sets of divisors F . The constraint on the
remainder term for the univariate case, deg(r) < deg(f), is also generalized. The
biggest consequence of this new constraint is that the remainder can have a degree
which is strictly higher than any of the divisors fi. The division of multivariate
polynomials has an interesting property that is not present in the univariate case:
both the quotient and remainder depend on the order in which p is divided by the
polynomials of F . The following example illustrates this nonuniqueness of both
quotient and remainder.

Example 2.6 ([22, p. 67]) Dividing p = x1x
2
2 − x1 first by f1 = x1x2 + 1 and

then by f2 = x2
2 − 1 results in

x1x
2
2 − x1 = x2 (x1x2 + 1) + 0 (x2

2 − 1) + (−x1 − x2).

The quotient is hence x1x
2
2 + x2 and the remainder is −x1 − x2. If we now divide

p, on the other hand, first by f2 = x2
2 − 1 and then by f1 = x1x2 + 1 we have

x1x
2
2 − x1 = x1 (x2

2 − 1) + 0 (x1x2 + 1) + 0.

MULTIVARIATE POLYNOMIAL DIVISION 31

The quotient is now x1x
2
2 − x1 and the remainder is 0.

We will now show how multivariate division is described in the PNLA framework
by oblique projections. The nonuniqueness of both the quotient and the remainder
will be linked to a rank-deficiency of a particular divisor matrix, which we define
in the next section.

2.4.1 Divisor matrix

Definition 2.2 requires that we are able to describe, for a given polynomial p ∈ Cn,
a sum of the form h1f1 + . . .+hsfs where h1, . . . , hs, f1, . . . , fs ∈ Cn and where for
each hifi (i = 1, . . . , s) the condition LM(p) ≥ LM(hifi) applies. The row space
of the divisor matrix D will describe such a sum.

Definition 2.3 Given a set of polynomials f1, . . . , fs ∈ Cn, each of degree
di (i = 1 . . . s) and a polynomial p ∈ Cn of degree d, then the divisor matrix D
is given by

D =



















































f1

x1f1

x2f1
...

xk1
n f1

f2

x1f2
...

xk2
n f2
...

xksn fs



















































, (2.8)

where each polynomial fi is multiplied with all monomials xαi from degree 0 up to
degree ki = deg(p)− deg(fi) such that LM(xαifi) ≤ LM(p).

Notice the similarity of the divisor matrix with the multiplication matrix. It can be
constructed by stacking the multiplication matrices Mfi(d) on top of one another,
after which rows for which LM(xαifi) > LM(p) are removed. Hence, we have that

row(D) = {q =

s
∑

i=1

hifi | deg(q) ≤ deg(p) and LM(hifi) ≤ LM(p)∀i = 1, . . . , s}.

32 BASIC OPERATIONS ON POLYNOMIALS

The row space of D will be denoted D. It is clear that D ⊂ Cnd and that dim(D) =
rank(D). Each column of D contains the coefficients of a certain monomial and
hence the number of columns of D, #col(D), corresponds with dim(Cnd). This
divisor matrix will be the key to generalize multivariate polynomial division in
terms of linear algebra.

Example 2.7 The divisor matrix D for dividing p = x1x
2
2 − x1 by f1 = x1x2 + 1

and f2 = x2
2 − 1 is

D =













1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

f1 1 0 0 0 1 0 0 0 0 0
x1 f1 0 1 0 0 0 0 0 1 0 0
x2 f1 0 0 1 0 0 0 0 0 1 0
f2 −1 0 0 0 0 1 0 0 0 0
x1 f2 0 −1 0 0 0 0 0 0 1 0













.

Observe that this divisor matrix has no row corresponding with x2 f2 since
LM(x2 f2) = x3

2 > LM(p).

By definition, the
∑s
i=1 hifi terms of (2.7) are described by the row space D of

the divisor matrix. This allows us to rewrite (2.7) as the vector equation

p = hD + r,

which leads to the insight: multivariate polynomial division corresponds to a vector
decomposition. The vector p is decomposed into hD, which lies in D, and into r.
Since p can be any element of Cnd and D is a subspace of Cnd , it therefore follows
that there exists a vector space R such that D ⊕ R = Cnd . In general, there are
many other subspaces R which are the complement of D. The most useful R for
multivariate polynomial division will be the vector space which is isomorphic with
the quotient space C/D.

2.4.2 Quotient Space

Having defined the vector space D, we now proceed to describe the vector space
of remainder terms. We start with considering the following relationship, denoted
by ∼, in Cnd :

∀ p, r ∈ Cnd : p ∼ r ⇔ p− r ∈ D.
It is easily shown that ∼ is a equivalence relationship and therefore partitions Cnd .
Each of these partitions is an equivalence class

[p]D = {r ∈ Cnd : p− r ∈ D}.

MULTIVARIATE POLYNOMIAL DIVISION 33

Since p− r ∈ D, we can also write it as p− r = hD and therefore

p = hD + r.

The addition of the constraint that either r = 0, or r is a linear combination of
monomials, none of which is divisible by any of LM(f1), . . . ,LM(fs) allows then
for the interpretation of the elements of the equivalence class as the remainder
terms. The set of all the equivalence classes [p]D is denoted by C/D and is also a
vector space. In fact, one can find a vector space R ⊂ Cnd , isomorphic with C/D,
such that D ⊕R = Cnd . This implies that

dim(R) = dim(C/D),

= dim(Cnd)− dim(D),

=
(

d+n
n

)

− rank(D),

= dim(null(D)),

which allows to determine the dimension of R in a straightforward manner. All
information on the dimensions of both D and R can be obtained from the rank of
D. Since R is a finite-dimensional vector space, a monomial basis for R can be
formally defined.

Definition 2.4 Any set of monomials which forms a basis of a vector space R
such that R ∼= C/D and R ⊂ Cnd is called an R basis. The corresponding canonical
basis of R in Cnd is denoted R such that R = row (R).

Since R ⊂ Cnd , the canonical basis R needs to be a monomial basis. These basis
monomials are in fact representatives of the equivalence classes of a basis for C/D.
Although a polynomial basis could be chosen for R, this would make it significantly
harder to require that every monomial of this basis should not be divisible by any
of the leading monomials of f1, . . . , fs. This will turn out to be easy for a monomial
basis of R. Finding the basis monomials of R is equivalent with looking for a set
of columns of the divisor matrix D which are linearly dependent with respect to
all other columns. We will prove this when discussing the nonuniqueness of the
remainder. Since dim(C/D) = dim(null(D)), it must be possible to find

(

d+n
n

)

− r
linearly dependent columns with r = rank(D). In the univariate case, D is by
construction of full row rank and hence r = d − d0 + 1. The number of linearly
dependent columns is then (d+ 1)− (d− d0 + 1) = d0. This is in fact linked with
the fundamental theorem of algebra which states that an univariate polynomial of
degree d0 over the complex field has d0 solutions. In the multivariate case, things
are a bit more complicated. D is then neither of full row rank nor of full column
rank. This will explain the nonuniqueness of both the quotients and remainder,
as we will show next.

34 BASIC OPERATIONS ON POLYNOMIALS

2.4.3 Nonuniqueness of quotient

Suppose the rank of the matrix D is r. In general, the matrix will not be of full row
rank and there will be maximally

(

p
r

)

possibilities of choosing r linearly independent
rows. In practice, a basis for the row space of D is required for calculating the
decomposition of p into

∑

i hifi terms. Therefore depending on which rows are
chosen as a basis for D, several decompositions are possible. Checking whether
the quotient is unique hence involves a rank test of D. This fact is summarized in
the following lemma.

Lemma 2.2 The quotient hD when dividing p by a set of divisors F is unique, or
in other words does not depend on the order of the divisors, when the corresponding
divisor matrix D is of full row rank.

The definition of multivariate polynomial division does not specify any constraints
on how to choose a basis for D. In Subsection 2.4.6, where we discuss the
implementation of our division algorithm, it is explained how such a basis is
chosen using a sparse rank-revealing QR decomposition. Choosing a basis for
R is constrained by the definition of multivariate polynomial division, but not in
such a way that only one possible basis is left.

2.4.4 Nonuniqueness of remainder

In the previous section we saw that the nonuniqueness of the quotient is due to the
divisor matrix D not being of full row rank. In the same way, the nonuniqueness
of the remainder is due to the divisor matrix D not being of full column rank.
However, not every maximal set of linearly dependent columns of D, with respect
to the remaining columns, is a possible candidate as a basis for the remainder
space R. Only the maximal sets of linearly dependent columns that satisfy
the constraint that none of the corresponding monomials are divisible by any
of LM(f1), . . . ,LM(fs) are allowed. This constraint, in general, is not sufficient
to reduce the number of possible bases of R to only one. The following simple
example illustrates.

Example 2.8 Suppose
p = 9x2

2 − x1x2 − 5x2 + 6

is divided by
F = {f1 = x2 − 3, f2 = x1x2 − 2x2}.

MULTIVARIATE POLYNOMIAL DIVISION 35

Since LM(p) = x2
2 one needs to construct the following divisor matrix

D =









1 x1 x2 x2
1 x1x2 x2

2

f1 −3 0 1 0 0 0
x1 f1 0 −3 0 0 1 0
x2 f1 0 0 −3 0 0 1
f2 0 0 −2 0 1 0









.

The null column corresponding with the monomial x2
1 will surely be linearly

dependent with respect to all other columns. The rank of D is 4 and any other
column of D could be chosen as the second linearly dependent column. This gives
the following set of possible bases for R:

{1, x2
1}, {x1, x

2
1}, {x2, x

2
1}, {x2

1, x1x2}, {x2
1, x

2
2}.

The leading monomials of f1 and f2 are, according to the degree negative
lexicographic ordering, x1x2 and x2 respectively. Therefore the set of possible bases
for R is reduced to {{1, x2

1}, {x1, x
2
1}} since neither 1 nor x1 are divisible by x1x2

or x2. Since D is of full row rank, this implies that the quotient is unique. The
matrix R corresponding with the R basis {1, x2

1} is

R =

(

1 x1 x2 x2
1 x1x2 x2

2

1 0 0 0 0 0
0 0 0 1 0 0

)

.

The row space of R is indeed such that R⊕D = C2
2 .

From Example 2.8 it is clear that not every set of linearly dependent columns
corresponds with an R basis that is suitable to describe multivariate polynomial
division. The encoding of the graded monomial ordering in the columns of the
divisor matrix allows us to find a suitable basis for R that satisfies the constraint
that none of its monomials is divisible by any LM(fi) (i = 1 . . . s). The key
idea is to check each column for linear dependence with respect to all columns to
its right, starting from the rightmost column. Before stating the main theorem,
we first introduce some notation and prove a needed lemma. In what follows,
a monomial will be called linearly (in)dependent when its corresponding column
of the divisor matrix D is linearly (in)dependent with respect to another set of
columns. Suppose the divisor matrix D has q columns. Then each column of D
corresponds with a monomial m1, . . . ,mq with m1 < m2 < . . . < mq according to
the monomial ordering. Suppose now that rank(D) = r and therefore c = q − r
linearly dependent monomials can be found. We now introduce the following high-
level algorithm that finds a special set of linearly dependent monomials. In this
algorithm each monomial label stands for a column vector of the divisor matrix D.

36 BASIC OPERATIONS ON POLYNOMIALS

Algorithm 2.1 Find a maximal set of linearly dependent monomials
Input: divisor matrix D
Output: a maximal set of linearly dependent monomials l

l ← ∅
if mq = 0 then

l ← [l , mq]
end if

for i = q − 1 : −1 : 1 do

if mi linearly dependent with respect to {mi+1, . . . ,mq} then

l ← [l , mi]
end if

end for

Algorithm 2.1 finds a maximal set of monomials l which are linearly dependent
with respect to all monomials to their right. We will label these c monomials of l
as l1, . . . , lc such that lc < . . . < l2 < l1 according to the monomial ordering. The
matrix D can then be visually represented as

D =





m1 . . . lc . . . lk . . . l1 . . . mq

× × ×
. × . . . × . . . ×

× × ×



.

Example 2.9 We revisit the divisor matrix of Example 2.8 and apply Algorithm
2.1. For this simple example, checking the linear dependence was done using the
SVD-based ‘rank’ command in MATLAB. A monomial mi was considered to be
linearly dependent as soon as the rank did not increase when adding its column to
the matrix containing {mi+1, . . . ,mq}. It is easy to verify that this results in the
following linearly dependent monomials: l1 = x2

1, l2 = 1.

The previous example indicates that Algorithm 2.1 produces the standard
monomials of lowest total degree for the degree negative lexicographic ordering.
We now prove this in the following lemma.

Lemma 2.3 Given a divisor matrix D of rank r and the linearly dependent
monomials l1, . . . , lc found from Algorithm 2.1. Then any other set of c linearly
dependent monomials l′1, . . . , l

′
c with l′1 > l

′
2 > . . . > l

′
c satisfies the following

conditions: l′1 ≥ l1, l′2 ≥ l2, . . . , l′c ≥ lc.

PROOF. Let {lk, . . . ,mq} denote the set of all monomials from lk up to mq for
a certain k ∈ {1, . . . , c} and let q1 denote the cardinality of {lk, . . . ,mq}. From
Algorithm 2.1 we know that {lk, . . . ,mq} contains k linearly dependent monomials
and q1 − k linearly independent monomials. We now choose the largest k such

MULTIVARIATE POLYNOMIAL DIVISION 37

that l′k < lk. {lk, . . . ,mq} will then contain at most k − 1 l′ monomials, which
implies that there are at least q1 − k + 1 linearly independent monomials in
{lk, . . . ,mq}. This contradicts the fact that there are exactly q1 − k linearly
independent monomials in {lk, . . . ,mq}. �

This lemma states that the R basis which is found from Algorithm 2.1 is of minimal
total degree according to the degree negative lexicographic ordering. We can now
prove the main theorem.

Theorem 2.3 Consider a divisor matrix D. Then a suitable monomial basis for
R is found by Algorithm 2.1. None of the monomials corresponding with the
linearly dependent columns found in this way are divisible by any of the leading
monomials of f1, . . . , fs and therefore serve as a basis for the vector space of
remainder terms R.

PROOF. SinceD⊕R = Cnd , any multivariate polynomial p ∈ Cnd can be decomposed
into

∑s
i=1 hifi ∈ D, spanned by a maximal set of linearly independent rows of D,

and r ∈ R, spanned by the monomials l1, . . . , lc found from Algorithm 2.1. We
can therefore write

p =

s
∑

i=1

hi fi + r with r =

c
∑

i=1

ai li (ai ∈ C). (2.9)

Suppose now that at least one of the monomials l1, . . . , lc is divisible by a leading
monomial of one of the polynomials f1, . . . , fs, say fj . Let lk be the monomial
of highest degree which is divisible by LM(fj). This implies that the division of

r −∑k−1
i=1 ai li by fj can be written as

r −
k−1
∑

i=1

ai li = gfj + r′ (2.10)

where r′ 6= 0 and due to the definition (2.2) none of the monomials of r′ are divisible
by LM(fj). In addition, all monomials r′1, . . . , r

′
t of r′ satisfy r′i < lk [22, p. 64-66].

By substituting (2.10) into (2.9) we have

p =
∑s
i=1 hi fi + r

=
∑s
i=1 hi fi +

∑k−1
i=1 ai li + gfj + r′

=
∑s
i=1 h

′
i fi +

∑k−1
i=1 ai li + r′.

From this last equation one can see that r′ needs to contain c− k + 1 monomials
none of which are divisible by any of the leading monomials of f1, . . . , fs. If LM(r′)
is not divisible by any of the leading monomials of f1, . . . , fs then LM(r′) is the
new linearly dependent monomial l′k. However, l′k < lk, which is a contradiction

38 BASIC OPERATIONS ON POLYNOMIALS

according to Lemma 2.3. If LM(r′) is divisible by any of the leading monomials
of f1, . . . , fs, then the division procedure as in (2.10) can be repeated, leading to
the same contradiction. �

The duality between the linearly dependent columns of D and the linearly
independent rows of its null space K = null(D) implies the following corollary
of Theorem 2.3.

Corollary 2.3 A monomial basis for R can also be found from checking the rows
of the null space of D for linear independence from top to bottom. None of the
monomials corresponding with the linearly independent rows are divisible by any
of the leading monomials of f1, . . . , fs.

Corollary 2.3 will be useful when discussing a practical implementation. In
algebraic geometry, the nonuniqueness of the remainder corresponds with the
remainder being dependent on the order of the divisors f1, . . . , fs. This is normally
solved by computing the remainder of p being divided by a Gröbner basis instead.
The difference between the Gröbner basis method and the algorithm described in
this manuscript is discussed in Section 2.4.8. The R basis, which is found from
Theorem 2.3 is also unique, since changing the order of the divisors (rows) will not
affect the linear dependence of the columns in Algorithm 2.1.

2.4.5 The Geometry of Polynomial Division

Having discussed the divisor matrix D and a canonical basis R for the quotient
space, it is now possible to interpret multivariate polynomial division geometrically.
Since

p =

s
∑

i=1

hifi + r,

with
∑s
i=1 hifi ∈ D and r ∈ R, finding the

∑

hifi terms is then equivalent
to projecting p along R onto D. The remainder r can then simply be found as
p−∑si=1 hifi or as the projection of p along D ontoR. Figure 2.2 represents this in
three-dimensional Euclidean space. The whole three-dimensional Euclidean space
represents Cnd , the plane represents D and the long oblique line pointing to the left
represents R. Since R does not lie in D it is clear that D ⊕R = Cnd . The oblique
projection of p along R onto D is given by the following expression

s
∑

i=1

hifi = p (I −RTR)
[

D(I −RTR)
]†
D. (2.11)

More information on projector operators can be found in Appendix A Section A.12.
Expression (2.11) assumes that the basis for the vector spaces D and R are given
by the rows of D and R respectively and that R is orthogonal.

MULTIVARIATE POLYNOMIAL DIVISION 39

R

D

hD

rpr

Figure 2.2: The quotient hD of dividing p by F = {f1, . . . , fs} is found by
projecting p along R onto D.

2.4.6 Algorithm & Numerical Implementation

In this section, a high-level algorithm and numerical implementation are presented
for doing multivariate polynomial division. The outline of the algorithm is given
in Algorithm 2.2. This is a high-level description since implementation details are
not given. The most important object in the algorithm is the divisor matrix D.
From this matrix a basis for D and R are determined. The

∑s
i hifi terms are

then found from projecting p along R onto D. The remainder is then found as
r = p−∑si hifi. The quotients hi can easily be retrieved from solving the linear
system hD =

∑s
i hifi.

Algorithm 2.2 Multivariate Polynomial Division
Input: polynomials f1, . . . , fs, p ∈ Cnd
Output: h1, . . . , hs, r such that p =

∑s
i hifi + r

D ← Divisor matrix of f1, . . . , fs
A← basis of vector space D determined from D
B ← monomial basis of vector space of remainders R determined from D
∑s
i hifi ← project p along R onto D
r ← p−∑si hifi
h =

(

h1, . . . , hs
)

← solve hD =
∑s
i hifi

Our implementation of Algorithm 2.2 consists of three main steps:

40 BASIC OPERATIONS ON POLYNOMIALS

1. the rank of D is determined, together with a basis for D,

2. the R basis is determined,

3. the oblique projection is computed.

The first step, the rank determination, can be done by either an SVD or a rank-
revealing QR decomposition. When a sparse matrix data structure is used however,
only the rank-revealing QR is an option. Our numerical implementation of steps 2
and 3 is done via 3 QR decompositions. Furthermore, the use of orthogonal matrix
factorizations guarantees the numerical backward stability of the implementation.
The third QR decomposition will dominate the cost of the method, which is
O((q + 1)q2) where q is the number of columns of D. Also observe that q grows
as O(dn) where d = deg(p) and n is the number of variables. In addition, D
also typically has a large amount of zero elements. Using a sparse matrix data
structure is therefore a natural choice. We will discuss the implementation in detail
for the sparse case, which uses the multifrontal multithreaded rank-revealing QR
decomposition [24]. This sparse QR decomposition uses by default a numerical
tolerance of τ = 20 (q + s) ǫ maxj ||D∗j ||2 where ǫ is the machine roundoff (about
10−16 since only a double-precision implementation of the sparse QR factorization
is available). maxj ||D∗j ||2 is the largest 2-norm of any row of D and D is s-by-q.
The rank of D, a basis for its row space D and a basis for its null space K are
determined from the following QR factorization

DT Pd = Qd Rd,

where Pd corresponds with a column permutation that reduces fill-in and allows to
determine the rank. The estimate for the rank r is given by the number of nonzero
diagonal elements of Rd. The r leftmost columns of DT Pd span D. An orthogonal
basis for the null space K is given by the remaining columns of Qd. This first
QR decomposition is a critical step in the implementation. Indeed, an ill-defined
numerical rank indicates an inherent difficulty to determine the dimensions of D
and R. Now, Corollary (2.3) is used to find the R basis. K is per definition of full
column-rank, say dim(K) = c, and from a second sparse QR decomposition

KT Pk = Qk Rk

the linearly independent rows of K are found as the leftmost c columns of KT Pk.
In fact, the factors Qk and Rk do not need to be kept. The column permutation
will work from the leftmost column of KT to the right, which corresponds with
checking the rows of K for linear independence from top to bottom. Corollary
2.3 then ensures a correct R basis for multivariate polynomial division is found.
From this, a canonical basis R for R can be constructed. With the first two steps
completed one can now use (2.11) to find the projection of p onto D along R. It
is possible to simplify (2.11). The first two factors of its right-hand side are

p (I −RT R) (2.12)

MULTIVARIATE POLYNOMIAL DIVISION 41

and the third factor is
[

D (I −RT R)
]†
. (2.13)

The first step in simplifying (2.11) is the calculation of the LQ factorization of





R
D
p



 = L Q =





LR
LD
Lp



 Q, (2.14)

where L is lower triangular and Q orthogonal. This allows us to write

R = LR Q,

D = LD Q,

p = Lp Q.

Since R is a canonical basis, all rows of R are orthonormal and will be contained
in Q without any change. Hence, LR will always be a unit matrix embedded into
a rectangular structure

LR =
(

Ic O
)

where c = dim(R). This implies that LR L
T
R = Ic. The next step is to replace p

and R in (2.12) by their respective LQ decompositions

p (Iq −RT R) = LpQ (Iq −QT LTR LRQ),

= LpQQ
T (Iq − LTR LR)Q,

= Lp (Iq − LTR LR)Q. (2.15)

The simplifications are possible since LR L
T
R = Ic and QQT = Iq . Applying

the same strategy of replacing D and R by their respective LQ decompositions in
(2.13) results in

D (I −RT R) = LD (Iq − LTR LR)Q. (2.16)

From here on,W denotes the common factor (Iq−LTR LR). Using (2.15) and (2.16)
in (2.11) we obtain

s
∑

i=1

hifi = p (I −RTR)
[

D(I −RTR)
]†
D,

= Lp W Q (LDWQ)† D,

= Lp W Q Q
† (LDW)† D,

= Lp W (LDW)† D, (2.17)

42 BASIC OPERATIONS ON POLYNOMIALS

which requires the calculation of only 1 matrix pseudo-inverse. Exploiting the
structure of W allows to further simplify this expression. Since W = (Iq −LTRLR)
and LR is a unit matrix embedded in a rectangular structure it follows that

W =

(

0 0
0 Ir

)

,

where r = q − c is the rank of D. Partitioning Lp into

Lp =
(

Lp1
Lp2

)

,

where Lp2
are the r rightmost columns and likewise LD into

LD =
(

LD1
LD2

)

simplifies (2.17) to Lp2
L†D2
D. We can therefore write the oblique projection of p

along R on D as
s
∑

i=1

hifi = Lp2
L†D2
D. (2.18)

In this final expression the orthogonal matrix Q of (2.14) does not appear and it
is therefore not necessary to calculate it explicitly. LD2

is a square matrix and

when it is of full column rank, L†D2
= L−1

D2
. The factor Lp2

L†D2
in (2.18) specifies

the linear combination of rows of D and therefore the decomposition of p into the
∑s
i=1 hifi terms. The remainder is then easily found as r = p−∑si=1 hifi.

2.4.7 Numerical Experiments

In this example we will replace x1, x2, x3 with x, y, z respectively and divide the
polynomial p = −5 + 2x+ y2 + z2 + 8xy2 by

F =







f1 = −4 + x2 + y2 + z2,
f2 = −5 + x2 + 2y2,
f3 = −1 + xz.

The leading monomial of p according to the degree negative lexicographic ordering
is xy2. The divisor matrix D is the following 5 by 20 matrix

D =













f1
f2
xf2
f3
xf3













The numerical tolerance for this example is τ = 5.468 × 10−13. The rank is
estimated to be 5 and therefore dim(R) = 15. The monomial basis for R is

{1, x, y, z, x2, xy, yz, x3, x2y, xyz, xz2, y3, y2yz2, z3}.

MULTIVARIATE POLYNOMIAL DIVISION 43

The factor Lp2 L
†
D2 equals

(

1.0 0 4.0 0 0
)

and
∑

i hifi is therefore

∑

i

hifi = 1.0 f1+4.0 x f2 = −4.0−20.0 x+1.0 x2+1.0 y2+1.0 z2+4.0 x3+8.0 xy2.

The remainder term r is easily found from the vector difference

r = p−
∑

i

hifi = −1.0 + 22.0 x− 1.0 x2 + 0.0 y2 + 0.0 z2 − 4.0 x3.

The total running time for computing both the quotients and the remainder was
0.011 seconds. The forward errors for both the

∑

i hifi terms and r are bounded
from above by 10−15. Observe that, unlike in the univariate case, the leading
monomial of the remainder is x3 and has a larger degree than any of the divisors.

We now perturb the coefficients of the divisors with noise of order 10−6 and divide
p = −5 + 2x+ y2 + z2 + 8xy2 by

F̃ =







f1 = −4.000001 + 0.000001 y+ x2 + y2 + z2,
f2 = −5.000001 + x2 + 2y2,
f3 = −1 + 0.000001 x2 + xz.

The noise introduced two extra terms: 10−6 y in f1 and 10−6 x2 in f3. The
numerical rank of D remains 5 and the factor Lp2 L

†
D2 also does not change.

The remainder term however now becomes

r = −1.0 + 22.000004 x− 10−6 y − 1.0 x2 + 0.0 y2 + 0.0 z2 − 4.0x3.

The noisy 10−6 y term ends up in the remainder and the coefficient of x is now
also perturbed. Again, the forward errors are bounded from above by 10−15. The
total running time was 0.013 seconds.

2.4.8 Division by a Gröbner Basis

In this section, we discuss the difference between the results of our division
algorithm and the division of a multivariate polynomial by a Gröbner basis. One
attractive feature of a Gröbner basis is that the remainder will be independent
on the ordering of the divisors. The R basis, found using Theorem 2.3 is not
necessarily the R basis RG, obtained when dividing by the corresponding Gröbner
basis. This difference is due to the defining property of the Gröbner basis. Not
all leading terms of the polynomial ideal I = 〈f1, . . . , fs〉 (Appendix B Section
B.3) are necessarily divisible by at least one of the polynomials f1, . . . , fs and this
implies that RG ⊆ R.

44 BASIC OPERATIONS ON POLYNOMIALS

Example 2.10 We revisit the unperturbed polynomial system of Section 2.4.7 and
first compute the Gröbner basis G of I = 〈f1, f2, f3〉 using Maple:

G =















g1 = −1 + xz,
g2 = −5 + x2 + 2y2,
g3 = −3 + x2 + 2z2,
g4 = 2 z − 3 x+ x3.

G contains four polynomials whereas F only three. Applying Algorithm 2.1 for G
results in the following R basis RG = {1, x, y, z, x2, xy, yz, x2y}, which is indeed a
subset of R. Since the difference between R and RG lies in the higher degrees, the
remainder rG from dividing p by G contains fewer terms of higher total degree,

rG = −1.0 + 10.0 x+ 8.0 z − 1.0 x2 + 0.0 x3 + 0.0 xy2.

For this example, the x3 term of r does not appear in rG. Computation of this
remainder rG took 0.012 seconds in MATLAB.

2.4.9 Buchberger’s Algorithm

Buchberger’s Algorithm (Algorithm B.1 in Appendix B Section B.5) can be
summarized as constructing S-polynomials and computing remainders. One way
of computing these remainders would be to use Algorithm 2.2, but there is an
alternative way that does not require any projections. From Theorem 2.3 we
know that a basis for R can be found by checking the columns of D for linear
independence from right to left. Instead of using Algorithm 2.1, one can apply
Gauss-Jordan elimination, without column pivoting, onto D. Indeed, the resulting
pivot columns from the upper triangular result R would then correspond with the
linearly independent monomials and the other monomials therefore span R. It is
important however that the Gauss-Jordan algorithm also needs to be applied from
right to left. Hence, adding p to R as an extra row and applying Gauss-Jordan
again from right to left leads to the reduction of p. We will denote this reduced
polynomial by p′. It is now easy to see that p′ is in fact the remainder of p by
division of F . Either p ∈ row(D) and p′ = 0 or p /∈ row(D) and p′ is then a
linear combination of monomials, none of which is divisible by any of the leading
monomials LM(f1), . . . ,LM(fs), due to the resulting reduced row echelon form.
Observe that applying Gauss-Jordan elimination to the concatenation of D with
p is sufficient to compute the remainder. One then needs to keep track of p during
the reduction.

MULTIVARIATE POLYNOMIAL DIVISION 45

Example 2.11 We revisit the unperturbed example from Section 2.4.7. The
concatenation of the divisor matrix D with p is















1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3 x3

1 x2
1x2 x2

1x3 x1x
2
2

−4 0 0 0 1 0 0 1 0 1 0 0 0 0
−5 0 0 0 1 0 0 2 0 0 0 0 0 0
0 −5 0 0 0 0 0 0 0 0 1 0 0 2
−1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 1 0
−5 2 0 0 0 0 0 1 0 1 0 0 0 8















.

Applying Gauss-Jordan elimination from right to left results in the matrix















1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3 x3

1 x2
1x2 x2

1x3 x1x
2
2

−1 2 0 0 −1 0 0 0 0 0 0 0 0 8
0 −1 0 0 0 0 0 0 0 0 0 0 1 0
1 −22 0 0 1 0 0 0 0 0 4 0 0 0
−3 0 0 0 1 0 0 0 0 2 0 0 0 0
−5 0 0 0 1 0 0 2 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0 0 0















,

where the 3rd row corresponds with p′. Indeed, this row corresponds up to a scalar
with the polynomial

r = −4 x3
1 − x2

1 + 22 x1 − 1,

which is the remainder as found by Algorithm 2.2.

This means that the main operation of the Buchberger algorithm, computing
remainders, is the reduction of a matrix to its reduced row echelon form. This
insight, that a Gröbner basis can be computed from the reduction of a matrix is due
to Lazard [56], and led to Faugère’s F4 and F5 algorithms [37,38]. These algorithms
are multiprecision integer implementations of Buchberger’s Algorithm, where the
remainders are computed using row echelon forms. In addition, remainders can
be computed independently of one another and hence the whole algorithm is
parallelized. F5 was the first algorithm to solve the previously intractable “cyclic
10” problem [38]. The link between the reduction of a matrix and Gröbner
bases will be further explored in Chapter 5, where we introduce the canonical
decomposition of Cnd , and Chapter 6, where this decomposition is related to the
numerical computation of a Gröbner basis.

Chapter 3

Macaulay matrix

In this chapter, we introduce and discuss the most important matrix of this thesis:
the Macaulay matrix. This matrix plays a central role in all subsequent chapters.
Expressions for its size are given and an expression for its density is derived.
Important interpretations of its row space, left null space and null space are also
derived. These interpretations will be crucial for the development of the algorithms
in Chapter 6. Finally, we also derive an upper bound for the largest singular value
of the Macaulay matrix. We will use this bound to quantify the change of the
singular values of the Macaulay matrix due to perturbations.

3.1 Definition

Simply stated, the Macaulay matrix is a generalization of the multiplication matrix.
Whereas the multiplication matrixMf1

(d) is defined by only one polynomial f1, the
Macaulay matrix is defined by a system of multivariate polynomials f1, . . . , fs. The
reason this matrix is called the Macaulay matrix is because it was Macaulay who
introduced this matrix, drawing from earlier work by Sylvester [85], in his work on
elimination theory, resultants and solving multivariate polynomial systems [60,61].
We start this chapter by giving its formal definition.

47

48 MACAULAY MATRIX

Definition 3.1 Given a set of polynomials f1, . . . , fs ∈ Cn, each of degree di (i =
1, . . . , s), then the Macaulay matrix of degree d ≥ max (d1, . . . , ds) is the matrix
containing the coefficients of

M(d) =

































f1

x1f1
...

xd−d1
n f1

f2

x1f2
...

xd−dsn fs

































(3.1)

where each polynomial fi is multiplied with all n-variate monomials from degree 0
up to d− di for all i = 1, . . . , s.

Notice again the similarity with the multiplication matrix. Indeed, the Macaulay
matrix is nothing but the multiplication matricesMfi(d) for each polynomial fi of
the polynomial system, all stacked onto one another. As with the multiplication
matrix, the dependence of this matrix on the degree d for which it is defined
is expressed explicitly in the notation M(d). When constructing the Macaulay
matrix, it is more practical to start with the coefficient vectors of the original
polynomial system f1, . . . , fs, after which all the rows corresponding to multiplied
polynomials xa fi up to a degree max(d1, . . . , ds) are added. Then one can add
the coefficient vectors of all polynomials xa fi of one degree higher and so forth
until the desired degree d is obtained. This is illustrated in the following example.

Example 3.1 For the following polynomial system in C2
2

{

f1 : x1x2 − 2x2 = 0,
f2 : x2 − 3 = 0,

we have that max(d1, d2) = 2 and we want to construct M(3). The first 2 rows
then correspond with the coefficient vectors of f1, f2. Since max(d1, d2) = 2 and
d2 = 1, the next 2 rows correspond to the coefficient vectors of x1f2 and x2f2
of degree 2. Notice that these first 4 rows make up M(2) when the columns are
limited to all monomials of degree 0 up to 2. The next rows that are added are the
coefficient vectors of x1f1, x2f1 and x2

1f2, x1x2f2, x
2
2f2 which are all polynomials

SIZE, NUMBER OF NONZERO COEFFICIENTS AND DENSITY 49

of degree 3. This way of constructing the Macaulay matrix M(3) then results in

M(3) =





























1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

f1 0 0 −2 0 1 0 0 0 0 0
f2 −3 0 1 0 0 0 0 0 0 0
x1 f2 0 −3 0 0 1 0 0 0 0 0
x2 f2 0 0 −3 0 0 1 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
x2

1 f2 0 0 0 −3 0 0 0 1 0 0
x1x2 f2 0 0 0 0 −3 0 0 0 1 0
x2

2 f2 0 0 0 0 0 −3 0 0 0 1





























.

3.2 Size, number of nonzero coefficients and density

For a given degree d, the number of rows p(d) of M(d) is given by the polynomial

p(d) =

s
∑

i=1

(

d− di + n

n

)

=
s

n!
dn +O(dn−1), (3.2)

and the number of columns q(d) by

q(d) =

(

d+ n

n

)

=
1

n!
dn +O(dn−1). (3.3)

From these two expressions it is clear that the number of rows will grow faster
than the number of columns as soon as s > 1.

Example 3.2 Suppose we have a multivariate polynomial system F = {f1, . . . , f5}
with n = 10 and respective degrees d1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 = 5. The
number of rows of the Macaulay matrix of F at degree d is then given by the
polynomial

p(d) =
1

24
d5 +

5

8
d3 +

1

3
d,

and the number of columns by the polynomial

q(d) =
1

120
d5 +

1

8
d4 +

17

24
d3 +

15

8
d2 +

137

60
d+ 1.

We denote the rank of M(d) by r(d) and the dimension of its left and right null
space by l(d) and c(d) respectively. The rank-nullity theorems ofM(d)T andM(d)

50 MACAULAY MATRIX

can then be expressed as

q(d) = r(d) + c(d),

p(d) = r(d) + l(d),

which shows that r(d), l(d), c(d) also are polynomials over all positive integers
d > max(d1, . . . , ds). This polynomial increase of the size of M(d), due to the
combinatorial explosion of the number of monomials, is the main bottleneck
when solving practical problems but is unfortunately inherent to multivariate
polynomials. Fortunately, as we will now show, the Macaulay matrix is very
sparse. We will exploit this sparsity in the recursive orthogonalization algorithm
of Chapter 4.

The density of a matrix is defined as the ratio of the total number of nonzero
elements to the total number of elements. Let n1, . . . , ns be the total number of
nonzero coefficients of the polynomials f1, . . . , fs respectively. It is then easily
derived that the total number of nonzero elements of M(d) is given by the
polynomial

s
∑

i=1

ni

(

d− di + n

n

)

=
(n1 + . . .+ ns)

n!
dn +O(dn−1).

An interesting question is how much storage is needed to store M(d) in memory.
Assuming that each number requires 8 Bytes to store, since we are working in
double precision, then storing all elements takes

p(d)× q(d) × 8 Bytes.

Using the compressed column data structure (Appendix A Section A.13), it is
necessary to store the row indices Ai, the nonzero values Ax and the column
indices Ap. Assuming there are no zero columns, this is approximately

(

2

s
∑

i=1

ni

(

d− di + n

n

)

+

(

d+ n

n

)

)

× 8 Bytes.

The gain in memory when storing M(d) using the compressed column data
structure is therefore approximately

p(d) q(d) 8
(

2
∑s
i=1 ni

(

d−di+n
n

)

+
(

d+n
n

)

)

8
≈ s dn

(2n1 + . . .+ 2ns + 1)n!
.

Remark 3.1 No use was made in the calculation of the required memory that the
coefficients of the polynomials f1, . . . , fs are repeated in the Macaulay matrix. An
interesting line of future research would be to further compress the data structure
such that each nonzero coefficient needs to be stored only once. This would result
in an additional gain of required memory.

UPPER BOUND ON LARGEST SINGULAR VALUE 51

In Chapter 4 some gains in required storage will be reported for particular
examples. These will be in the range of 13 up to 500.

Example 3.3 Suppose n = 10, s = 10 and that d1 = . . . = d10 = 4, then Table
3.1 lists the gain in required memory in Bytes for d from 4 up to 10. The rapid
dn/n! growth is already visible from this table. For d = 16, another increment of
the degree by 6, the gain is approximately 2.652× 103.

Table 3.1: gain in required memory [Bytes]

d 4 5 6 7 8 9 10

gain 0.4762 1.4798 3.9759 9.6814 21.8095 46.0721 92.1795

Using the above polynomial expressions, the density ρ(d) of M(d) is written as

ρ(d) =

∑s
i=1 ni

(

d−di+n
n

)

∑s
i=1

(

d−di+n
n

) (

d+n
n

) . (3.4)

An approximation of the density can be found from the dominant term of (3.4)
for large d. By substituting the polynomials of the numerator and denominator of
(3.4) by their highest order terms we get

ρ(d) ≈
(n1+...+ns) d

n

n!
s dn

n!
dn

n!

=
(n1 + . . .+ ns)n!

s dn
.

Hence, the density of M(d) is inverse proportional to dn for large d. The sparsity
of M(d) is defined naturally as 1 − ρ(d). Already for moderate values of d and
n, dn can grow quite fast so that the density will decrease accordingly and hence
M(d) will quickly become sparse.

Example 3.4 Suppose n = 10, s = 10, d1 = . . . = d10 = 10. Assume further
that the polynomial system is very dense: every possible monomial has a nonzero
coefficient. Obviously, for this case ρ(10) = 1. Figure 3.1 displays the density ρ(d)
in % as a function of the degree d. Notice how the density has already dropped to
1% for d ≈ 19. Hence, for this degree we have that M(19) consists approximately
for 99% out of zero entries.

3.3 Upper bound on largest singular value

The Macaulay matrix is, up to a row permutation, a concatenation of multiplica-
tion matrices. Just like for the multiplication matrix it is possible to express an

52 MACAULAY MATRIX

10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

degree d

D
e
n
s
it
y
 ρ

(d
)

[%
]

Figure 3.1: Density of the polynomial system of Example 3.4 as a function
of the degree d.

upper bound for the largest singular value and thus bound ||∑i hi fi||2. Another
application of this bound is in that it can be used to bound the change of the
singular values of the Macaulay matrix when the coefficients of f1, . . . , fs are
perturbed. The first step to derive the bound on the largest singular value is
a trivial generalization of Lemma 2.1, which bounds the absolute column sum of
the Macaulay matrix.

Lemma 3.1 Let f1, . . . , fs ∈ Cn, each of degree di (i = 1, . . . , s), with

• d0 = max (d1, . . . , ds),

• dmi = min
aα 6=0

deg (aα x
α) (for each fi, 1 ≤ i ≤ s),

• dl the total degree of the LCM of all monomials of f1, . . . , fs with nonzero
coefficients,

• d⋆ = max
1≤i≤s

d0 + (dl − dmi)− (d0 − di)

UPPER BOUND ON LARGEST SINGULAR VALUE 53

and M(d) the corresponding Macaulay matrix. Then

max
1≤j≤q

cj ≤
s
∑

i=1

||fi||1,

where equality is guaranteed from d ≥ d⋆.

PROOF. The proof is a generalization of the proof in Lemma 2.1. Since M(d) is a
concatenation of multiplication matrices, the maximal absolute column sum cj is
obviously the sum of the 1-norms of all the polynomials f1, . . . , fs. This maximal
absolute column sum will happen when all nonzero monomials of the polynomial
system are shifted to their least common multiple. At d = d0, we have that for
each polynomial fi the monomial of minimal total degree dmi is already multiplied
with a degree d0 − di. Since each monomial needs to be multiplied until it has
degree dl, the degree for which this happens is d⋆ = max

1≤i≤s
d0 +(dl−dmi)−(d0−di).

�

Lemma 3.1 immediately results in the following theorem that bounds the largest
singular value of the Macaulay matrix.

Theorem 3.1 Let f1, . . . , fs ∈ Cn and M(d) the corresponding Macaulay matrix.
Then its largest singular value σ1 is bounded from above by

σ1 ≤

√

√

√

√

s
∑

j=1

||fj||1 max
1≤i≤s

||fi||1. (3.5)

PROOF. Like for the multiplication matrix, the starting point is the upper bound
by Schur [74]

σ2
1 ≤ max

1≤i≤p,1≤j≤q
ri cj .

The maximal absolute row sum ri will be obviously max
1≤i≤s

||fi||1. Lemma 3.1 ensures

that the maximal cj is
∑s
i=1 ||fi||1. From this, the theorem follows. �

Example 3.5 For the polynomial system















f1 : 2 x2
4 + 2 x2

3 + 2 x2
2 + 2 x2 − x1 = 0,

f2 : 2 x3 x4 + 2 x2 x3 + 2 x1 x2 − x2 = 0,
f3 : 2 x2 x4 + 2 x1 x3 + x2

2 − x3 = 0,
f4 : 2 x4 + 2 x3 + 2 x2 + x1 − 1 = 0,

54 MACAULAY MATRIX

both the largest singular value σ1 and the upper bound from Theorem 3.1 are
displayed in Figure 3.2 for degree 2 up to 19. Since max

1≤i≤s
||fi||1 = ||f1||1 = 9

and
∑

i ||fi||1 = 30, the upper bound is for all degrees
√

30× 9 = 16.432. Notice
that the upper bound gets better for increasing degrees. For this polynomial system
we also have that d⋆ = 9.

0 2 4 6 8 10 12 14 16 18 20
5

7

9

11

13

15

17

19

degree d

σ
1

upperbound

Figure 3.2: Largest singular value σ1 of M(d) in Example 3.5 as a function
of d.

Just like for the multiplication matrix, this upper bound on the largest singular
value bounds ||∑i hi fi||2.

Corollary 3.1 Let h be the concatenation of all coefficient vectors of h1, . . . , hs
into one row vector, and f the concatenation of all coefficient vectors of f1, . . . , fs
into one row vector, then

||
s
∑

i=1

hi fi||2 ≤ min



||h||2

√

√

√

√

s
∑

j=1

||fj ||1 max
1≤i≤s

||fi||1, ||f ||2

√

√

√

√

s
∑

j=1

||hj ||1 max
1≤i≤s

||hi||1



 .

UPPER BOUND ON LARGEST SINGULAR VALUE 55

Remark 3.2 Lemma 3.1, Theorem 3.1 and Corollary 3.1 are indeed generaliza-
tions of respectively Lemma 2.1, Theorem 2.1 and Corollary 2.1 for the Macaulay
matrix. When s = 1 and h1 = f2, then

• Lemma 3.1 becomes Lemma 2.1,

• Theorem 3.1 becomes Theorem 2.1 and

• Corollary 3.1 becomes Corollary 2.1.

Another application of Theorem 3.1 is in bounding the perturbation of the singular
values of the Macaulay matrix when the coefficients of f1, . . . , fs are subject to
noise. Suppose the coefficients of the polynomial system f1, . . . , fs are corrupted
by noise in the following way

f̃1 = f1 + e1,

f̃2 = f2 + e2,

...

f̃s = fs + es,

where
||ei||1 ≤ ǫ (i = 1, . . . , s).

The Macaulay matrix M̃(d) of f̃1, . . . , f̃s is then related to M(d) as

M̃(d) = M(d) + E(d). (3.6)

The matrix E(d) is in fact a Macaulay matrix of the polynomial system that
consists only of the noise polynomials e1, . . . , es. We can then prove the following
theorem that bounds the perturbation of the singular values of M(d).

Theorem 3.2 Let f̃1, . . . , f̃s be the polynomial system after perturbing f1, . . . , fs,
with each of the noise polynomials bounded by ||ei||1 ≤ ǫ (i = 1, . . . , s). Let M̃(d)
be the perturbed Macaulay matrix, with singular values σ̃, and M(d) the original
Macaulay matrix, with singular values σ. Then

|σ̃j − σj | ≤ ǫ
√
s

with j = 1, . . . ,min(p(d), q(d)).

56 MACAULAY MATRIX

PROOF. Weyl [80, 88] proved the following bound on the absolute difference
between the singular values

|σ̃j − σj | ≤ ||E||2.
We apply Theorem 3.1 to bound ||E||2

||E||2 ≤

√

√

√

√

s
∑

i=1

||ei||1 max
1≤i≤s

||e1||1.

Obviously
∑s
i=1 ||ei||1 is bounded by s ǫ and max

1≤i≤s
||e1||1 is bounded by ǫ. We can

therefore write
||E||2 ≤

√
s ǫ ǫ = ǫ

√
s,

which concludes the proof. �

A nice feature of this bound is that it is independent of the size of the Macaulay
matrix.

Example 3.6 Suppose we have the following polynomial system

F =























2 x2
4 + 2 x2

3 + 2 x2
2 + 2 x2

1 − x1 = 0,

2 x3 x4 + 2 x2 x3 + 2 x1 x2 − x2 = 0,

2 x2 x4 + 2 x1 x3 + x2
2 − x3 = 0,

2 x4 + 2 x3 + 2 x2 + x1 − 1 = 0.

We now perturb each of the coefficients of F by noise, uniformly drawn from the
interval [−10−3, 10−3]. Each of the noise polynomials e1, . . . , e4 is bounded by
5× 10−3. Applying Theorem 3.2 tells us then that

|σ̃j − σj | ≤ 5× 10−3
√

4 = 10−2.

For example, when d = 10, the maximal perturbation of the singular values is
1.4244× 10−3.

This bound on the perturbation of the singular values is used in [32] for
the computation of approximate solutions to noisy overdetermined polynomial
systems.

3.4 Row space

In this section, we will present two interpretations of the row space of the Macaulay
matrix. This will naturally lead to the concept of the canonical decomposition,
which we will introduce in Chapter 5, and the ideal membership problem, which
we will solve in Chapter 6.

ROW SPACE 57

3.4.1 Affine interpretation

A first interesting observation is the affine interpretation of the row space ofM(d).
The row space of M(d), denoted by Md, contains all n-variate polynomials

Md =

{ s
∑

i=1

hi fi : hi ∈ Cnd−di (i = 1, . . . , s)

}

. (3.7)

A polynomial ideal 〈f1, . . . , fs〉 is defined as the set

〈f1, . . . , fs〉 =

{ s
∑

i=1

hifi : h1, . . . , hs ∈ Cn
}

.

It is now tempting to have the following interpretation

Md = 〈f1, . . . , fs〉 ∩ Cnd , 〈f1, . . . , fs〉d,

or in words: the row space ofM(d) contains all polynomials of the ideal 〈f1, . . . , fs〉
from degree 0 up to d. This is not necessarily valid. Md does not in general contain
all polynomials of degree d that can be written as a polynomial combination (3.7).

Example 3.7 Consider the following polynomial system [35] in C3
4







−9 − x2
2 − x2

3 − 3 x2
2x

2
3 + 8 x2x3 = 0,

−9 − x2
3 − x2

1 − 3 x2
1x

2
3 + 8 x1x3 = 0,

−9 − x2
1 − x2

2 − 3 x2
1x

2
2 + 8 x1x2 = 0.

The polynomial

p = 867 x5
1 − 1560 x3 x2 x1 − 2312 x2

2 x1 + 1560 x3 x
2
1 + 2104 x2 x

2
1 − 1526 x3

1

+4896 x2 − 2295 x1,

of degree 5 is not an element of M5. This can easily be verified by a rank test:
append the coefficient vector of p to M(5) and the rank increases by one, which
means that p does not lie in M5. However, p ∈ M11, which implies that a
polynomial combination of degree eleven is necessary in order to construct p. In
doing so, all terms of degrees six up to eleven cancel one another.

Hence, the reason that not all polynomials of degree d lie inMd is that it is possible
that a polynomial combination of a degree higher than d is required. This is due
to the polynomial system having roots at infinity. The problem of determining
whether a given multivariate polynomial p lies in the ideal 〈f1, . . . , fs〉 generated
by given polynomials f1, . . . , fs is called the ideal membership problem in algebraic
geometry.

58 MACAULAY MATRIX

Problem 3.1 (Ideal Membership problem) Let p, f1, . . . , fs ∈ Cn. Decide
whether p ∈ 〈f1, . . . , fs〉.

Example 3.7 indicates that Problem 3.1 could be solved using numerical linear
algebra: one could append the coefficient vector of p as an extra row to the
Macaulay matrix M(d) and do a rank test. As Example 3.7 also showed, it is
not sufficient to do the rank test only for the degree of the given polynomial p.
The algorithm requires a stop condition on the degree d for which M(d) should be
constructed. We can therefore restate Problem 3.1 in the following way.

Problem 3.2 Find the degree dI such that the ideal membership problem can be
decided by checking whether

rank

((

M(dI)
p

))

= rank (M(dI)) .

Problem 3.2 is related to finding the ideal membership degree bound. The ideal
membership degree bound Ib is the least value such that for all polynomials
f1, . . . , fs whenever p ∈ 〈f1, . . . , fs〉 then

p =
s
∑

i=1

hi fi hi ∈ Cn, deg(hi fi) ≤ Ib + deg(p).

Upper bounds are available on the ideal membership degree bound Ib. They are
for the general case tight and doubly exponential [57, 62, 89], which renders them
useless for most practical purposes. Central in this problem is the concept of a
Gröbner basis. We will show in Chapter 6 Section 6.3 how Problem 3.1 can be
solved numerically and how the degree dI is related to the degree for which a
Gröbner basis occurs in Md.

3.4.2 Projective interpretation

There is a different interpretation of the row space of M(d) such that all
polynomials of degree d are contained in it. This requires the notion of
homogeneous polynomials and will be crucial to understand the null space of the
Macaulay matrix. It will turn out that the dimension of the null space of M(d)
is related to the total number of projective roots of the polynomial system. This
includes roots at infinity and in this way homogeneous polynomials (Appendix B
Section B.2) are relevant. The vector space of homogeneous polynomials in n+ 1
variables of degree d is denoted Pnd . The dimension of this vector space is

dimPnd =

(

d+ n

n

)

= q(d).

ROW SPACE 59

This is no coincidence, given a set of non-homogeneous polynomials f1, . . . , fs we
can also interpret Md as the vector space

Md =

{ s
∑

i=1

hi f
h
i : hi ∈ Pnd−di (i = 1, . . . , s)

}

, (3.8)

where the fhi ’s are f1, . . . , fs homogenized and the hi’s are also homogeneous. The
corresponding homogeneous ideal is denoted by 〈fh1 , . . . , fhs 〉. The homogeneity
ensures that the effect of higher order terms cancelling one another as in Example
3.7 does not occur. This guarantees that all homogeneous polynomials of degree
d are contained in Md. Or in other words,

Md = 〈fh1 , . . . , fhs 〉d,

where 〈fh1 , . . . , fhs 〉d are all homogeneous polynomials of degree d contained in the
homogeneous ideal 〈fh1 , . . . , fhs 〉. In Appendix B, Section B.4, it is shown that the
homogenization of f1, . . . , fs typically introduces extra roots that satisfy x0 = 0
and at least one xi 6= 0 (i = 1, . . . , s). These points are roots at infinity. We revisit
Example 3.1 to illustrate this point.

Example 3.8 The homogenization of the polynomial system in Example 3.1 is
{

fh1 : x1x2 − 2x2x0 = 0
fh2 : x2 − 3x0 = 0.

All homogeneous polynomials
∑2
i=1 hi f

h
i of degree three belong to the row space of





























x3
0 x1x

2
0 x2x

2
0 x2

1x0 x1x2x0 x2
2x0 x3

1 x2
1x2 x1x

2
2 x3

2

x0f1 0 0 −2 0 1 0 0 0 0 0
x2

0f2 −3 0 1 0 0 0 0 0 0 0
x0x1f2 0 −3 0 0 1 0 0 0 0 0
x0x2f2 0 0 −3 0 0 1 0 0 0 0
x1f1 0 0 0 0 −2 0 0 1 0 0
x2f1 0 0 0 0 0 −2 0 0 1 0
x2

1 f2 0 0 0 −3 0 0 0 1 0 0
x1x2 f2 0 0 0 0 −3 0 0 0 1 0
x2

2 f2 0 0 0 0 0 −3 0 0 0 1





























which equals M(3) from Example 3.1. Note that the non-homogeneous polynomial
system had only 1 root = {(2, 3)}. After homogenization, the resulting polynomial
system fh1 , f

h
2 has 2 nontrivial roots = {(1, 2, 3), (0, 1, 0)}.

The homogeneous interpretation is in effect nothing but a relabelling of the
columns and rows of M(d). The fact that all homogeneous polynomials of degree
d are contained inMd simplifies the ideal membership problem for a homogeneous
polynomial to a single rank test.

60 MACAULAY MATRIX

Theorem 3.3 Let f1, . . . , fs ∈ Cn and p ∈ Pnd . Then p ∈ 〈fh1 , . . . , fhs 〉 if and only
if

rank

((

M(d)
p

))

= rank (M(d)) . (3.9)

Example 3.9 Suppose that

{

f1 = x2 − x2
1,

f2 = x3 − x3
1,

and that
p = x2

0x3 − x0x1x2.

We now want to assess whether p ∈ 〈x0x2 − x2
1, x

2
0x3 − x3

1〉. Since deg(p) = 3, we
need to construct the 5× 20 matrix M(3). The rank of M(3) is five, since its five
singular values are

1.732, 1.414, 1.414, 1.414, 1.000.

Recomputing the singular values after appending the coefficient vector of p to M(3)
results in

1.732, , 1.732, 1.414, 1.414, 1.414, 3.4× 10−16.

Since the last singular value is numerically zero, we can conclude that the rank is
also five and hence that p ∈ 〈x0x2 − x2

1, x
2
0x3 − x3

1〉.

3.5 Left null space

3.5.1 Syzygy analysis

The left null space of M(d), null(M(d)T), is the vector space

null(M(d)T) = {h ∈ Rp(d) |hM(d) = 0}.

The vectors h are not to be interpreted as polynomials but rather as s-tuples of
multivariate polynomials. Indeed, the expression hM(d) = 0 is equivalent with

s
∑

i=1

hi fi = 0. (3.10)

The vector h therefore contains the coefficients of all polynomials hi. A polynomial
combination such as (3.10) is called a syzygy [84], from the Greek word συζυγια,
which refers to an alignment of three celestial bodies. In our case, the polynomials
hi are thought to be in syzygy with the polynomials fi, hence their polynomial

LEFT NULL SPACE 61

combination is zero. From this we then deduce that the dimension of the left
null space, l(d), counts the number of syzygies that occur in Md. It is therefore
possible to identify with each syzygy a linearly dependent row of M(d). The
linear dependence of this particular row is then with respect to the remaining
rows. Algorithm 3.1 finds a maximal set of such linearly dependent rows l for a
given Macaulay matrixM(d), starting from the top row r1 where ri stands for the
ith row of the Macaulay matrix.

Algorithm 3.1 Find a maximal set of linearly dependent rows
Input: Macaulay matrix M(d)
Output: a maximal set of linearly dependent rows l

l← ∅
if r1 = 0 then

l← [l , r1]
end if

for i = 2 : 1 : p(d) do

if ri linearly dependent with respect to {r1, . . . , ri−1} then

l← [l , ri]
end if

end for

Note that it is possible to deduce the growth of l(d). Indeed, suppose the first
element l1 of l is found in Algorithm 3.1. This row is then linearly dependent
with respect to all rows above it. In fact, this linear dependence expresses a
certain syzygy

∑s
i=1 hi fi = 0. The row l1 then also corresponds with a certain

monomial multiple xαi fk since it is a row of the Macaulay matrix. Observe now

that xβj
∑s
i=1 hi fi = 0, which means that all rows corresponding with xβj x

α
i fk

will also be linearly dependent. We will call l1 in this case a basis syzygy and
its monomial multiples xβj l1, derived syzygies. The above observation can now be
summarized in the following lemma.

Lemma 3.2 If a basis syzygy l occurs at a degree dl, then it introduces a term

(

d− dl + n
n

)

(3.11)

to l(d).

PROOF. This follows from xβj
∑s
i=1 hi fi = 0 and the fact that the total number

of monomials xβj at a degree d ≥ dl is given by (3.11). �

62 MACAULAY MATRIX

It can be shown that the number of basis syzygies is finite. This is in fact linked
with the finiteness of the Gröbner basis for a polynomial ideal [21, p. 223] and
leads in our PNLA framework to the following problem.

Problem 3.3 Find the degree dS such that all basis syzygies are found with
Algorithm 3.1 for M(dS).

Just like for the ideal membership problem, this problem also has a doubly
exponential bound and is related to finding the syzygy basis bound [9, 57, 62].
The syzygy basis bound Sb is the least value such that for a polynomial system
f1, . . . , fs each basis syzygy has a degree at most Sb. The degree of a syzygy is
the maximum degree of the hi’s. Again, Gröbner bases are of crucial importance
in understanding Problem 3.3. In Section 6.1 it will be shown how dS is related
to the degree for which a Gröbner basis occurs in Md.
We will now assume that all basis syzygies were found, using for example Algorithm
3.1 for a sufficiently large degree, and explain how all basis syzygies can be used
to derive an expression for the polynomial l(d). As mentioned above, each linearly
dependent row can be labeled as a monomial shift of one of the polynomials
f1, . . . , fs. The first step of the syzygy analysis is to divide the basis syzygies
into groups according to the polynomial that is multiplied. The following simple
example illustrates this grouping of basis syzygies.

Example 3.10 Consider the following polynomial system in C3







f1 : x2 y2 + z = 0,
f2 : x y − 1 = 0,
f3 : x2 + z = 0,

where x1 = x, x2 = y, x3 = z. The first basis syzygy is found, using Algorithm
3.1, in M(4) and corresponds with the row

xy f3.

The remaining basis syzygies are all found in M(6) and correspond with the rows

x3y f2, x
2y2 f2, xy

2z f2.

We can now divide these basis syzygies into the following two groups

{xy f3} and {x3y f2, x
2y2 f2, xy

2z f2},
which is one group for f3 and one group for f2.

The key observation here is that each of these groups can be analyzed separately
since no interference between rows of different groups is possible (indeed, they
involve different polynomials). We will now continue Example 3.10 and show how
all contributions of basis syzygies to l(d) are described by binomial coefficients.

LEFT NULL SPACE 63

Example 3.11 The first group {xy f3} has only one element and describes a
syzygy at degree 4. Lemma 3.2 tells us then that this will introduce a term

(

d− 4 + 3

3

)

to l(d). We can therefore write

l(d) =

(

d− 4 + 3

3

)

=
1

6
d3 − d2 +

11

6
d− 1. (d ≥ 4) (3.12)

The second group has three basis syzygies, {x3y f2, x
2y2 f2, xy

2z f2}, at degree six
and therefore introduces three terms

(

d− 6 + 3

3

)

.

We can therefore update l(d) to

l(d) =

(

d− 4 + 3

3

)

+ 3

(

d− 6 + 3

3

)

=
2

3
d3 − 7d2 +

76

3
d− 31. (d ≥ 4) (3.13)

Expression (3.13) for l(d) is still valid for degrees d ≥ 4, since the extra terms
correspond with polynomials that have roots at d ∈ {3, 4, 5}. The difference between
(3.12) and (3.13) is only visible therefore for d ≥ 6. We have not yet found the
final expression for l(d) however. The three binomial coefficient terms at degree 6
will count too many contributions. Take, for example, the monomials x3yf2 and
x2y2f2. Their least common multiple is x3y2f2, which means that the linearly
dependent row x3y2f2 is counted once too much.

Example 3.11 shows that the the analysis of all syzygies is reduced to a
combinatorial problem: within a group of basis syzygies, one needs to count
the total number of linearly dependent rows these basis syzygies ‘generate’. This
combinatorial problem is solved by the Inclusion-Exclusion principle.

Theorem 3.4 (Inclusion-Exclusion Principle [22, p. 454]) Let A1, . . . , An be a
collection of finite sets with |Ai| the cardinality of Ai. Then

|∪ni=1Ai| =

n
∑

k=1

(−1)k+1





∑

1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩Aik |



 . (3.14)

PROOF. Pick an element of the union of all sets A1, . . . , An. This element is
counted once by the left-hand side of (3.14), so it is necessary to show that it is

64 MACAULAY MATRIX

also counted only once by the right-hand side. From the binomial theorem we
have that

(1− 1)n =

(

n

0

)

−
(

n

1

)

+

(

n

2

)

− . . .+ (−1)n
(

n

n

)

.

Since
(

n
0

)

= 1, this can be rewritten as

1 =
(

n
1

)

−
(

n
2

)

+ . . .− (−1)n
(

n
n

)

= |{Ai|1 ≤ i ≤ n}| − |{Ai ∩Aj |1 ≤ i < j ≤ n}|+ . . .
−(−1)n |{A1 ∩A2 ∩ . . . ∩An}|,

which shows that the right-hand side of (3.14) counts the chosen element indeed
only once. �

Example 3.12 Armed with the Inclusion-Exclusion Principle, we now continue
and finalize the analysis of all syzygies of Example 3.11. If we denote the set
of all monomial multiples of x3y f2 by A1 and likewise A2, A3 for x2y2 f2, xy

2z f2
respectively, then applying Theorem 3.4 on these sets results in the final expression
for l(d). Note that all terms of (3.14) for k = 1 are the binomial coefficients
of Lemma 3.2, which already have been added to l(d) in (3.13). The remaining
analysis is hence on all terms of (3.14) for k ≥ 2. The cardinality of the
intersections A1 ∩A2, A1 ∩A3, A2 ∩A3 are described by the binomial terms

(

d− 7 + 3

3

)

,

(

d− 7 + 3

3

)

,

(

d− 8 + 3

3

)

,

which will each contribute to l(d) with a minus sign since k = 2. The degrees
for which these terms are introduced are the degrees of the least common multiples
between x3y f2 and x2y2 f2, between x3y f2 and xy2z f2 and between x2y2 f2 and
xy2z f2. These degrees are 7, 8 and 7 respectively. The next intersection, A1∩A2∩
A3, corresponds with a binomial term introduced at the degree of the least common
multiple of all 3 basis syzygies in f2. This least common multiple is x3y2z f2 with
a degree of 8. This concludes the analysis of all linearly dependent rows of M(d)
and we can therefore write

l(d) =
(

d−4+3
3

)

+ 3
(

d−6+3
3

)

− 2
(

d−7+3
3

)

−
(

d−8+3
3

)

+
(

d−8+3
3

)

=
(

d−4+3
3

)

+ 3
(

d−6+3
3

)

− 2
(

d−7+3
3

)

= 1
3d

3 − 2d2 + 2
3d+ 9. (d ≥ 4)

Note that the terms at degree eight have cancelled one another. Since the term
(

d−7+3
3

)

has roots at d ∈ {4, 5, 6}, this expression for l(d) is valid for all d ≥ 4.

LEFT NULL SPACE 65

An important observation is that once l(d) is known, then the rank of M(d) and
the dimension of its null space are also fully determined for all d ≥ 4 by:

r(d) = p(d)− l(d) =
1

6
d3 + d2 +

5

6
d− 10,

c(d) = q(d)− r(d) = d+ 11.

3.5.2 Degree of regularity

Example 3.12 illustrated how the expression for l(d), and consequently for
r(d), c(d), changed during the syzygy analysis as new basis syzygies were found.
The fact that there are only a finite number of basis syzygies therefore has an
important implication: there exists a certain degree for which the polynomials
that describe l(d), r(d), c(d) do not change anymore for all d ≥ d⋆.

Definition 3.2 The degree d⋆ ∈ N such that the polynomials found from the
basis syzygy analysis describe l(d), r(d), c(d) for all d ≥ d⋆ is called the degree
of regularity.

This degree of regularity will be of vital importance when we discuss the null space
of M(d) in the next Section.

Remark 3.3 Notice that in order to find the degree of regularity d⋆, it is required
to construct the Macaulay matrix for a degree larger than d⋆. For example, the
degree of regularity d⋆ = 4 of the polynomial system in Example 3.10 was found
from M(6).

The following example illustrates that the degree for which all basis syzygies are
found can be quite high and consequently that the total number of binomial terms
of l(d) can be very large.

Example 3.13 Consider the following polynomial system in C4















































f1 : x2
2 x3 + 2 x1 x2 x4 − 2 x1 − x3 = 0,

f2 : −x3
1 x3 + 4 x1 x

2
2 x3 + 4 x2

1 x2 x4 + 2 x3
2 x4 + 4 x2

1 − 10 x2
2

+4 x1 x3 − 10 x2 x4 + 2 = 0,

f3 : 2 x2 x3 x4 + x1 x
2
4 − x1 − 2 x3 = 0,

f4 : −x1 x
3
3 + 4 x2 x

2
3 x4 + 4 x1 x3 x

2
4 + 2 x2 x

3
4 + 4 x1 x3

+4 x2
3 − 10 x2 x4 − 10 x2

4 + 2 = 0,

66 MACAULAY MATRIX

with degrees d1 = d3 = 3, d2 = d4 = 4. The first basis syzygy group is found in
M(5) and corresponds with the row x2

2 x3 f3. The next basis syzygies group are the
rows

{x2
2 x3 f2, x

3
2 x4 f2, x1 x

2
2 x

2
4 f2, x

3
1 x2 x

2
3 f2, x

2
1 x2 x

3
4 f2, x

4
1 x3 x

4
4 f2, x

2
1 x2 x

4
3 x

2
4 f2,

x2
2 x

7
4 f2, x

2
1 x2 x

6
3 x4 f2, x1 x2 x

8
4 f2, x

2
1 x2 x

8
3 f2, x

3
1 x3 x

8
4 f2}

and are found for the degrees

{6, 7, 8, 9, 12, 12, 12, 13, 13, 14, 15}.
The last basis syzygy group are the rows

{x2
2 x3 f4, x2 x3 x4 f4, x1 x2 x

2
4 f4, x

3
2 x4 f4, x

3
1 x

2
4 f4, x

2
1 x

3
4 f4, x

4
1 x3 x4 f4,

x3
1 x2 x

2
3 f4, x

3
1 x

2
3 x4 f4, x

2
1 x

3
3 x4 f4, x1 x

5
2 f4, x

5
1 x

2
3 f4, x

4
1 x

3
3 f4, x

3
1 x

4
3 f4}

and are found for the degrees

{7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11}.
Application of the Inclusion-Exclusion Principle for each of these groups results in
the final expression

l(d) =
(

d−6+4
4

)

+ 4
(

d−7+4
4

)

+
(

d−8+4
4

)

+ 4
(

d−13+4
4

)

− 6
(

d−11+4
4

)

−
(

d−14+4
4

)

= 1
8 d

4 − 13
12 d

3 − 5
8 d

2 + 19
12 d+ 105. (d ≥ 10)

Observe that l(d) consists in fact of 10241 binomial terms, of which 10225 cancel
until only 16 terms are left. The degree of regularity is d⋆ = 10.

As the previous example showed, using the Inclusion-Exclusion principle to find
the expression for l(d) results in a large number of binomial terms. A large number
of computations are actually wasted since most of these binomial terms cancel out
and therefore do not contribute to l(d). We will address this issue in Chapter 6,
in which we present an recursive algorithm that computes l(d) and avoids doing
the wasted computations.

3.6 Null space

Due to the homogeneous interpretation of Md, the null space of the Macaulay
matrix will be shown to be linked with the number of projective roots of the
corresponding polynomial system. The notion of the dual of the row space
will play an important role in describing these roots. We will also discuss the
possible exchange of multiplicities of a root for extra polynomials and illustrate
this with some examples. An algorithm for both affine root-finding and removing
multiplicities will be presented in Chapter 6.

NULL SPACE 67

3.6.1 Link with projective roots

It is a classic result that for a polynomial system fh1 , . . . , f
h
s with a finite number of

projective roots, the quotient ring Pn/〈fh1 , . . . , fhs 〉 is a finite-dimensional vector
space [21, 22]. The dimension of this vector space equals the total number of
projective roots of fh1 , . . . , f

h
s , counting multiplicities. From the rank-nullity

theorem of M(d) it then follows that

c(d) = q(d) − r(d)

= dim Pnd − dim 〈fh1 , . . . , fhs 〉d

= dim Pnd /〈fh1 , . . . , fhs 〉d (3.15)

This leads to the following theorem.

Theorem 3.5 For a zero-dimensional homogeneous ideal 〈fh1 , . . . , fhs 〉 with m
projective roots (counting multiplicities) and degree of regularity d⋆ we have that

c(d) = m ∀ d ≥ d⋆.

PROOF. This follows from (3.15) and Definition 3.2. �

Furthermore, when s = n, then c(d) = m = d1 · · ·ds according to Bézout’s
Theorem [21, p.97]. This effectively links the degrees of the polynomials f1, . . . , fs
to the nullity of the Macaulay matrix. The roots can be retrieved from a
generalized eigenvalue problem as discussed in [77, 78]. Another interesting result
is that the degree of c(d) is the dimension of projective variety of fh1 , . . . , f

h
s .

Definition 3.3 The polynomial

c(d) = dim Pnd /〈fh1 , . . . , fhs 〉d (∀ d ≥ d⋆)

is called the Hilbert Polynomial [22, p. 462]. The degree of this polynomial c(d)
equals the dimension of the projective variety [22, p.463].

Example 3.14 For the polynomial system from Example 3.10 we had that c(d) =
d + 11 . Since this is a polynomial of degree one, it follows that the projective
solution set of fh1 , . . . , f

h
s is one-dimensional. The number of affine solutions of

fh1 , . . . , f
h
s is finite: {(1, 1, 1,−1), (1,−1,−1,−1)}, which implies that the nonzero-

dimensional part of the solution set lies ‘at infinity’.

68 MACAULAY MATRIX

3.6.2 Dual vector space

As soon as d ≥ d⋆ and the number of projective roots is finite, then a basis of
the null space can be explicitly written down in terms of the roots. This requires
the notion of the dual vector space (Appendix A Section A.4). We denote the
dual vector space of Cnd by Cn′d , the dual of Md by M′d and the annihilator of
Md by Mod. By definition, the elements of Mod map each element of Md to zero.
Therefore, dim (Mod) = c(d), which implies Mod ∼= null(M(d)). A basis for Mod
will be described by differential functionals.

Definition 3.4 Let j ∈ Nn0 and z ∈ Cn, then the differential functional ∂j |z ∈ Cn
′

d

is defined by

∂j |z ≡ ∂xj1
1
x
j2
2
...xjnn

|x ≡
1

j1! . . . jn!

∂j1+...+jn

∂xj11 . . . ∂x
jn
n

|z

where |z stands for evaluation in z = (x1, . . . , xn).

Being elements of the dual vector space, these differential functionals ∂j |z can be
represented as vectors. This is illustrated in the following simple example.

Example 3.15 In C2′

3 the functionals ∂00|z, ∂10|z , ∂01|z, ∂20|z, ∂11|z and ∂02|z have
the following coefficient vectors

































∂00|z ∂10|z ∂01|z ∂20|z ∂11|z ∂02|z
1 0 0 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0
x2

1 2x1 0 1 0 0
x1x2 x2 x1 0 1 0
x2

2 0 2x2 0 0 1
x3

1 3x2
1 0 3x1 0 0

x2
1x2 2x1x2 x2

1 x2 2x1 0
x1x

2
2 x2

2 2x1x2 0 0 x1

x3
2 0 3x2

2 0 0 3x2

































, (3.16)

with z = (x1, x2) ∈ C2. The homogeneous interpretation of M(d) implies that the
differential functionals also have a homogeneous interpretation. For the example
above, the coefficient vectors of the corresponding differential functionals in P2′

3

NULL SPACE 69

are

































∂000|z ∂010|z ∂001|z ∂020|z ∂011|z ∂002|z
x3

0 0 0 0 0 0
x2

0x1 x2
0 0 0 0 0

x2
0x2 0 x2

0 0 0 0
x0x

2
1 2x0x1 0 x0 0 0

x0x1x2 x0x2 x0x1 0 x0 0
x0x

2
2 0 2x0x2 0 0 x0

x3
1 3x2

1 0 3x1 0 0
x2

1x2 2x1x2 x2
1 x2 2x1 0

x1x
2
2 x2

2 2x1x2 0 0 x1

x3
2 0 3x2

2 0 0 3x2

































, (3.17)

with z = (x0, x1, x2) ∈ P2. Note that (3.16) can be retrieved from (3.17) by setting
x0 = 1. Also observe that for a root at infinity (x0 = 0), the differential functionals
will only have nonzero entries in the lower rows of their coefficient vectors.

Remark 3.4 We’ll make no further distinction between the linear functionals
∂j |z and their coefficient vectors. Notice that these coefficient vectors are column
vectors, since they are the dual elements of the row space of M(d). Applying the
differential functionals ∂j |z to the elements of Md is then simply taking the inner
product M(d) ∂j |z.

The following lemma expresses the functional ∂j |z in terms of ∂j |0 and will lead
to the very interesting observation that multiplicities of roots can be exchanged
for additional polynomials.

Lemma 3.3 Let ∂j |z ∈ Cn
′

d , then the following relationship holds

∂j |z = Dj ∂0|z (3.18)

with Dj a square matrix.

PROOF. Since partial differentiation is a linear operator it can be represented as
a square matrix Dj and hence the proof is trivial. When j = 0, then Dj is simply
the unit matrix. �

The following example illustrates how the partial differential operatorDj in matrix
form.

Example 3.16 In C2′

2 , we have

∂01|z = D01 ∂00|z,

70 MACAULAY MATRIX

or written out in full
















0
0
1
0
x1

2x2

















=

















0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0

































1
x1

x2

x2
1

x1x2

x2
2

















.

Remark 3.5 Higher order partial derivatives can be decomposed into products of
first order derivative matrices. For example, D21 in C2

d can be decomposed as
D21 = D10D10D01. Since the order of applying these partial derivatives is not
relevant, this means that all Dj must form a family of commuting matrices.

Knowing how any functional ∂j |z can be expressed as derivatives of ∂j |0 leads to
the following trivial corollary for the coefficient vectors of polynomials.

Corollary 3.2 Let f ∈ Cnd , then the evaluation of the jth order partial derivative
of f in z ∈ Cn is

f ∂j |z = f Dj ∂0|z. (3.19)

Observe that the right-hand side of (3.19) can be interpreted in two ways. The
partial derivative operatorDj has been either applied to the polynomial coefficient
vector f or to the functional ∂0|z. In the former case, this results in the coefficient
vector of the jth order partial derivative of f , f Dj . In the latter case, we end
up with the differential functional Dj ∂0|z . We know that when a polynomial
system fh1 , . . . , f

h
s has a finite number of m projective roots, then dim(Mod) =

c(d) = m ∀ d ≥ d⋆. Hence, a basis for Mod will consist of differential functionals,
evaluated in each projective root and taking multiplicities into account.

Definition 3.5 Let f1, . . . , fs ∈ Cn with a zero-dimensional projective variety and
let m1, . . . ,mt be the multiplicities of the t projective roots zi (1 ≤ i ≤ t) such that
∑t
i=1mi = m. Then ∀ d ≥ d⋆ there exists a matrix K of m linearly independent

columns such that
M(d) K = 0.

Furthermore, K can be partitioned into

K =
(

K1 K2 . . . Kt
)

,

such that each Ki consists of mi linear combinations of differential functionals
∂j |zi ∈ Pn

′

d (1 ≤ i ≤ t). We will call this matrix K the canonical null space of
M(d).

NULL SPACE 71

Definition 3.5 explicitly depends on the homogeneous interpretation of M(d).
Indeed, it is only for the homogeneous case that the projective roots come into
the picture. The following example illustrates the structure of the matrix K for a
small example.

Example 3.17 Let us reconsider the small polynomial system from Example 3.1

{

f1 : x1x2 − 2x2 = 0,
f2 : x2 − 3 = 0,

with 1 affine root (2, 3). From Example 3.8 we know that its corresponding
projective variety consists of 2 points: the affine solution (1, 2, 3) and the root
at infinity (0, 1, 0). Indeed, c(d) = 2 (∀ d ≥ 2) and therefore the canonical null
space is

K =
(

∂000|(1,2,3) ∂000|(0,1,0)

)

=

















1 0
2 0
3 0
4 1
6 0
9 0

















.

Defining the multiplicity of a zero using the dual space goes back to Macaulay [61].
It is also reminiscent of the univariate case. Remember that for a univariate
polynomial f(x) ∈ C1

d a zero z with multiplicity m means that











f
f D1

...
f Dm−1











∂0|z = 0. (3.20)

Or in other words, f(z) = f ′(z) = f
′′

= . . . = f (m−1)(z) = 0. By using (3.18) and
Definition 3.5, we can also write (3.20) as

f
(

∂0|z ∂1|z ∂2|z . . . ∂m−1|z
)

= 0. (3.21)

As already mentioned in Definition 3.5, the multivariate case generalizes this
principle by requiring linear combinations of differential functionals.

Example 3.18 Consider the following polynomial system in C2
2 with the affine

root z = (2, 3) of multiplicity 4 and no roots at infinity

{

(x2 − 3)2 = 0,
(x1 + 1− x2)2 = 0.

72 MACAULAY MATRIX

The degree of regularity d⋆ is 2. We will show that

K =
(

∂00|(2,3) ∂10|(2,3) ∂01|(2,3) 2∂20|(2,3) + ∂11|(2,3)

)

(3.22)

is an affine basis for the annihilator Mod.

The different linear combinations of functionals needed to construct Ki are called
the multiplicity structure of the root zi. Observe that the multiplicity structure
of a root is not unique. Indeed, for any nonsingular mi ×mi matrix T we have
that the column space of Ki equals the column space of Ki T . Or written in
symbols, col(Ki) = col(Ki T). Finding the multiplicity structure for a given root
of a polynomial system is an active area of research [28, 93]. It is easy to see that
this corresponds with finding the null space of a particular matrix.

Example 3.19 For Example 3.18 we have that the Macaulay matrix M(2) is

M(2) =

(

9 0 −6 0 0 1
1 2 −2 1 −2 1

)

,

with corresponding basis C of C2′

2 in the root (2, 3)

C =

















∂00|(2,3) ∂10|(2,3) ∂01|(2,3) ∂20|(2,3) ∂11|(2,3) ∂02|(2,3)

1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 4 0 1 0 0
6 3 2 0 1 0
9 0 6 0 0 1

















.

Computing the multiplicity structure of the root (2, 3) is equivalent with finding a
matrix N such that

M(2)CN = 0. (3.23)

N hence specifies the different linear combinations of the columns of C that make
up the multiplicity structure of the root. From (3.23) it is clear that N can be
found as a basis for the null space of W = M(2)C. Taking the inner product
M(2)C results in

W =

(

0 0 0 0 0 1
0 0 0 1 −2 1

)

,

with rank (W) = 2. The multiplicity structure of the root (2, 3), or linear
combination of the differential functionals as in (3.22), can be easily read off from

NULL SPACE 73

the null space N of W .

N =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2
0 0 0 1
0 0 0 0

















.

Iterative algorithms to compute the multiplicity structure of a root z such as in [93]
exploit the closedness property of the differential functionals ∂j |z [78, p. 330] to
reduce the size ofW in every iteration. We will not further discuss these algorithms
in this thesis.

3.6.3 Removing multiplicities of affine roots

Observe from (3.20) and (3.21) that, for the univariate case, an exchange between
the multiplicity of a root and the number of polynomials is possible. Indeed, the m
polynomials fD1, . . . , fDm−1 of (3.20), which only have 1 root, are exchanged for
additional multiplicities ∂1|z, . . . , ∂m−1|z in (3.21). The same idea applies for the
multivariate case. The following example illustrates this for a particular simple
case.

Example 3.20 We revisit the polynomial system from Example 3.18 with multi-
plicity structure

(

∂00|(2,3) ∂10|(2,3) ∂01|(2,3) 2∂20|(2,3) + ∂11|(2,3)

)

.

Using Corollary 3.2 we can apply the differential operators on the polynomials f1
and f2, which results in the polynomial system















































f1D00 : x2
2 − 6 x2 + 9,

f2D00 : x2
1 + x2

2 + 2 x1 − 2 x2 − 2 x1 x2 + 1,
f1D10 : 0,
f2D10 : 2 x1 + 2− 2 x2,
f1D01 : 2 x2 − 6,
f2D01 : 2 x2 − 2 x1 − 2,

2 f1D20 + f1D11 : 0,
2 f2D20 + f2D11 : 2.

74 MACAULAY MATRIX

Adding the polynomials that are reduced to scalars would make the polynomial
system inconsistent. These are therefore removed to obtain













f1
f2
f2D10

f1D01

f2D01













∂00|(2,3) = 0,

which is a polynomial system that now has the root z = (2, 3) with multiplicity 1.

Exchanging the multiplicities of a root for additional polynomials as shown in
Example 3.20 is only possible if every root zi has the exact same multiplicity
structure Ki (1 ≤ i ≤ t). When this is not the case another approach is required,
one that surprisingly does not need any information on the roots of the system.
The concept of the radical ideal together with square-free parts of polynomials
play an important role here. This will be further worked out in Chapter 6.

3.6.4 Conditions for existence of particular roots

In this section we will derive 2 conditions to determine whether a polynomial
system has either the zero root 0 = (0, . . . , 0) or roots at infinity. Since the
monomial ordering that we use is graded, we can introduce the following convenient
block partitioning of the Macaulay matrix

M(d) =
(

M0 M1 M2 . . . Md
)

, (3.24)

where each Mi block corresponds with all monomials of degree i (0 ≤ i ≤ d).
The first theorem provides an easy way to check whether 0 is a root of a given
polynomial system.

Theorem 3.6 Let f1, . . . , fs ∈ Cnd andM(d) its Macaulay matrix of degree d ≥ d⋆.
Then 0 is a root of f1, . . . , fs if and only if M0 = 0.

PROOF. If 0 is a root of f1, . . . , fs then we can write

M(d) ∂0|0 = 0,

which can also be written as

(

M0 M1 M2 . . . Md
)











1
0
...
0











= 0, (3.25)

NULL SPACE 75

where M(d) is partitioned as in (3.24) and accordingly for ∂0|0. Taking the inner
product of the left-hand side of (3.25) results in M0 = 0. On the other hand, if
M0 = 0, then a basis for null(M(d)) will clearly always, up to a nonsingular linear
transformation, have an entry ∂0|0. �

Hence, if the polynomial system has no constant terms, then it will always have
(0, . . . , 0) as a solution. In order to find out whether there are any roots at infinity,
we first make the following observation.

Lemma 3.4 The solutions at infinity of the polynomial system f1, . . . , fs are the
only solutions of































fh1 = 0,

fh2 = 0,
...
fhs = 0,

x0 = 0.

When every fi (1 ≤ i ≤ s) is made homogeneous, then powers of x0 are added to
each term that is not of degree di. Lemma 3.4 therefore means that one needs to
solve the polynomial system that is retained when only the highest order terms of
each polynomial fi are kept. This leads to the following condition on the existence
of roots at infinity.

Theorem 3.7 A polynomial system f1, . . . , fs has roots at infinity if and only if
the coefficient block Md is not of full column rank for all Macaulay matrices of
degree d ≥ d⋆.

PROOF. According to Lemma 3.4, the roots at infinity are the only solutions of
the polynomial system that contains only the highest order terms of f1, . . . , fs.
The homogeneous polynomial system

Md K = 0, (3.26)

consists of the polynomials of Lemma 3.4 multiplied with monomials xα such that
each polynomial is of degree d. Obviously, the solutions of (3.26) are the roots
at infinity and possibly the origin, which is not a valid point in Pn. From this it
follows that Md cannot be of full column rank if f1, . . . , fs has roots at infinity. �

Example 3.21 As seen in Example 3.8, the homogeneous interpretation of the
polynomial system in Example 3.1 was

{

fh1 : x1x2 − 2x2x0 = 0,
fh2 : x2 − 3x0 = 0,

76 MACAULAY MATRIX

with two roots (1, 2, 3) and (0, 1, 0). Its degree of regularity d⋆ is 2 and the
corresponding Macaulay matrix is

M(2) =









1 x1 x2 x2
1 x1x2 x2

2

0 0 −2 0 1 0
−3 0 1 0 0 0
0 −3 0 0 1 0
0 0 −3 0 0 1









.

The M2 coefficient block is not of full column rank and corresponds with the
polynomial system







x1x2 = 0,
x1x2 = 0,
x2

2 = 0.

The root of this polynomial system is indeed the root at infinity (0, 1, 0).

Chapter 4

Fast Recursive

Orthogonalization of the

Macaulay matrix

Orthogonal bases for either the row space or null space of the Macaulay matrix
are essential for all algorithms in this thesis. In this chapter, a fast recursive
orthogonalization scheme is derived that allows to determine the rank of the
Macaulay matrix and provides the required orthogonal bases. This recursive
algorithm exploits both the structure and sparsity of the Macaulay matrix and will
be an essential ingredient for all the algorithms of Chapter 6.

4.1 Introduction

Many problems concerning multivariate polynomials can be phrased and solved in
the PNLA framework that was setup in the previous chapters. In Chapter 6 of
this thesis we will address a wide range of problems:

• computing a Gröbner basis,

• computing the affine roots of a system of multivariate polynomials,

• solving the ideal membership problem,

• doing the syzygy analysis and finding the degree of regularity,

• multivariate polynomial elimination,

77

78 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

• computing an approximate LCM or GCD of two multivariate polynomials,

• removing multiplicities of roots.

The algorithms to solve these different problems all share the same general
structure as shown in Algorithm 4.1. The goal is always to compute some desired
quantity X (e.g. the affine roots of the polynomial system, a polynomial from
which certain variables are eliminated, etc...). The essential object in Algorithm
4.1 is the Macaulay matrix M(d). The degree d† for which X can be computed
fromM(d) is in general not known beforehand. Algorithm 4.1 will therefore iterate
over increasing values of the degree, starting from d = max(d1, . . . , ds). In each
iteration, the Macaulay matrix is constructed and orthogonal bases for either its
row space or null space need to be computed. These orthogonal bases are then
used to compute X . Since the Macaulay matrix is by definition rank-deficient, the
first principal step is to determine its (numerical) rank. The most robust way to
determine the rank and find the orthogonal bases is the SVD. A less computational
expensive alternative is the rank-revealing QR decomposition. Both the SVD and
the rank revealing QR decomposition will be considered in this chapter. If for the
current iteration the desired quantity X cannot be computed, then the degree d
is incremented by one.

Algorithm 4.1 General Algorithm
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds
Output: desired output X

X ← ∅
d0 ← max(d1, . . . , ds)
while X = ∅ do

M(i)← construct Macaulay matrix for degree i
U ← orthogonal basis for row space of M(i)
N ← orthogonal basis for null space of M(i)
X ← try to compute desired output from U and/or N
if X = ∅ then

d← d+ 1
end if

end while

A naive implementation of this general algorithm does not exploit the structure
of the Macaulay matrix nor does it use computations of previous iterations when
recomputing the orthogonal bases U,N for a higher degree. This is remedied
by the recursive orthogonalization scheme presented in this chapter. The naive
implementation of Algorithm 4.1 is considerably improved by:

• reducing the computational complexity by working with a submatrix ofM(d)
instead of the complete matrix,

NOTATION 79

• introducing an updating strategy for the orthogonal bases U,N which reuses
the orthogonal bases from the previous step.

Before presenting the orthogonalization scheme, we first introduce some necessary
notation.

4.2 Notation

The orthogonalization scheme derived in Section 4.3 requires the use of a graded
monomial ordering. We will use the convention thatM(d) is a p×q matrix whereas
M(d + 1) is p′ × q′. This implies of course that p′ = p + ∆ p and q′ = q + ∆ q.
The dimension of the row space Md is the rank r and the dimension of its null
space c = q− r. An orthogonal basis forMd is hence q× r and will be denoted by
U(d). Likewise, an orthogonal basis for the null space of M(d) is the q× c matrix
N(d). When the Macaulay matrix M(d) is constructed as explained in Example
3.1, then its transpose can be partitioned as

M(d+ 1)T =

(

p ∆ p

q M(d)T Ma
∆ q 0 Mb

)

where the Mb block contains all coefficients of monomials with total degree d+ 1.
Now let

(

∆ p

c N(d)TMa
∆ q Mb

)

= Q S V T (4.1)

be the SVD of
(

MTa N(d)MTb
)T
. We denote the rank of this matrix by ∆ r.

Suppose without loss of generality that c + ∆ q > ∆ p, then Q,S and V can
be partitioned as

(

∆ p

c N(d)TMa
∆ q Mb

)

=

(

∆ r c′

c L1 K1

∆ q L2 K2

)(

Σ 0
0 0

) (

V T1
V T2

)

where Σ is diagonal and contains ∆r nonzero singular values. This partitioning
of the left singular vectors will be crucial in the proof of the main theorem in the
next section.

80 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

4.3 The Orthogonalization Scheme

Now, all notation is in place to present the following main theorem. The recursive
orthogonalization scheme of the Macaulay matrix is a direct application of this
theorem.

Theorem 4.1 Let U(d), N(d),Ma,Mb, L1, L2,K1,K2 be the matrices as defined
in Section 4.2. Then the following relationships hold:

U(d+ 1) =

(

U(d) N(d)L1

0 L2

)

and N(d+ 1) =

(

N(d)K1

K2

)

.

PROOF. For the sake of readability the degree (d) will be dropped from the
notation M(d), U(d), N(d). We start with the observation that the matrices

M(d+ 1)T =

(

MT Ma
0 Mb

)

and

(

U Ma
0 Mb

)

share the same range and left null space. The orthogonal U block in the rightmost
matrix can be diagonalized by left-multiplying it with the orthogonal matrix
(

U N
)T

. This can be written as





q ∆ q

r UT 0
c NT 0
∆ q 0 I∆ q





(

r ∆ p

U Ma
0 Mb

)

=





r ∆ p

Ir U
TMa

0 NTMa
0 Mb



. (4.2)

The orthogonal matrix can be moved to the right-hand side to obtain

(

r ∆ p

q U Ma
∆ q 0 Mb

)

=

(

r c ∆ q

q U N 0
∆ q 0 0 I∆q

)





r ∆ p

Ir U
TMa

0 NTMa
0 Mb



. (4.3)

From (4.2) it is straightforward to see that the rank increase

∆r , rank (M(d+ 1))− rank (M(d))

is given by

∆r = rank

((

NTMa
Mb

))

,

THE ORTHOGONALIZATION SCHEME 81

since

rank (M(d+ 1)) = rank

((

U Ma
0 Mb

))

,

= rank









Ir U
TMa

0 NTMa
0 Mb







 .

The next step is to replace
(

MTa N M
T
b

)T
by its SVD in (4.3) to obtain

(

U Ma
0 Mb

)

=

(

U N 0
0 0 I∆q

) (

Ir UTMa
0 QSV T

)

. (4.4)

The Q can be factored out from the rightmost matrix in the following manner

(

Ir U
TMa

0 QSV T

)

=





r ∆ r c′

r Ir 0 0
c 0 L1 K1

∆q 0 L2 K2









Ir U
TMa

0 ΣV T1
0 0



 . (4.5)

Since ∆r is the increase in rank this implies that c′ = c+ ∆q−∆r = c+ ∆c is the
dimension of the null space of M(d+ 1). Substituting (4.5) into (4.4) results in

(

U Ma
0 Mb

)

=

(

r ∆ r c′

q U NL1 NK1

∆q 0 L2 K2

)





Ir U
TMa

0 ΣV T1
0 0



 . (4.6)

The left matrix of the right-hand side is the product of two orthogonal matrices
and hence also orthogonal. The theorem follows from (4.6). �

Observe that the orthogonal basis U(d + 1) retains a similar block structure as
M(d + 1) and will therefore also be sparse. Theorem 4.1 can be immediately
translated into Algorithm 4.2 to orthogonalize M(d). The algorithm starts for
the initial degree d0 , max(d1, . . . , ds). An orthogonal basis for Md and the null
space ofM(d0) are computed from its SVD. The subsequent steps of the algorithm

are then to construct the extra rows
(

MTa M
T
b

)T
and update the orthogonal bases

U(d), N(d) using Theorem 4.1. Considering the sparsity of M(d) and U(d), it
would be interesting to be able to use a sparse matrix data structure, like the
column compressed form. This avoids storing the large amount of zero entries in
memory. A complete SVD is however not available for matrices using a sparse
matrix data structure but a rank revealing multifrontal QR decomposition [24] is.
This allows us to replace the rank test of (4.1) by

(

N(d)TMa
Mb

)

= Q R PT (4.7)

82 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

where Q is orthogonal, R is upper triangular and P is a column permutation which

reduces fill-in of R. Furthermore, if
(

MTa N(d)MTb
)T

is not of full column rank
then R can be partitioned as

R =

(

R11 R12

0 0

)

such that the numerical rank can be estimated from the number of nonzero
diagonal elements of R11. This naturally leads to an implementation of Theorem
4.1 with matrices using a sparse matrix data structure. All SVDs are then replaced
by sparse rank revealing multifrontal QR decompositions and (4.6) is then given
by

(

U Ma
0 Mb

)

=

(

r ∆ r c′

q U NL1 NK1

∆q 0 L2 K2

)





Ir UTMa
0 R11P

T
1 +R12P

T
2

0 0



 .

Algorithm 4.2 Recursive Orthogonalization of M(d)
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds, degree d
Output: orthogonal bases U(d), N(d)

d0 ← max(d1, . . . , ds)
U,N ← orthogonal bases for row space and null space of M(d0)
for i = d0 + 1 . . . d do

construct Ma,Mb for degree i

Q← SVD(
(

MTa N M
T
b

)T
) or QR(

(

MTa N M
T
b

)T
)

(

L1 K1

L2 K2

)

← Q

U ←
(

U NL1

0 L2

)

N ←
(

NK1

K2

)

end for

It is now possible to adjust Algorithm 4.1 such that it uses the recursive
orthogonalization scheme of Theorem 4.1. The pseudo-code for this update is
shown in Algorithm 4.3.

COMPUTATIONAL COMPLEXITY 83

Algorithm 4.3 Updated Algorithm Macaulay matrix
Input: polynomial system f1, . . . , fs of degrees d1, . . . , ds
Output: desired output X

d← max(d1, . . . , ds)
U,N ← orthogonal bases for row space and null space of of M(d)
X ← try to compute desired output from U and/or N
d← d+ 1
while X = ∅ do

construct Ma,Mb for degree d

Q← SVD(
(

MTa N M
T
b

)T
) or QR(

(

MTa N M
T
b

)T
)

U,N ← update U,N using Q and Theorem 4.1
X ← try to compute desired output from U and N
if X = ∅ then

d← d+ 1
end if

end while

4.4 Computational Complexity

The most expensive computational step in both Algorithm 4.1 and Algorithm 4.3
is the computation of the orthogonal bases. In this section an estimate of the gain
in computational complexity is derived for both the SVD and sparse QR-based
implementation.

4.4.1 SVD

We first provide an estimate on the total number of operations for computing
the SVD of a complete M(d). We will assume from here on that the number of
columns of M(d)T is always bigger than the number of rows. In each iteration of
Algorithm 4.1 the SVD is computed from the complete Macaulay matrix. Not the
full SVD is required however. Only the left singular vectors Q and the diagonal
matrix S are needed. This takes about 4p(d)q(d)2 + 8q(d)3 operations [40, p. 254].
We approximate both p(d), q(d) by their highest order term in order to have an
estimate on their order of magnitude. Substituting this into the expression for the
number of operations results in the following estimate for the computational cost
of the SVD in Algorithm 4.1

4

(

sdn

n!

) (

dn

n!

)2

+ 8

(

dn

n!

)3

=
4(s+ 2)

(n!)3
d3n. (4.8)

84 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

The SVD-step in Algorithm 4.3 is applied on a (c + ∆q) ×∆p matrix. c(d) is a
polynomial of maximal degree n − 1. This is due to Definition 3.3: the degree of
the Hilbert Polynomial is the dimension of the solution set of fh1 , . . . , f

h
s , which

is maximally n − 1. Obviously, the highest order terms of ∆ p(d) and ∆q(d) are
sdn−1/(n− 1!) and dn−1/(n− 1!) respectively. Retaining the highest order terms
in the expression for the total amount of operations gives us the following estimate
for the cost of the SVD in Algorithm 4.3

4

(

sdn−1

(n− 1)!

) (

dn−1

(n− 1)!

)2

+ 8

(

dn−1

(n− 1)!

)3

=
4(s+ 2)

(n− 1)!3
d3n−3. (4.9)

Dividing (4.8) by (4.9) leads to an estimated gain of d3/n3 operations when using
the recursive orthogonalization scheme. This gain can be quite substantial for
large degrees d and small number of variables n (Figure 4.1). Memory is still the
bottleneck for the orthogonalization of M(d) for large degrees however. Although
the SVD of a smaller submatrix needs to be computed, it still grows with ≈
O(dn−1). This polynomial growth is unfortunately inherent to problems which
involve multivariate polynomials.

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

degree d

E
s
ti
m

a
te

d
 g

a
in

n=5

n=10

n=15

Figure 4.1: Estimated gain (ratio of (4.8) and (4.9)) in number of
operations as a function of the degree d.

CHOOSING THE NUMERICAL TOLERANCE τ 85

4.4.2 Rank revealing QR decomposition

In order to describe the computational complexity of the rank revealing QR
decomposition, the assumption is made that Businger-Golub column pivoting [18]
is used. This serves as an upper bound on the complexity since it does not
take the sparsity pattern of the Macaulay matrix into account. In practice, a
sparse multifrontal QR decomposition algorithm can be used which will exploit
the structure. For a q(d) × p(d) Macaulay matrix M(d)T of rank r(d), the
computational complexity of the Businger-Golub QR factorization is given by
4p(d)q(d)r(d) − 2r(d)2(p(d) + q(d)) + 4r(d)3/3 [40, p. 250]. In this expression
r(d) can be replaced by q(d) − c(d) where c(d) is again a polynomial of maximal
degree n− 1. Like before, only higher order terms are retained for p(d), q(d) and
substituted into 4p(d)q(d)r(d) − 2r(d)2(p(d) + q(d)) + 4r(d)3/3 to obtain

4
sd3n

(n!)3
− 2(s+ 1)

d3n

(n!)3
+

4

3

d3n

(n!)3
=

2(3s− 1)

3(n!)3
d3n. (4.10)

The same reasoning can be applied for the (c + ∆q) ×∆p submatrix which leads
to

4
sd3n−3

((n− 1)!)3
− 2(s+ 1)

d3n−3

((n− 1)!)3
+

4

3

d3n−3

((n− 1)!)3
=

2(3s− 1)

3((n− 1)!)3
d3n−3

with the same gain of d3/n3 operations when using the recursive orthogonalization
scheme. Comparing (4.8) with (4.10) reveals that the QR decomposition will take
about

6(s+ 2)

(3s− 1)

times less operations than the SVD. This factor reaches 3 for s = 5 and then
asymptotically approaches 2 in the limit for large s (Figure 4.2).

4.5 Choosing the numerical tolerance τ

All computations are performed in double precision. This sets the machine
precision to ǫ ≈ 2.22 × 10−16. A crucial step in the recursive algorithm is the
determination of the numerical rank. The determination of an incorrect numerical
rank during one of the iterations affects all consequent iterations. A good choice
for the numerical tolerance is therefore of the utmost importance to guarantee
a correct result. For the SVD-based approach, numerical experiments indicate
that a ‘standard’ choice of τ(d) = max(q(d), p(d)) ||M(d)||2 ǫ is a good choice. Let
σ1 ≥ . . . ≥ σc+∆p be the singular values of

(

MTa N M
T
b

)

,T then the numerical
rank ∆r is chosen such that

σ1 ≥ . . . ≥ σ∆r ≥ τ(d) ≥ σ∆r+1 ≥ . . . ≥ σc+∆p.

86 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
2

3

4

5

6

7

8

9

number of variables s

E
s
ti
m

a
te

d
 g

a
in

Figure 4.2: Estimated gain (ratio of (4.8) and (4.10)) in number of
operations as a function of the degree d.

The approx-rank gap σ∆r/σ∆r+1 [58, p.920] then serves as a measure of how well
the numerical rank is defined. Indeed, if there is a large gap between σ∆r and σ∆r+1

and τ(d) lies between these two values then small changes in τ(d) will not affect
the determination of the numerical rank. When the default value for the numerical
tolerance fails, one could try to determine the numerical rank such that the approxi-
rank gap is maximal. This will be explored in numerical experiments in Section
4.6. The sparse multifrontal QR decomposition method from [24], SuiteSparseQR,
uses the numerical tolerance τ = 20 (m + ∆p + ∆q) ǫD where D is the largest

2-norm of any row of
(

MTa N M
T
b

)T
. The numerical rank is then estimated as

the number of nonzero diagonal entries. The rank-revealing QR decomposition is
known to be less reliable for the rank determination. It is reported in [24] that
SuiteSparseQR is able to correctly determine the correct numerical rank for about
two-thirds of the rank deficient matrices in the University of Florida Sparse Matrix
Collection [27]. The numerical rank for many of those matrices is ill-defined. If the
numerical rank was very well-defined (approxi-rank gap > 103), then 95 % of the
time the numerical rank was correctly determined. We have observed that dense
polynomial systems for which every possible monomial has a nonzero coefficient
tend to produce Macaulay matrices for which it is difficult to determine the rank.

NUMERICAL EXPERIMENTS 87

The difficulty lies not in a small approxi-rank gap but rather in a failing of the
default choices for the tolerance. For these cases it is recommended for the user
to manually check either the singular values or the diagonal elements of R. This
is illustrated in the next section.

4.6 Numerical Experiments

The effectiveness of the orthogonalization scheme is illustrated by comparing
the total run times and required memory for three different ways for the
orthogonalization of M(d). The reference method for computing U(d) and N(d)
is by simply computing a SVD of M(d). This approach will be called ‘naive SVD’
in the numerical experiments. Both the SVD and sparse QR-based approach
of Algorithm 4.2 will be compared to the reference method. They will be
called ‘recursive SVD’ and ‘recursive QR’ respectively. In addition to total run
time, the required memory to store the matrices during the orthogonalization
is also compared for the three aforementioned methods. For the naive SVD,
this is the memory required to store M(d), while Algorithm 4.2 needs to store

U(d − 1), N(d − 1),
(

MTa MTb
)T

using either a dense or sparse matrix data
structure.

4.6.1 Example 1

In the first numerical experiment the capability of the algorithms to deal with
high total degrees is tested. The polynomial system consists of 3 polynomials in 3
unknowns of total degree 12:







f1 : x12
1 + x12

2 + x12
3 − 4 = 0,

f2 : x12
1 + 2 x12

2 − 5 = 0,
f3 : x6

1 x
6
3 − 1 = 0.

The Macaulay matrix was orthogonalized for degrees d = 12, . . . , 35. The total run
time for these degrees is shown in Figure 4.3. The first observation is that for the
naive SVD the total run time seems to increase approximately linearly on the log
plot, which implies an exponential increase. In contrast, the total run time for the
recursive algorithms does not grow so fast. Therefore, a continuously increasing
‘gap’ can be seen between the naive orthogonalization and the recursive algorithms.
The ratio between the run times of the recursive SVD and QR orthogonalizations
increases very slowly. For d = 35, the recursive QR is 119 times faster than the
naive approach and 6 times faster than the recursive SVD. Also at this degree,
the recursive SVD is 18 times faster than the naive approach. All numerical ranks
were correctly determined by each of the 3 different methods.

88 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

12 14 16 18 20 22 24 26 28 30 32 34
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

degree d

R
u

n
 T

im
e

 [
s
e

c
o

n
d

s
]

naive SVD

recursive SVD

recursive QR

Figure 4.3: Total run time Example 1 as a function of the degree d.

The graph of the total amount of required memory for orthogonalization is shown
in Figure 4.4. For this particular case the recursive SVD method needs more
memory than the naive method. This is due to the need of the recursive method

to store both U(d − 1) and N(d − 1), in addition to
(

MTa MTb
)T

. It is only for
the rather large degree of 35 that the recursive SVD method starts to need less
memory than the naive approach. Since the polynomial system was already very
sparse, the sparse QR implementation of Algorithm 4.2 is clearly superior for this
example. Whereas for d = 35 both SVD-based methods require about 500 MB,
the sparse QR method needs only 1MB.

4.6.2 Example 2

For the next numerical experiment, the number of variables is increased to 6 and
the degrees are limited to maximally 4:































x2
1 + x2

3 − 1 = 0,
x2

2 + x2
4 − 1 = 0,

x5 x
3
3 + x6 x

3
4 − 1.2 = 0,

x5 x
3
1 + x6 x

3
2 − 1.2 = 0,

x5 x
2
3 x1 + x6 x

2
4 x2 − 0.7 = 0,

x5 x3 x
2
1 + x6 x4 x

2
2 − 0.7 = 0.

NUMERICAL EXPERIMENTS 89

12 14 16 18 20 22 24 26 28 30 32 34
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

degree d

R
e

q
u

ir
e

d
 M

e
m

o
ry

 [
M

B
]

naive SVD

recursive SVD

recursive QR

Figure 4.4: Required memory Example 1 as a function of the degree d.

As shown in Figure 4.5, all total run times are quite similar for degrees 4 up to
7. Differences become more apparent as soon as the total run time is around 10
seconds. Again, the naive approach has the largest exponential increase of run
time. For d = 10, the total run times for the naive, recursive SVD and recursive
QR method are 831, 92 and 12 seconds respectively.

The total required memory, shown in Figure 4.6, for both SVD-based orthogo-
nalizations is quite similar. The sparse QR implementation needs one order of
magnitude less memory. For d = 10, the SVD-based methods need about 592
MB while the sparse QR needs only 44 MB. All numerical ranks were correctly
determined by each of the 3 different methods.

90 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

degree d

R
u

n
 T

im
e

 [
s
e

c
o

n
d

s
]

naive SVD

recursive SVD

recursive QR

Figure 4.5: Total run time Example 2 as a function of the degree d.

3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

degree d

R
e

q
u

ir
e

d
 M

e
m

o
ry

 [
M

B
]

naive SVD

recursive SVD

recursive QR

Figure 4.6: Required memory Example 2 as a function of the degree d.

NUMERICAL EXPERIMENTS 91

4.6.3 Example 3

The number of variables and polynomials is further increased to 10 polynomials
in 10 variables of total degree 2































































5 x1 x2 + 5 x1 + 3 x2 + 55 = 0,
7 x2 x3 + 9 x2 + 9 x3 + 19 = 0,

3 x3 x4 + 6 x3 + 5 x4 − 4 = 0,
6 x4 x5 + 6 x4 + 7 x5 + 118 = 0,
x5 x6 + 3 x5 + 9 x6 + 27 = 0,
6 x6 x7 + 7 x6 + x7 + 72 = 0,
9 x7 x8 + 7 x7 + x8 + 35 = 0,

4 x8 x9 + 4 x8 + 6 x9 + 16 = 0,
8 x9 x10 + 4 x9 + 3 x10 − 51 = 0,

3 x1 x10 − 6 x1 + x10 + 5 = 0.

Observe that the different run times for this polynomial system in Figure 4.7 have
a similar growth as in Figure 4.5. For this particular example, the three run
times become different starting from d = 4. The difference between the naive
and recursive SVD, however, appears from d = 6. For this degree, M(6) is a
10010 × 8008 matrix and the naive, recursive SVD and recursive QR algorithms
need 916, 373 and 61 seconds respectively.

1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

10
2

10
3

degree d

R
u

n
 T

im
e

 [
s
e

c
o

n
d

s
]

naive SVD

recursive SVD

recursive QR

Figure 4.7: Total run time Example 3 as a function of the degree d.

Also for the memory requirement, Figure 4.8 is almost identical to Figure 4.6.
Both SVD-based methods need practically the same amount of memory while the

92 FAST RECURSIVE ORTHOGONALIZATION OF THE MACAULAY MATRIX

sparse QR-based method needs about one order of magnitude less. At d = 6, the
SVD-based methods need about 611 MB while the sparse QR-method needs only
50 MB. All numerical ranks were correctly determined by each of the 3 different
methods.

1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

degree d

R
e
q
u
ir
e
d
 M

e
m

o
ry

 [
M

B
]

naive SVD

recursive SVD

recursive QR

Figure 4.8: Required memory Example 3 as a function of the degree d.

4.6.4 Example 4

In this example we illustrate the failure of the default numerical tolerances when
working with dense polynomial systems. The polynomial system consists of 3
polynomials, each of degree 4. Each polynomial consists of 35 terms, corresponding
to all possible monomials in 3 variables from degrees 0 up to 4. The integer
coefficients are uniformly drawn from the interval [−100, 100]. Normalizing the
coefficient vector of each polynomial such that it is a unit vector keeps the singular
values small. For this particular instance the rank test fails at degree d = 23. The

matrix
(

MTa N M
T
b

)T
is then 570×340. We first discuss the SVD-based algorithm.

The numerical tolerance is τ = 1.26× 10−13. The singular values σ276 up to σ280

are
{0.1266, 1.72× 10−13, 1.30× 10−13, 1.05× 10−13, 5.01× 10−14}.

Using the default tolerance would determine the numerical rank to be 278 with
a corresponding approxi-rank gap of 1.24. The numerical rank however is well-
determined to be 276 with an approxi-rank gap of 7.34 1011. It is clear from
this example that maximizing the approxi-rank gap over all pairs of consecutive

NUMERICAL EXPERIMENTS 93

singular values would correctly retrieve the numerical rank. Care needs to be taken
on how this maximization is carried out, since it is possible that there is more
than one “large” gap. The QR-based algorithm suffers from the same problem. In
contrast to the singular values, the diagonal entries of R, denoted by rii, are not
all positive nor sorted in descending order. We therefore denote the values of |rii|,
sorted in descending order, by sj where j runs from 1 to min(m+∆q,∆p). One can
then do a similar analysis on sj as with the singular values. At d = 10 the default
numerical tolerance is τ = 1.11×10−12 and the last two nonzero elements of sj for
d = 10 are s78 = 0.044, s79 = 2.79× 10−12. The numerical rank determined from
using the default tolerance is 79 while the singular values indicate it should be 78
with an approxi-rank gap of 2.34× 1012. Maximizing the ratio of two consecutive
nonzero sj values would also in this case retrieve the correct numerical rank.

4.6.5 Example 5

The following polynomial system demonstrates the failure of the rank revealing QR
decomposition to correctly determine the rank. As will be shown for the degree
d = 8, this failure is not related to the default values of the numerical tolerances.
Consider the following polynomial system in C4

2 :















2 x2
4 + 2 x2

3 + 2 y2 + 2 x2
1 − x1 = 0,

2 x3 x4 + 2 x2 x3 + 2 x1 x2 − x2 = 0,
2 x2 x4 + 2 x1 x3 + x2

2 − x3 = 0,
2 x4 + 2 x3 + 2 x2 + x1 − 1 = 0.

At d = 7, the default tolerance for the QR-based orthogonalization fails. Inspecting
s120 = 0.068 and s121 = 2.01 × 10−12 shows that the numerical rank should be
120 instead of 121 although the default tolerance is τ = 1.69× 10−12. The SVD-
based method confirms the numerical rank of 120 with an approxi-rank gap of
σ120/σ121 = 2.85 × 1014. At d = 8, the numerical rank is estimated by the rank
revealing QR to be 166. Indeed, the numerical tolerance is τ = 2.27× 10−12 with
s166 = 0.062 and s167 = 0. The SVD-based algorithm however shows that the
numerical rank is 165 and well determined with an approxi-rank gap σ165/σ166 =
2.10× 1014.

Chapter 5

The Canonical Decomposition

of Cnd

In this chapter, we introduce the notions of both the canonical and reduced
canonical decomposition of Cnd . These concepts will play a crucial role in almost
all recursive algorithms described in Chapter 6 by allowing us to determine stop
criteria for all of these recursive algorithms. In this way we will show that, contrary
to methods in computer algebra, no explicit computation of a Gröbner basis is
necessary.

5.1 The canonical decomposition of Cnd
Starting from the rank of the Macaulay matrix the canonical decomposition is
defined. Then, the SVD-based algorithm to compute the canonical decomposition
numerically is presented. This is followed by a detailed discussion on numerical
aspects, which are illustrated by worked-out examples.

5.1.1 Definition

Knowing the interpretation of the row space Md, one can immediately give a
similar interpretation for the rank r(d) of M(d). Evidently, the rank r(d) counts
the number of linearly independent polynomials lying in Md. More interestingly,
the rank also counts the number of linearly independent leading monomials ofMd.
This is easily seen from bringing the Macaulay matrix M(d) into a reduced row
echelon form R(d). In order for the linearly independent monomials to be leading

95

96 THE CANONICAL DECOMPOSITION OF Cnd

monomials a column permutation Q is required which flips all columns from left
to right. Then the Gauss-Jordan elimination algorithm can be run, working from
left to right. The reduced row echelon form then ensures that each pivot element
corresponds with a linearly independent leading monomial. We illustrate this
procedure in the following example.

Example 5.1 Consider the polynomial system
{

f1 : x1 x2 − 2x2 = 0,
f2 : x2 − 3 = 0,

and fix the degree to 3. First, the left-to-right column permutation Q is applied to
M(3),

M(3)Q =





























x3
2 x1x

2
2 x2

1x2 x3
1 x2

2 x1x2 x2
1 x2 x1 1

f1 0 0 0 0 0 1 0 −2 0 0
x1f1 0 0 1 0 0 −2 0 0 0 0
x2f1 0 1 0 0 −2 0 0 0 0 0
f2 0 0 0 0 0 0 0 1 0 −3
x1 f2 0 0 0 0 0 1 0 0 −3 0
x2 f2 0 0 0 0 1 0 0 −3 0 0
x2

1 f2 0 0 1 0 0 0 −3 0 0 0
x1x2 f2 0 1 0 0 0 −3 0 0 0 0
x2

2 f2 1 0 0 0 −3 0 0 0 0 0





























.

Now bringing M(3)Q into reduced row echelon form results in

R(3) =





























x3
2 x1x

2
2 x2

1x2 x3
1 x2

2 x1x2 x2
1 x2 x1 1

1 0 0 0 0 0 0 0 0 −27
0 1 0 0 0 0 0 0 0 −18
0 0 1 0 0 0 0 0 0 −12
0 0 0 0 1 0 0 0 0 −9
0 0 0 0 0 1 0 0 0 −6
0 0 0 0 0 0 1 0 0 −4
0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 1 −2
0 0 0 0 0 0 0 0 0 0





























.

From the reduced row echelon form one can see that the rank of M(3) is 8. Notice
how the left-to-right permutation ensured that the 8 pivot elements, corresponding
with the monomials

{x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2},

are leading monomials with respect to the monomial ordering. The Gauss-Jordan
algorithm returns a set of 8 polynomials, that all together span M3. In addition,

THE CANONICAL DECOMPOSITION OF Cnd 97

for each of these polynomials, its leading monomial corresponds with a particular
pivot element of R(3).

This Gaussian elimination is in fact similar to Algorithm 2.1 that finds a monomial
basis for the remainder spaceR when doing multivariate polynomial division. The
r(d) polynomials that can be read off from R(d) span Md and we will show how
for a particular degree a subset of these polynomials corresponds with a reduced
Gröbner basis. Interpreting the rank r(d) in terms of linearly independent leading
monomials naturally leads to a canonical decomposition of Cnd . The vector space
spanned by the r(d) leading monomials ofR(d) will be denotedAd. Its complement
spanned by the remaining monomials will be denoted Bd. We will call these
monomials that span Bd the normal set or standard monomials.

Definition 5.1 Let f1, . . . , fs be a multivariate polynomial system with a given
monomial ordering. Then we define the canonical decomposition as the decom-
position of the monomial basis of Cnd into a set of linearly independent leading
monomials A(d) and standard monomials B(d).

Naturally,
Cnd = Ad ⊕ Bd

and dim Ad = r(d), dim Bd = c(d). Observe that the monomial bases for Ad and
Bd also have a homogeneous interpretation.

Example 5.2 For the polynomial system of the previous example,
{

f1 : x1 x2 − 2x2 = 0,
f2 : x2 − 3 = 0,

and degree 3, the canonical decomposition is hence

A(3) = {x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2},

and
B(3) = {1, x3

1}.
In matrix form, these monomial bases are

A(3) =

























1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

























,

98 THE CANONICAL DECOMPOSITION OF Cnd

and

B(3) =

(

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)

.

For the sake of readability the notation for A(d) and B(d) is used for both the set of
monomials and the matrices, as in Example 5.2. The dependence of the canonical
decomposition on the monomial ordering is easily understood from Example 5.2. A
different admissible monomial ordering would correspond with a different column
permutation Q and this would result in different monomial bases A(3) and B(3).

5.1.2 Importance of the canonical decomposition

The importance of this canonical decomposition is twofold. First, the linearly
independent monomials A(d) play an important role in the computation of a
Gröbner basis of f1, . . . , fs and in the determination of the various stop criteria of
the recursive algorithms in Chapter 6. Second, the normal set B(d) is intimately
linked with the problem of finding the roots of the polynomial system f1, . . . , fs.
Remember from Section 3.6 that

c(d) = q(d) − r(d)

= dim Pnd − dim 〈fh1 , . . . , fhs 〉d

= dim Pnd /〈fh1 , . . . , fhs 〉d

= dim Bd.

Or in other words, for all degrees d larger than the degree of regularity d⋆, the
number of monomials in B(d) are equal to the total amount of projective roots
of the polynomial system fh1 , . . . , f

h
s . In Chapter 6, we will show how the affine

roots can be separated from the roots at infinity and computed from a generalized
eigenvalue problem.

It is commonly known that bringing a matrix into a reduced row echelon form
is numerically not the most reliable way of determining the rank of a matrix. In
the next section, a more robust SVD-based method for computing the canonical
decomposition of Cnd and finding the polynomial basis R(d) is presented.

THE CANONICAL DECOMPOSITION OF Cnd 99

5.1.3 Numerical Computation of the Canonical Decomposition

As mentioned in the previous section, the determination of r(d) is the first essential
step in computing the canonical decomposition of Cnd . Bringing the matrix into
reduced row echelon form by means of Gauss-Jordan elimination is not a robust
method for determining the rank. Furthermore, since the monomial ordering
is fixed, no column pivoting is allowed, which potentially results in numerical
instabilities. Our recursive orthogonalization algorithm is therefore the method
of choice to determine the numerical rank. The next step is to find A(d), B(d)
and the r(d) polynomials of R(d). The key idea here is that each of these r(d)
polynomials is spanned by the standard monomials and one leading monomial of
A(d). Suppose a subset A ⊆ A(d) and B ⊆ B(d), both ordered in ascending order,
are available. It is then possible to test whether the next monomial larger than
the largest monomial of A(d) is a linearly independent leading monomial. We
illustrate the principle by the following example.

Example 5.3 Suppose that the following subsets

A = {x1, x2}, B = {1},

of
A(3) = {x1, x2, x

2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2}, B(3) = {1, x3

1},
from Example 5.2 are available. The next monomial according to the monomial
ordering is x2

1. The next possible polynomial from R(3) is then spanned by {1, x2
1}.

If such a polynomial lies inM3 then x2
1 is a linearly independent leading monomial

and can be added to A. If not, x2
1 should be added to B. This procedure can be

repeated until all monomials up to degree 3 have been tested. For the case of x2
1

there is indeed such a polynomial present in R(3) as can be seen from Example 5.2:
x2

1−4. This polynomial therefore lies in both the vector spacesM3 and span(1, x2
1).

Computing a basis for the intersection between M3 and span(1, x2
1) will therefore

reveal whether x2
1 ∈ A(3).

Given the subsets A and B, testing whether a monomial xa ∈ A(d) corresponds
with computing the intersection between Md and span(B, xa). This corresponds
with detecting whether the smallest principal angle between Md and span(B, xa)
is zero (Appendix A, Sections A.9 and A.10). {B, xa} is a monomial basis, its
matrix representation Q2 can therefore be written as

Q2 = P E,

where P is a permutation matrix and E = (Im 0)T , with m = |{B, xa}|. From
Section A.10, it then also follows that the sines of the principal angles are given
by the singular values of NT Q2. If the indices of the nonzero rows of Q2 are
given by j, then the SVD of N(j, :)T needs to be computed. The same tolerance

100 THE CANONICAL DECOMPOSITION OF Cnd

τ used for the determination of the numerical rank of M(d) in Algorithm 4.2
can be used to decide whether a principal angle is numerically zero. This then
also implies that the reduced polynomial r can be retrieved as the right singular
vector vm corresponding with the zero singular value µm. The whole algorithm is
summarized in pseudo-code in Algorithm 5.1. The first step is to compute a basis
N for null(M(d)) using Algorithm 4.2. Next, the algorithm iterates over all n-
variate monomials from degree 0 up do d, in ascending order. The set containing
all these monomials is denoted by T nd . The computational complexity of the
orthogonalization step is O(d3n−3). The subsequent q(d) SVDs have a maximal
computational complexity of O(d3n−3), which amounts to a total computational
complexity of O(d4n−3). This is only valid if deg(c(d)) = n− 1. For the case of a
finite number of projective roots, the computational cost is completely dominated
by the orthogonalization step.

Algorithm 5.1 Computation of the Canonical Decomposition of Cnd
Input: polynomial system f1, . . . , fs, degree d, tolerance τ
Output: A(d), B(d) and polynomials R(d)

N ← orthogonal basis for null space of M(d) using Algorithm 4.2
A(d), B(d), R(d)← ∅

for all xa ∈ T nd do

construct vector of indices j from B(d) and xa

[W S Z]← SVD(N(j, :)T)
if arcsin(µm) < τ then

append xa to A(d)
append vTm to R(d)

else

append xa to B(d)
end if

end for

Remark 5.1 The orthogonal basis U for Md was never used in Algorithm 5.1.
Hence, during the recursive orthogonalization of M(d), it is never required to
update or store this matrix. This reduces the total required memory significantly.

5.1.4 Numerical Experiment - no perturbations on the coeffi-

cients

We first consider the case of polynomials with exact coefficients and illustrate
Algorithm 5.1 using the SVD-based iterative orthogonalization.

THE CANONICAL DECOMPOSITION OF Cnd 101

Example 5.4 Consider the following polynomial system in C3
4







x2
1 + x1 x3 − 2 x2 + 5 = 0,

2 x3
1 x2 + 7 x2 x

2
3 − 4 x1 x2 x3 + 3 x1 − 2 = 0,
x4

2 + 2 x2 x3 + 5 x2
1 − 5 = 0,

with degrees d1 = 2, d2 = 4, d3 = 4. The canonical decomposition is computed for
d = 10 with Algorithm 5.1. Each polynomial is normalized and the 333 × 286
Macaulay matrix M(10) is constructed. From its SVD the tolerance is set to
τ = 1.47 × 10−13 and the numerical rank is determined as 254 with an approxi-
rank gap of ≈ 4× 1013. This implies that A(10) and B(10) will have 254 and 32
monomials respectively. Algorithm 5.1 indeed returns this number of monomials
and corresponding polynomials R(10). The principal angles corresponding with the
leading monomials A(10) are all around 10−15 and hence the tolerance τ for the
rank test also works for the principal angles. The smallest principal angle for a
monomial of the normal set B(10) is 2.17 × 10−9. The rank estimated from the
reduced row echelon form of M(10) is 259 which is a strong indication that the
reduced row echelon form is not well-suited to compute A(10), B(10) and R(10).

5.1.5 Numerical Experiment - perturbed coefficients

Perturbing the coefficients of the polynomial system f1, . . . , fs will change the
corresponding canonical decomposition A(d), B(d). This is easily observed from
Example 5.2. Suppose we perturb all coefficients of f2 with noise, uniformly
distributed over the interval [0, 10−1], to obtain

f̃2 = −2.9056 + 0.0456 x1 + 1.0789 x2.

Then the reduced row echelon form of M̃(3)Q is

R̃(3) =





























x3
2 x1x

2
2 x

2
1x2 x

3
1 x

2
2 x1x2 x

2
1 x2 x1 1

1 0 0 0 0 0 0 0 0.2876 −18.3252
0 1 0 0 0 0 0 0 0.2205 −14.0501
0 0 1 0 0 0 0 0 0.1691 −10.7723
0 0 0 1 0 0 0 0 −4191.63 8375.27
0 0 0 0 1 0 0 0 0.1102 −7.0250
0 0 0 0 0 1 0 0 0.0845 −5.3862
0 0 0 0 0 0 1 0 −65.7197 127.4393
0 0 0 0 0 0 0 1 0.0423 −2.6931
0 0 0 0 0 0 0 0 0 0





























.

The corresponding canonical decomposition hence becomes

Ã(3) = {x3
2, x1x

2
2, x

2
1x2, x

3
1, x

2
2, x1x2, x

2
1, x2} and B̃(3) = {1, x1}.

102 THE CANONICAL DECOMPOSITION OF Cnd

A small continuous change of coefficients has therefore led to a ‘jump’ of the
canonical decomposition. This implies that the computation of the canonical
decomposition for a given polynomial system under perturbations of its coefficients
is an ill-posed problem. This ill-posedness is called a representation singularity [78,
p. 325] and is due to the insistence that the monomials of A(d) need to be leading
monomials with respect to the monomial ordering. This condition is sufficient
to make the representation singularity unavoidable and has implications for the
numerical determination of Gröbner bases. An alternative approach to avoid this
representation singularity is the use of border bases [52,53,65]. In practice however,
one does not know the normal set and will still need to compute a reduced row
echelon form of M(d) using Gaussian elimination or Algorithm 5.1. We discuss
border bases and an algorithm to compute them in Section 5.3.

5.2 The Reduced Canonical Decomposition of Cnd
In this section we introduce the notion of divisibility into the canonical
decomposition. This naturally leads to the concept of a reduced canonical
decomposition, which will play an important role in the computation of a
numerical Gröbner basis together with the determination of stop criteria for the
recursive algorithms in Chapter 6. First, some new notation and concepts are
introduced after which Algorithm 5.1 is adjusted such that it produces the reduced
decomposition. A numerical example is then worked out and discussed.

5.2.1 The Reduced Monomials A⋆(d), B⋆(d) and Polynomials

G(d)

The polynomial basis R(d) will grow unbounded with the rank r(d) when d
increases. It is possible however to reduce this basis to a finite subset that generates
the whole ideal 〈f1, . . . , fs〉. It will be shown in Chapter 6 Section 6.1 that for a
sufficiently large degree, this reduced polynomial basis is a reduced Gröbner basis.
First the reduced leading monomials A⋆(d) are defined.

Definition 5.2 Given a set of linearly independent leading monomials A(d), then
the set of reduced leading monomials A⋆(d) is defined as the smallest subset of
A(d) for which each element of A(d) is divisible by an element of A⋆(d).

Since there is a one-to-one mapping between leading monomials in A(d) and
polynomials of R(d), each element of A⋆(d) will also correspond with a polynomial.

THE REDUCED CANONICAL DECOMPOSITION OF Cnd 103

Definition 5.3 For a given canonical decomposition A(d), B(d), R(d) the reduced
polynomials G(d) are defined as the polynomials of R(d) corresponding to the
reduced monomial system A⋆(d):

G(d) = {r ∈ R(d) : ∀a ∈ A⋆(d), LM (r) = a}.

Example 5.5 The polynomial system from Example 5.2 had the canonical
decomposition

A(3) = {x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

3
2},

and
B(3) = {1, x3

1}.
The reduced leading monomials for this decomposition are

A⋆(3) = {x1, x2},

since this subset is the smallest proper subset of monomials that divide all other
monomials of A(3). The corresponding reduced polynomials are

G(3) =

{

x1 − 2 = 0,
x2 − 3 = 0.

The reduced leading monomials A⋆(d) can be interpreted as a monomial system
for which the Macaulay matrix can also be constructed. We will denote this matrix
by MA⋆(d) and it is essential for defining the reduced normal set B⋆(d).

Definition 5.4 Let A(d), B(d) be a canonical decomposition implied by f1, . . . , fs
and a given monomial ordering. Then the reduced normal set B⋆(d) is the normal
set obtained from the canonical decomposition implied by A⋆(d) and the same
monomial ordering.

Typically B⋆(d) ⊆ B(d). The following example illustrates why this is the case.

Example 5.6 The reduced monomial system A⋆(3) of the canonical decomposition
in Example 5.2 is

A⋆(3) = {x1, x2}.

104 THE CANONICAL DECOMPOSITION OF Cnd

Its Macaulay matrix of degree 3 is

MA⋆(3) =









































1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1









































,

which is almost the same as the matrix A(3) except for the monomial x3
1. This

means that the reduced normal set is

B⋆(3) = {1},

compared to B(3) = {1, x3
1}.

The property that the reduced normal set B⋆(d) ⊆ B(d) holds in general.
When constructing the Macaulay matrix of A⋆(d) it is possible that columns
corresponding to standard monomials B(d) are filled. Hence these monomials
will not be in B⋆(d) anymore. Using the following lemma it is easy to determine
the standard monomials from MA⋆(d).

Lemma 5.1 Each standard monomial of B⋆(d) derived from the Macaulay matrix
MA⋆(d) always corresponds with a zero column of MA⋆(d).

PROOF. This follows trivially from the structure of the Macaulay matrix. �

Now a useful property on the zero-dimensionality of monomial ideals will be
derived. First, the concept of a pure power is introduced.

Definition 5.5 We call a monomial xdk (1 ≤ k ≤ n) a pure power and denote the
set of these n monomials by Xdn.

For example, X5
3 = {x5

1, x
5
2, x

5
3}. It is clear from the definition of the reduced

leading monomials that if pure powers are present in A(d) that they will also
be present in A⋆(d). The following lemma determines the growth of B⋆(d) as a
function of the degree d.

THE REDUCED CANONICAL DECOMPOSITION OF Cnd 105

Lemma 5.2 All monomials in n variables of degree

d ≥ dmax = n (d0 − 1) + 1

can be written as a product of an element of Xd0
n with another monomial.

PROOF. The proof can be completely done in Nn0 since there is a bĳection between
the exponents of monomials and Nn0 . We first show that for any degree d < dmax,
monomials can be found which cannot be written as a product of a pure power and
another monomial. For degree dmax − 1 = n (d0 − 1) we can write the following
monomial

(d0 − 1, d0 − 1, . . . , d0 − 1), (5.1)

which clearly cannot be written as a product of a pure power and another
monomial. It’s possible to come up with similar examples for all degrees between
d0 and dmax− 1 by just subtracting the necessary amount of a component of (5.1).
For degree dmax = n (d0 − 1) + 1 we can write the following monomial

(d0, d0 − 1, . . . , d0 − 1), (5.2)

which is clearly the product of xd0

1 and xd0−1
2 . . . xd0−1

n . Any other monomial
of degree dmax can now be formed by rearranging (5.2) (subtracting from one
component and adding to another). If, however, one component is subtracted
with a certain amount then the other components should be increased such that
the sum of all components remains constant. From this it is easy to see that there
will always be at least 1 component ≥ d0. �

Furthermore, the presence of a pure power for each variable in A⋆(d) is a necessary
condition for the finiteness of B⋆(d). This is easily seen by an example. If there is
no pure power for the variable x1 in A⋆(d), then all subsequent powers of x1 will
be zero columns in MA⋆(d) and B⋆(d) will grow linearly.

A monomial system A⋆(d) has a projective solution set because it is already
homogeneous. It is shown in [22, p.452] that the dimension of this projective
solution set is always one less than its affine solution set. Hence, if the monomial
ideal has a finite number of affine roots it will have no projective roots whatsoever.
We can now state the following theorem relating the zero-dimensionality of a
monomial system to the presence of all pure powers.

Theorem 5.1 A monomial system A⋆(d) has m affine roots, counting multiplici-
ties, if and only if it contains for each variable xi (1 ≤ i ≤ n) a pure power. It then
also holds that for all degrees d larger than the degree of regularity: dim B⋆d = m.

PROOF. This follows from Lemma 5.1 and 5.2. �

106 THE CANONICAL DECOMPOSITION OF Cnd

From Theorem 3.5 we know that for a polynomial system with a finite number of
projective roots, the nullity ofM(d), c(d), will equal the total number of projective
roots. Theorem 5.1 will allows us to separate the affine roots from the ones at
infinity. In order to do this, the notion of a Gröbner basis will first need to be
introduced in Chapter 6. In the same vein asMA⋆(d), the Macaulay matrix of the
reduced polynomials G(d) will be denoted MG(d).

5.2.2 Numerical Computation of A⋆(d), B⋆(d) and G(d)

The definition of A⋆(d) uses the complete set of linearly independent leading
monomials A(d). A straightforward way to find A⋆(d) would hence be to compute
A(d) using Algorithm 5.1, find A⋆(d) from A(d) and select the corresponding
polynomials of R(d) to obtain G(d). This is however not efficient since the whole
canonical decomposition is computed while only subsets are required. By using
the defining property of A⋆(d), it is possible to adjust Algorithm 5.1 such that it
directly computes A⋆(d), B⋆(d) and G(d). The whole procedure is summarized in
pseudo-code in Algorithm 5.2.

Algorithm 5.2 Computation of A⋆(d), B⋆(d) and G(d)
Input: polynomial system f1, . . . , fs, degree d, tolerance τ
Output: A⋆(d), B⋆(d) and polynomials G(d)

N ← orthogonal basis for null space of M(d) using Algorithm 4.2
A⋆(d), B⋆(d), G(d)← ∅

X ← T nd
while X 6= ∅ do

xa ← smallest monomial in X according to monomial ordering
j ← vector of indices for B(d) and xa

[W S Z]← SVD(N(j, :)T)
if arcsin(µm) < τ then

append xa to A⋆(d)
remove xa and all its monomial multiples from X
append vTm to G(d)

else

append xa to B⋆(d)
remove xa from X

end if

end while

The algorithm iterates over a set of monomials X which is initially all monomials
of degree 0 up to d. The key idea is that each monomial of A(d) is a monomial
multiple of a monomial of A⋆(d). So as soon as a linearly independent leading
monomial xa is found, all its monomial multiples do not need to be checked
anymore and can be removed from X . When the monomial xa is not linearly

THE REDUCED CANONICAL DECOMPOSITION OF Cnd 107

independent, it is also removed from X and added to B⋆(d). When X is empty,
the algorithm terminates. Removing monomial multiples of xa from X reduces
the number of iterations significantly and also guarantees that the computed B⋆

is correct. The same arguments on the computational complexity apply as for
Algorithm 5.1.

5.2.3 Numerical Experiments

Since Algorithm 5.2 is an adjustment of Algorithm 5.1 the same comments on
numerical issues apply. We revisit the polynomial system of Example 5.4.

Example 5.7 The linearly independent leading monomials A(10) of the polyno-
mial system







x2
1 + x1 x3 − 2 x2 + 5 = 0,

2 x3
1 x2 + 7 x2 x

2
3 − 4 x1 x2 x3 + 3 x1 − 2 = 0,
x4

2 + 2 x2 x3 + 5 x2
1 − 5 = 0,

consists of 254 monomials. Running Algorithm 5.2 on the polynomial system
results in the following reduced canonical decomposition:

A⋆(10) = {x1 x3, x
3
1 x2, x

4
2, x3 x

3
2, x

3
3 x2, x

5
1, x

5
3},

B⋆(10) = {1, x1, x2, x3, x
2
1, x2 x1, x

2
2, x2 x3, x

2
3, x

3
1, x2 x

2
1, x

2
2 x1, x

3
2, x3 x

2
2, x2 x

2
3

x3
3, x

4
1, x

2
2 x

2
1, x

3
2 x1, x

2
3 x

2
2, x

4
3, x

3
2 x

2
1}.

A⋆(10) consists of 7 monomials and the normal set B(10) is reduced from 32 to
22 monomials. G(10) consists of the following 7 polynomials















































































0.89803− 0.35921 x2 + 0.17961 x2
1 + 0.17961 x1x3 = 0,

−0.085592 + 0.12839 x1 + 0.85592 x2 − 0.34237x2
2 + 0.17118 x2

1x2

+0.29957x2x
2
3 + 0.085592 x3

1x2 = 0,

−0.6742 + 0.6742 x2
1 + 0.26968 x2x3 + 0.13484 x4

2 = 0,

−0.025205− 0.77127x1 + 0.0040328 x2 + 0.49401 x3 + 0.023188 x2
1

+0.31254 x1x2 − 0.19156 x2x3 + 0.0020164 x2
3− 0.15627x3

1 − 0.010082 x2
1x2

+0.0075614 x3
2− 0.017643 x3

3 − 0.025205 x4
1 + 0.0010082 x1x

3
2

+0.0010082 x3
2x3 = 0,

108 THE CANONICAL DECOMPOSITION OF Cnd



































































































−0.089289− 0.13951 x1 − 0.71432 x2 − 0.022322 x3 + 0.39064 x1x2

+0.31251 x2
2− 0.16742 x2x3 − 0.26787x2

1x2 − 0.15626 x1x
2
2 + 0.066967x2

2x3

−0.27345 x2x
2
3 + 0.044645 x2

1x
2
2 + 0.078128 x2x

3
3 = 0,

0.69381− 0.57918 x2 + 0.0034475 x3 + 0.37578 x2
1 + 0.12066 x2

2 − 0.030166 x2
3

−0.0086188 x3
1− 0.15514 x2

1x2 + 0.0017238 x3
2 + 0.047404 x4

1 − 0.0025856 x1x
3
2

+ 0.0086188 x5
1 = 0,

0.19201 + 0.74673 x1 − 0.062728 x2 − 0.4885 x3 + 0.025128 x2
1− 0.30287x1x2

−0.0059821 x2
2 + 0.19451 x2x3 + 0.062794 x2

3 + 0.16707x3
1 + 0.0079195 x2

1x2

+ 0.0018612 x1x
2
2 − 0.0070246 x3

2− 0.0022368 x2
2x3 + 0.0033854 x2x

2
3

+ 0.0081701 x3
3 + 0.025733 x4

1 − 0.00070942 x2
1x

2
2 − 3.8079× 10−5 x1x

3
2

−0.0019462 x4
3− 2.0865× 10−5 x2

1x
3
2 + 0.0002556 x5

3 = 0.

We will show in Chapter 6 that G(10) is a Gröbner basis.

5.3 Border Bases

As mentioned earlier, insisting that the monomials of A(d) are leading monomials
with respect to a monomial ordering unavoidably leads to the representation
singularity. The concept of border bases resolves the representation singularity for
polynomial systems with a finite number of affine roots. This is because border
bases vary continuously under perturbations of the coefficients of the polynomial
system. Before demonstrating this continuous change, we first define the border
of a given reduced normal set B⋆(d).

Definition 5.6 For a given reduced normal set B⋆(d), its border is

∂B⋆(d) = {xi b | 1 ≤ i ≤ n, b ∈ B⋆(d)} \B⋆(d).

Once the border of a reduced normal set B⋆(d) is given, one can define the B⋆(d)-
border prebasis.

Definition 5.7 Let B⋆(d) be a reduced normal set, then a B⋆(d)-border prebasis
are the set of polynomials

BB(d) = {bbj | bbj = tj −
m
∑

i=1

αi bi , 1 ≤ j ≤ µ} (5.3)

with ∂B⋆(d) = {t1, . . . , tµ} and B⋆(d) = {b1, . . . , bm}.

BORDER BASES 109

The polynomials of (5.3) are then a border basis for B⋆(d) when they generate the
polynomial ideal 〈f1, . . . , fs〉 and the residue classes of the monomials in B⋆(d) are
a basis for the finite dimensional vector space Cnd /I. This can be summarized by
a Buchberger’s criterion for border bases [52,53], or alternatively as commutation
relations between multiplication matrices [65]. Algorithm 5.1 can be adapted in a
straightforward manner to numerically compute the B⋆(d)-border prebasis BB(d)
for a given reduced normal set B⋆(d). Since each polynomial of BB(d) lies in
span(B⋆(d), t), with t ∈ ∂B⋆(d), one simply needs to replace the monomial xa by
a monomial t ∈ ∂B⋆(d). The whole algorithm is summarized in pseudo-code in
Algorithm 5.3.

Algorithm 5.3 Computation of a B⋆(d)-border prebasis BB(d)
Input: normal set B⋆(d), tolerance τ
Output: B⋆(d)-border prebasis BB(d)

BB(d)← ∅

∂B⋆(d)← border monomials of B⋆(d)
for all t ∈ ∂B⋆(d) do

j ← vector of indices for B⋆(d) and t
[W S Z]← SVD(N(j, :)T)
if arcsin(µm) < τ then

append vTm to BB(d)
end if

end for

Using Algorithm 5.3, we can now demonstrate that border basis avoid the
representation singularity under perturbations of the coefficients of f1, . . . , fs.

Example 5.8 Consider the polynomial system ([55, p. 430])

F =

{

f1 = 1
4 x

2
1 + x2

2 − 1,

f2 = x2
1 + 1

4 x
2
2 − 1,

and its slightly perturbed version

F̃ =

{

f̃1 = 1
4 x

2
1 + 10−5x1x2 + x2

2 − 1,

f̃2 = x2
1 + 10−5x1x2 + 1

4 x
2
2 − 1.

Computing the reduced normal set B⋆(3) for F using Algorithm 5.2 results in

B⋆(3) = {1, x1, x2, x1x2}.

110 THE CANONICAL DECOMPOSITION OF Cnd

Applying Algorithm 5.3 and scaling the bb polynomials such that each leading term
is monic results in the prebasis

BB(3) =























bb1 = −0.8000 + x2
1,

bb2 = −0.8000 + x2
2,

bb3 = −0.8000x2 + x2
1x2,

bb4 = −0.8000x1 + x1 x
2
2,

which is also a border basis for 〈f1, f2〉. Now, applying Algorithm 5.3 for the
perturbed polynomial system F̃ , using the same reduced normal set B⋆(3), returns
the following prebasis

B̃B(3) =























b̃b1 = −0.8 + 8× 10−06x1x2 + x2
1,

b̃b2 = −0.8 + 8× 10−06x1x2 + x2
2,

b̃b3 = 6.4× 10−6x1 − 0.800 x2 + x2
1x2,

b̃b4 = −0.800 x1 + 6.4× 10−6 x2 + x1 x
2
2.

The −0.800 terms in b̃b3 and b̃b4 have more nonzero digits, which is indicated by
the trailing zeros. One can now see that the introduction of the noisy x1x2 term did
not lead to any discontinuous jump from BB(3) to B̃B(3). The continuous change
of the prebasis can be demonstrated by using symbolical computations. Replacing
the coefficient of x1x2 in F̃ by ǫ and computing the prebases symbolically with
respect to the degree negative lex ordering results in a prebasis

BB(3) =























bb1 = − 4
5 + x2

1,

bb2 = − 4
5 + x2

2,

bb3 = − 4
5x2 + x2

1x2,

bb4 = − 4
5x1 + x1x

2
2,

for F and

B̃B(3) =























bb1 = − 4
5 + 4

5ǫx1x2 + x2
1,

bb2 = − 4
5 + 4

5ǫx1x2 + x2
2,

bb3 = 16ǫ
16ǫ2−25x1 − 20

16ǫ2−25x2 + x2
1x2,

bb4 = − 20
16ǫ2−25x1 + 16ǫ

16ǫ2−25x2 + x1x
2
2,

for F̃ . From these symbolic expressions it is seen that B̃B(3) changes continuously
into BB(3) when ǫ goes to zero. Setting ǫ = 10−5 in these symbolic expressions
results in the numerical prebases computed by Algorithm 5.3.

We have seen that the computation of a canonical decomposition is ill-posed under
perturbations of the coefficients of f1, . . . , fs. Nonetheless, the reduced canonical

BORDER BASES 111

decomposition still allows to compute all affine roots of a polynomial system.
Although it is guaranteed that the monomial sets A(d), B(d) will change under
perturbations of the coefficients, their cardinality however will not. This is due to
the continuity of polynomial zeros [78, p. 304]. In other words, the total number of
monomials inB⋆(d) still represents the total number of affine roots for d ≥ dG. The
importance of the canonical decomposition in root-finding and other applications
will be further demonstrated in Chapter 6.

Chapter 6

Applications

The focus of this chapter is solving problems. In particular, we develop and
implement algorithms for solving the following problems: finding a Gröbner basis,
affine root-finding, solving the ideal membership problem, multivariate polynomial
elimination, doing the syzygy analysis, finding least common multiples and greatest
common divisors of two multivariate polynomials and the removal of multiplicities
of roots. Where applicable, we will show how in the PNLA framework solving these
problems can be done without the computation of a Gröbner basis.

6.1 Gröbner basis

In this section, the link is made between the reduced polynomials G(d) from the
reduced canonical decomposition and a Gröbner basis of the ideal 〈f1, . . . , fs〉. This
will lead to some insights on the separation of the roots of a polynomial system
into an affine part and roots at infinity for the zero-dimensional case. A condition
will be derived for this case to determine the affine part of the normal set. One can
think of a Gröbner basis as another set of generators for the ideal 〈f1, . . . , fs〉. It
is a classical result that for each ideal 〈f1, . . . , fs〉, there exists such a finite set of
polynomials G [21, 22]. The finiteness of G relies on Hilbert’s Basis Theorem [45].
This implies that there exists a particular degree d for which G ∈ Md, which leads
to the following problem.

Problem 6.1 Find for a multivariate polynomial system f1, . . . , fs the degree dG
such that for all d ≥ dG : G ∈Md.

113

114 APPLICATIONS

The degree dG is for the general case related to the Gröbner basis bound Gb. This
bound is the least value such that for all f1, . . . , fs there is a Gröbner basis G
whose members are polynomials of degree at most Gb. Bounds for Gb are related
to those for Ib and Sb and are therefore also doubly exponential. Lazard proved
the following useful theorem for the practical case of zero-dimensional projective
varieties.

Theorem 6.1 ([56, p.154-155]) Let f1, . . . , fs be multivariate polynomials of
degrees d1, . . . , ds such that d1 ≥ d2 . . . ≥ ds. Suppose that a multiplicative
monomial ordering is used and that the homogenized polynomial system fh1 , . . . , f

h
s

has a finite number of nontrivial projective roots. Then the polynomials of the
reduced Gröbner basis have degrees at most d1 + . . .+ dn+1 − n+ 1 with dn+1 = 1
if s = n.

This theorem provides a nice linear bound on the maximal degrees of the Gröbner
basis. Unfortunately, this does not imply that dG ≤ d1 + . . .+ dn+1 − n+ 1 since
Md does not necessarily contain all polynomials of 〈f1, . . . , fs〉 of degree d.

The reduced polynomials G(d) computed from Algorithm 5.2 ensure by definition
that

∀ p ∈ Md ∃ g ∈ G(d) such that LM(g) | LM(p).

This suggests that G(d) is a Gröbner basis when d ≥ dG. Furthermore, it will be
a reduced Gröbner basis. A criterion is needed to be able to decide whether G(d)
is a Gröbner basis. This is given by Buchberger’s criterion, which we formulate in
terms of the Macaulay matrix M(d) and the reduced monomial system A⋆(d).

Theorem 6.2 (Buchberger’s Criterion) Let f1, . . . , fs be a multivariate poly-
nomial system with reduced monomial system A⋆(d) and reduced polynomials G(d)
for a given degree d. Then G(d) is a Gröbner basis for 〈f1, . . . , fs〉 ifM(d⋆) has the
same reduced leading monomials A⋆(d) for a degree d⋆ such that all S-polynomials
of G(d) lie in Md⋆ .

PROOF. Saying that M(d⋆) has the same reduced leading monomials A⋆(d) is
equivalent with saying that all S-polynomials have a zero remainder on division
by G(d). This is exactly the stop-criterion for Buchberger’s Algorithm. �

Buchberger’s Criterion implies that for all degrees d ≥ dG, the Macaulay matrix
MG(d) has the same reduced canonical decomposition as MA⋆(d). This implies
that for all degrees d ≥ dG, the reduced canonical decomposition will not change
anymore. We therefore have the following useful corollary.

Corollary 6.1 Let f1, . . . , fs be a multivariate polynomial system with a finite
number of affine roots. Then ∀d ≥ dG its reduced monomial set A⋆(d) will contain

GRÖBNER BASIS 115

for each variable xi (1 ≤ i ≤ n) a pure power. Furthermore, B⋆(d) is then the
affine normal set.

PROOF. This follows from Theorem 5.1 and Buchberger’s Criterion that ∀ d ≥ dG
both MG(d) and MA⋆(d) have the same reduced monomial decomposition. �

If it is known that the affine solution set of a polynomial ideal is zero-dimensional,
then detecting pure powers in A⋆(d) allows to determine the degree dG and Gröbner
basis G(d). This is summarized in Algorithm 6.1. In general, in going from A⋆(d)
to A⋆(d+1), monomials are both removed and added. When a monomial xα from
A⋆(d) is not present anymore in A⋆(d+1), then this implies that xα ∈ B⋆(d+1). It
has, in other words, become a linearly dependent leading monomial. One therefore
always needs to recompute the reduced canonical decomposition for each degree.
Once dG is known, it then becomes possible to numerically compute all affine roots
by solving an eigenvalue problem without the explicit computation of a Gröbner
basis. This will be further described in Section 6.2.

Algorithm 6.1 Computation of Gröbner basis G of 〈f1, . . . , fs〉
Input: f1, . . . , fs with finite number of nontrivial projective roots
Output: Gröbner basis G

d← max(deg(f1), deg(f2), . . . , deg(fs))
A⋆(d), B⋆(d), G(d)← ∅

pp← 0
while pp 6= 0 do

A⋆(d), B⋆(d), G(d)← reduced canonical decomposition (Algorithm 5.2)
if all pure powers in A⋆(d) then

pp← 1
G← G(d)

else

d← d+ 1
end if

end while

Example 6.1 Again, we revisit the polynomial system in C3
4







x2
1 + x1 x3 − 2 x2 + 5 = 0,

2 x3
1 x2 + 7 x2 x

2
3 − 4 x1 x2 x3 + 3 x1 − 2 = 0,
x4

2 + 2 x2 x3 + 5 x2
1 − 5 = 0,

from Example 5.4. For this polynomial system s = n = 3 and therefore d1 + d2 +
d3 − n + 1 = 8. This polynomial system has a zero-dimensional solution set and,
following Algorithm 6.1, we start to compute the reduced canonical decomposition
for d = 4. Algorithm 5.2 returns

A⋆(4) = {x1 x3, x
3
1 x2, x

4
2},

116 APPLICATIONS

which already contains 1 pure power: x4
2. The next pure power, x5

1, is retrieved for
d = 7 in

A⋆(7) = {x1 x3, x
3
1 x2, x

4
2, x2 x

3
3, x

5
1}.

The last pure power, x5
3, is found for d = dG = 10:

A⋆(10) = {x1 x3, x
3
1 x2, x

4
2, x2 x

3
3, x

5
1, x

5
3}.

The Gröbner basis is therefore G(10) as given in Example 5.7. Indeed, computing
an exact Gröbner basis in Maple and normalizing each polynomial results in G(10).
Although the maximal degree of the polynomials of G is 5 < 8, which is in agreement
with Theorem 6.1, the Gröbner basis is found only for d = 10.

The ill-posedness of the canonical decomposition under the influence of noise
directly affects the computation of a Gröbner basis. As shown by Nagasaka in [67],
it is impossible to define an approximate Gröbner basis in the same sense as an
approximate GCD or approximate factorization of multivariate polynomials. In
addition, Gröbner basis polynomials typically have large integer coefficients. It is
even possible that these coefficients fall out of the range of the double precision
standard. In this case, it would be necessary to perform the computations in
higher precision.

The importance of the Gröbner basis and the degree dG for which it can be found
from the Macaulay matrix is demonstrated by the following theorem. This theorem
solves Problem 3.3 of finding the degree dS for which all basis syzygies are found
by inspecting linearly dependent rows of M(d) as described in Algorithm 3.1.

Theorem 6.3 Consider the problem of finding all basis syzygies as described in
Problem 3.3. Let G = {g1, . . . , gt} be a Gröbner basis of 〈f1, . . . , fs〉 and

d0 = max
i6=j

deg(S(gi, gj)). (6.1)

Then
dS ≤ dG + d0.

PROOF. It is a well-known result that all basis syzygies of 〈f1, . . . , fs〉 can be
determined from a Gröbner basis [21, p. 223]. Indeed, the reduction to zero of
every S-polynomial of a pair of polynomials in a Gröbner basis provides a basis
syzygy. This implies that it is required to construct M(d) for a degree which
contains all these S-polynomials, which leads to (6.1). �

Observe that the proof relies on the notion of a Gröbner basis. The following
example illustrates the application of Theorem 6.3.

AFFINE ROOT-FINDING 117

Example 6.2 We reconsider the polynomial system in C4 from Example 3.13















































f1 : x2
2 x3 + 2 x1 x2 x4 − 2 x1 − x3 = 0,

f2 : −x3
1 x3 + 4 x1 x

2
2 x3 + 4 x2

1 x2 x4 + 2 x3
2 x4 + 4 x2

1 − 10 x2
2

+4 x1 x3 − 10 x2 x4 + 2 = 0,

f3 : 2 x2 x3 x4 + x1 x
2
4 − x1 − 2 x3 = 0,

f4 : −x1 x
3
3 + 4 x2 x

2
3 x4 + 4 x1 x3 x

2
4 + 2 x2 x

3
4 + 4 x1 x3

+4 x2
3 − 10 x2 x4 − 10 x2

4 + 2 = 0,

with degrees d1 = d3 = 3, d2 = d4 = 4. For a degree d = 11, the reduced leading
monomials A⋆(11) contain 31 monomials. More importantly, among those 31
monomials we have the following pure powers

x7
1, x

5
2, x

4
3, x

4
4.

The presence of a pure power for each variable implies that dG = 11 and hence
the Gröbner basis G(11) of the polynomial system consists of 31 polynomials. The
maximum degree of all S-polynomials S(gi, gj) is 12. By applying Theorem 6.3
we know that the degree dS for which all basis syzygies are guaranteed to be found
is dG + 12 = 23. From Example 3.13 we know that all basis syzygies are in fact
found for d = 15. Theorem 6.3 therefore provides a bound on dS that can be quite
an overestimation. Furthermore, the theorem explicitly requires the computation
of a Gröbner basis because all its S-polynomials need to be computed as well. This
is quite inpractical and an alternative syzygy analysis that does not require the
computation of a Gröbner basis will be provided in Section 6.4 of this chapter.

6.2 Affine root-finding

In this section it will be shown how the affine roots of a multivariate polynomial
system f1, . . . , fs can be numerically computed from either a standard or
generalized eigenvalue problem. This procedure is described in much more detail
in [32]. The key ingredients for affine root-finding are Definition 3.5, which
states that the canonical kernel K of M(d) consists of linear combinations of
the partial differential functionals ∂j |z, and Corollary 6.1, which states that the
reduced normal set B⋆(d) counts the total number of affine roots for d ≥ d⋆.
For this purpose, we will assume that the polynomial system f1, . . . , fs has a
zero-dimensional affine variety: m roots z1, . . . , zm with no multiplicities. No
assumptions on the roots are infinity are required. Indeed, it is even allowed that
the part of the variety at infinity is nonzero-dimensional. First notice that the
no-multiplicities assumption and Definition 3.5 implies that the canonical basis

118 APPLICATIONS

for the null space K consists only of ∂0|z functionals. We further introduce the
column partitioning

K =
(

Ka K∞
)

,

where Ka contains all functionals corresponding with affine roots and K∞ consists
of the functionals corresponding with roots at infinity. Throughout this whole
section, the non-homogeneous interpretation (x0 = 1) of bothMd and Cn′d is used.
Observe now that for a functional ∂0|z, with z = (x1, . . . , xn) an affine root, the
following relationship holds:















1
x1

x2

...
xd−1
n















x1 =















x1

x2
1

x1x2

...
x1x
d−1
n















. (6.2)

Or in other words, the operation of multiplying ∂0|z with x1 corresponds with a
particular row selection of the same functional. In this case, the first row becomes
the second, the second is mapped to row n + 2, and so forth. If we want to
express the multiplication of functionals in Cn′d with monomials of degree 1, then
only the rows corresponding with monomials up to degree d− 1 are allowed to be
multiplied. Indeed, monomials of degree d would be ‘shifted’ out of the coefficient
vector. Hence (6.2) can be rewritten as

S1 ∂0|z x1 = Sx1
∂0|z , (6.3)

where S1 selects at most all
(

d−1+n
n

)

rows corresponding with monomials from
degree 0 up to d − 1 and Sx1

selects the corresponding rows after multiplication
with x1. Later on, the selection matrices S1, Sx1

will need to be further constrained
to arrive at an eigenvalue problem.

Example 6.3 Writing down (6.3) for functionals in C2′

2 results in





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





















1
x1

x2

x2
1

x1x2

x2
2

















x1 =





0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0





















1
x1

x2

x2
1

x1x2

x2
2

















,

where the selection matrix S1 selects, in this case, all rows corresponding with all
monomials of degree 0 up to 1.

Remark 6.1 If S1 in Example 6.3 would have selected any of the rows corre-
sponding with monomials of degree 2, then no corresponding Sx1

could have been
constructed since the functionals do not contain any monomials of degree 3.

AFFINE ROOT-FINDING 119

Observe that relations similar to (6.3) can be written down for multiplication
with any variable xi. Indeed, for every variable xi a corresponding row selection
matrix Sxi can be derived. Under the assumption that none of the m affine
roots has multiplicities, (6.2) can be extended to all functionals of affine roots
Ka = (∂0|z1

. . . ∂0|zm) and any multiplication variable xi so that we can write

S1 Ka Dxi = Sxi Ka, (6.4)

where Dxi is a square diagonal matrix containing xi’s. Now, it will be shown how
(6.4) can be written as a standard or generalized eigenvalue problem. The matrix
q×mmatrixKa cannot be directly computed fromM(d). It is possible however, to
compute a numerical basis N for null(M(d)), using our recursive orthogonalization
algorithm. Since both N and K are bases for null(M(d)), they are related by a
nonsingular matrix T , or in other words, K = N T . So, if it were possible to write
Ka = N Ta, one could substitute Ka in (6.4) and obtain

S1N Ta Dx1
= Sxi N Ta.

Setting B = S1N and A = Sxi N , we would then have B Ta Dxi = A Ta, which
looks like a generalized eigenvalue problem. It is not however, since A,B and,
more importantly, Ta are not square. We will now show how through a particular
basis change, also called a column compression, the matrices can be made square.
The first step is to partition the rows of N into

(

c

k N1

q − k N2

)

such that rank(N1) = m. Suppose also that we have orthogonal matrices Q1, Q2

such that col(Q1) = col(N1) and col(Q2) = null(N1). These can again be
computed from either a rank-revealing QR or SVD using Algorithm 4.2. The
row partitioning of N implies then the same partitioning of the rows of K:

K =

(

m c−m
k Ka1 K∞1

q − k Ka2 K∞2

)

Now all ingredients are in place to transform (6.4) into a standard eigenvalue
problem. First, the following linear change of basis vectors of N is performed

Z = N Q =

(

c

k N1

q − k N2

)

(

m c−m
Q1 Q2

)

.

Since Q2 is orthogonal to N1, Z is

Z =

(

m c−m
k N1Q1 0
q − k N2Q1 N2Q2

)

.

120 APPLICATIONS

The reason this change of basis is also called a column compression is because
N1Q2 = 0 and hence c−m zero columns are introduced in the upper k rows of Z.
Also, since K = N T and Z = N Q, then there is a nonsingular V = Q−1 T such
that K = Z V , which can be written using the 2-by-2 block partitioning

(

m c−m
k N1Q1 0
q − k N2Q1 N2Q2

) (

m c−m
V11 V12

V21 V22

)

=

(

Ka1 K∞1

Ka2 K∞2

)

.

From this we see that Ka1 = N1Q1V11. Hence, if the total number of rows k and
the row selection matrices S1, Sxi are chosen such that we can write

S1 Ka1 Dxi = Sxi Ka1,

then by substituting Ka1 we get

S1 N1 Q1 V11 Dxi = Sxi N1 Q1 V11. (6.5)

If we now set B = S1N1Q1 and A = Sxi N1Q1, then (6.5) can be written as a
standard eigenvalue problem

V11 Dxi V
−1

11 = B†A, (6.6)

since V11 is now square. Once the eigenvectors V11 are computed, then Ka1 can
be computed from Ka1 = N1Q1V11. Scaling each column of Ka1 such that its first
element is 1 allows then to read off each affine root.

Remark 6.2 If the polynomial system f1, . . . , fs has no roots at infinity, then no
column compression is required. Indeed, for this case c = m and K = Ka so that
substituting K = N T into (6.4) directly results in an eigenvalue problem.

Remark 6.3 The condition that rank(N1) = m is crucial since this ensures that
c−m columns of N1 are zeroed out. It is this that allows us to write (6.4) as an
eigenvalue problem.

Remark 6.4 If the row selection matrix S1 is chosen such that Sxi selects rows
from Ka2, then (6.4) would be

S1 Ka1 Dxi =
(

Sxi1 Sxi2
)

(

Ka1
Ka2

)

,

which cannot be written as an eigenvalue problem.

A proper choice of S1, Sxi such that A,B are square matrices enables us to write
(6.5) as a generalized eigenvalue problem

B V11 Dx1
= A V11, (6.7)

AFFINE ROOT-FINDING 121

and no pseudoinverse is needed anymore. From the reduced canonical decomposi-
tion we know that each element of B⋆(d) corresponds with a linearly dependent
column of M(d). The duality between linearly dependent columns of M(d) and
linearly independent rows of N implies that each row of N corresponding with an
element of B⋆(d) is linearly independent. From Corollary 6.1 we also know that
|B⋆(d)| = m. Hence, by setting S1 such that it selects the rows corresponding
with the monomials of B⋆(d) we are sure that B is a m×m matrix of rank m. In
addition, the monomials of B⋆(d) are of minimal total degree, which means that
there is no danger of rows ‘falling out of K’ after multiplying with the monomial
xi. As soon as all rows selected by Sxi are also in Ka1, one can solve (6.7) and
computeKa1 to find all affine roots. In order to make sure that all rows selected by
Sxi lie in Ka1, some extra iterations of the canonical decomposition are required.
This follows from the following lemma.

Lemma 6.1 Let b be a monomial of B(d) that does not lie in B⋆(d) and of
minimal multidegree and b⋆ the monomial of B⋆(d) with highest multidegree. If

deg(b) > deg(b⋆) + 1, then for k =
(

deg(b⋆)+n
n

)

Sxi will only select rows of Ka1.

PROOF. Let j be the vector of indices of all monomials from 1 up to b and i the
same as j but with the last index removed. Then due to the duality argument,
rank(N(j, :)) = m+ 1 and rank(N(i, :)) = m. So we can set Ka1 = N(i, :)Q1 V11.
If deg(b) > deg(b⋆) + 1, then A,B are guaranteed to lie in Ka1. �

The whole affine root-finding procedure is summarized in Algorithm 6.2. One of the
most important steps is the computation of the reduced canonical decomposition.
Indeed, A⋆(d) allows to detect whether d = dG, since from this degree the
computed basis for the kernel will contain all functionals of affine roots. Some extra
iterations of the canonical decomposition algorithm are necessary to determine
the monomial b. If then deg(b) > deg(b⋆) + 1 is true, the column compression is
performed and the affine roots are computed from either a standard or generalized
eigenvalue problem.

Remark 6.5 Instead of computingK from Z V , it would also be possible to solve n
eigenvalue problems for each component xi (1 ≤ i ≤ n). Then one would also need
to ‘match’ each of the components xi for each affine root by doing an exhaustive
search.

Remark 6.6 In computer algebra, the affine roots of a polynomial system
f1, . . . , fs are found by first computing a Gröbner basis G of 〈f1, . . . , fs〉. From
this Gröbner basis G a normal set B and multiplication matricesMx1

, . . . ,Mxn are
determined. Each of the components of the affine roots are then retrieved as the
eigenvalues of these multiplication matrices. In the PNLA framework, no explicit
computation of a Gröbner basis is necessary. Instead, all information to retrieve

122 APPLICATIONS

all affine roots is directly determined from the reduced leading monomials A⋆(d)
and reduced normal set B⋆(d).

Algorithm 6.2 Affine Root-Finding
Input: polynomials f1, . . . , fs ∈ Cnd with m distinct affine roots
Output: affine roots z1, . . . , zm

d← max(deg(f1), deg(f2), . . . , deg(fs))
pp← 0
N ← orthogonal basis for null(M(d)) (Algorithm 4.2)
while pp 6= 0 do

A⋆(d), B⋆(d)← reduced canonical decomposition (Algorithm 5.2)
if all pure powers in A⋆(d) then

b⋆ ← monomial of B⋆(d) with highest multidegree
b← extra iterations of Algorithm 5.1 to find next element of B(d)
if deg(b) > deg(b⋆) + 1 then

pp← 1
Z ← column compression of N with k =

(

deg(b⋆)+n
n

)

B,A← row selections of Z
[V,D]← eig(A,B) or eig(B†A)
K ← Z V
z1, . . . , zm ← affine roots from normalized K

end if

else

d← d+ 1
update N using Algorithm 4.2

end if

end while

Example 6.4 Algorithm 6.2 is applied to the polynomial system in C3
4







x2
1 + x1 x3 − 2 x2 + 5 = 0,

2 x3
1 x2 + 7 x2 x

2
3 − 4 x1 x2 x3 + 3 x1 − 2 = 0,
x4

2 + 2 x2 x3 + 5 x2
1 − 5 = 0.

We know from Example 6.1 that dG = 10. For this degree, we have that b⋆ = x2
1x

3
2

and b = x3
2x

2
3 and hence deg(b) = deg(b⋆). The total number of affine roots can

already be deduced from B⋆(10) to be 22. For d = 11 we now have that b⋆ = x2
1x

3
2

and b = x4
1x

3
2 and deg(b) = 7 > deg(b⋆) = 5 + 1. We can therefore set k =

(

6+3
3

)

=
84 and construct the 22×22 matrices A,B. Using the eigenvectors V11, the kernel

AFFINE ROOT-FINDING 123

Ka1 is computed, from which the 22 affine roots

(−0.09∓ 1.03 i, 1.76± 0.024 i, 0.16∓ 0.40 i)
(0.11∓ 1.037 i, 1.85± 0.072 i, −0.37∓ 0.18 i)
(−0.77± 1.55 i, 0.42∓ 1.86 i, −0.08± 1.55 i)
(1.47± 1.69 i, 0.55± 2.17 i, −1.15± 0.89 i)
(0.51∓ 1.79 i, 0.33∓ 2.29 i, 1.22∓ 1.12 i)
(−0.98, 0.018, 6.05)
(−0.36∓ 2.17 i, −2.42± 0.35 i, 0.79∓ 2.28 i)
(1.36∓ 2.76 i, −2.44∓ 0.61 i, −2.42∓ 0.30 i)
(−0.0032± 2.91 i, −0.13∓ 2.70 i, −1.85∓ 1.093 i)
(0.99, −0.0035, −6.02)
(−7.47∓ 0.63 i, −2.78∓ 2.73 i, 8.94± 1.23 i)
(−5.74∓ 1.25 i, 2.85∓ 2.48 i, 5.81± 2.10 i)

are read off. Notice that all 20 complex roots come in conjugate pairs and that
there are only 2 real roots.

Example 6.5 This example illustrates the affine root-finding algorithm on the
small LTI system identification problem of Chapter 1 Section 1.1. The model
parameters of the following Output-Error model

y(t) =
0.2q−1

(1 − 1.6q−1 + .89q−2)
u(t) + e(t), (6.8)

are estimated. This corresponds with solving a polynomials system of 7 polynomials
in 7. In this example

x1 = b1,
x2 = f1,
x3 = f2,
x4 = λ1,
x5 = λ2,
x6 = λ3,
x7 = λ4.

The reduced monomial system A⋆(9) contains all pure powers. This is well below
the upper bound from Theorem 6.1, which evaluates to 13. Indeed, the upper
bound d1 + . . .+dn+1−n+ 1 is in practice very pessimistic. The Macaulay matrix
M(9) is a 16731 by 11440 matrix with a density of 0.077%. The pure powers are
{b41, f3

1 , f
4
2 , λ

3
1, λ

3
2, λ

3
3, λ4}. The affine solution set consists of 43 solutions of a total

of 801. Only 7 of the 43 are real. The solution that minimizes the cost function

V =
1

12

6
∑

t=1

e(t)2,

124 APPLICATIONS

is given by

b1 = 0.2174,

f1 = −1.5738,

f2 = 0.8506,

λ1 = 0.0004,

λ2 = −0.0009,

λ3 = −0.0099,

λ4 = 0.0180.

with V = 0.00822. The model corresponding with the global minimum is hence
given by

y(t) =
0.2174 q−1

(1− 1.5738 q−1 + 0.8506 q−2)
u(t) + e(t). (6.9)

The 6 remaining affine solutions correspond with non-stable solutions and therefore
the MATLAB System Identification toolbox returns exactly the same result. This
confirms that the proposed method solves the optimization problem (1.4) as
described in [59].

Example 6.6 In this example we solve the polynomial system to find the
maximum likelihood estimates of the mixing probabilities x1, x2, x3 from Chapter
1 Section 1.1. After the elimination of x3, the following polynomial system in 2
unknowns and of degree 3 remains:























−0.0289 x1 + 0.0047x2 + 0.00396 x3
1 − 0.0000136 x3

2 + 0.0120− 0.00131 x2
1

+ 0.000378x1 x2 − 0.0000357x2
2 − 0.00183 x2

1 x2 + 0.000276 x1 x
2
2 = 0,

0.0047x1 − 0.0008 x2 − 0.00062 x3
1 + 0.000002 x3

2 − 0.00187 + 0.00017x2
1

−0.000056 x1 x2 + 0.000006 x2
2 + 0.00028 x2

1 x2 − 0.000041 x1 x
2
2 = 0.

All pure powers are found in A⋆(5), they are x5
1 and x3

2. One can deduce that the
polynomial system has no roots at infinity since c(5) = 9 and 9 affine roots are
found. The constraint that the unknown x’s are probabilities limits their allowed
numerical value to 0 ≤ x1, x2 ≤ 1. The only solution that satisfies this constraint
is x1 = 0.519, x2 = 0.217, which implies that x3 = 0.264. The mixing probability x1

for the observed DNA bases to be drawn from the CG rich distribution is twice as
big as the other mixing probabilities. Once can therefore conclude that the observed
DNA sequence is more likely to come from a CpG island.

IDEAL MEMBERSHIP PROBLEM 125

6.3 Ideal Membership problem

As already shown in Chapter 3, solving the ideal membership problem for a non-
homogeneous polynomial p is checking the equality

rank(

(

M(d)
p

)

) = rank(M(d)), (6.10)

for a sufficiently large degree dI . We can now express dI in terms of dG in the
following way.

Theorem 6.4 Consider the ideal membership problem as described in Problem
3.1. Let G = {g1, . . . , gk} be a Gröbner basis of 〈f1, . . . , fs〉 and

Gp = {g ∈ G : LM(g) | LM(p)} and d0 = max
g ∈Gp

deg(g).

Then
dI = dG + deg(p)− d0. (6.11)

PROOF. Since G is a Gröbner basis ∃ g ∈ G : LM(g) | LM(p) and Gp is therefore
never empty. Determining whether p ∈ 〈f1, . . . , fs〉 is equivalent with checking
whether the remainder of p on division by G is zero. The determination of this
remainder is equivalent with the reduction of the matrix

(

M(d)
p

)

Q

to triangular form for a sufficiently large d with Q the right-to-left column
permutation as described in Section 5.1. Suppose that g ∈ Gp and deg(g) = d0.

The degree dI as in (6.11) is then such that it guarantees that LM(p)
LM(g) g ∈ MdI . In

the first division of the multivariate division algorithm to compute the remainder,
p will be updated to

p← p− LM(p)

LM(g)
g.

The multivariate division algorithm guarantees that the new p will have a smaller
multidegree (according to the monomial ordering) [22, p.65]. In the next division
step, another g ∈ G such that LT(g)|LT(p) is required. Since p has a smaller
multidegree, the new g is also guaranteed to lie in MdI . Therefore, all remaining
steps of the division algorithm can be performed within MdI and the ideal
membership problem can be solved. �

126 APPLICATIONS

Remark 6.7 In computer algebra, the ideal membership problem is solved by
computing a Gröbner basis G for f1, . . . , fs and dividing p by G. If the remainder
of this division is 0, then p ∈ 〈f1, . . . , fs〉. In the PNLA framework it is not
necessary to compute the Gröbner basis and do this division. Instead, the degrees
dG, d0, dI are all determined from the set of reduced leading monomials A⋆(d).

Theorem 6.4 means that in practice one can recursively compute the reduced
leading monomials A⋆(d) of M(d) using Algorithm 5.2, do the rank test for the
ideal membership problem and increase the degree as long as the rank test fails.
At some point dG can be determined and the iterations can stop as soon as d =
dG + deg(p)− d0.

Example 6.7 We know from Chapter 3 that the polynomial

p = 867 x5
1 − 1560 x3 x2 x1 − 2312 x2

2 x1 + 1560 x3 x
2
1 + 2104 x2 x

2
1 − 1526 x3

1

+4896 x2 − 2295 x1,

lies in M11 of the corresponding polynomial system







−9 − x2
2 − x2

3 − 3 x2
2x

2
3 + 8 x2x3 = 0,

−9 − x2
3 − x2

1 − 3 x2
1x

2
3 + 8 x1x3 = 0,

−9 − x2
1 − x2

2 − 3 x2
1x

2
2 + 8 x1x2 = 0.

Testing equality (6.10) fails for all degrees d = 4 up to 10. At d = 11 we have that

A⋆(11) = {x1x
2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3, x

3
1x2, x

3
1x3, x

2
1x

2
2, x

2
1x2x3, x

5
1},

which contains the pure powers x5
1, x

3
2, x

3
3. This implies that the polynomial system

has a finite affine solution set and that dG = 11. Since LM(p) = x5
1, Gp contains

only one polynomial, the one with leading monomial x5
1 and therefore d0 = 5.

Applying (6.11) then results in

dI = dG + deg(p)− do = 11 + 5− 5 = 11.

The rank test of (6.10) for d = dI = 11 succeeds, the numerical rank for both
matrices is 300.

6.4 Iterative algorithm for finding l(d) and d⋆

The analysis of the syzygies in Chapter 3 relied on checking each row of the
Macaulay matrix for linear dependence together with the Inclusion-Exclusion
principle. This approach has the disadvantage that the total number of binomial
terms that needed to be computed grows combinatorially, while in fact the majority

ITERATIVE ALGORITHM FOR FINDING L(D) AND D⋆ 127

of them cancel one another. In this section we will present an iterative algorithm
that does not need to check each row of the Macaulay matrix, nor has to use the
Inclusion-Exclusion Principle to find the final expression of l(d) and corresponding
degree of regularity d⋆. Instead of finding basis syzygies and calculating how these
will propagate to higher degrees, we will simply update l(d) recursively. The
algorithm is presented in pseudo-code in Algorithm 6.3. The main idea is to
compute the numerical value p(d) − r(d) and compare it with the evaluation of
l(d) for each degree. If p(d)− r(d) > l(d), then the polynomial l(d) needs to count
p(d)− r(d) − l(d) additional linearly dependent rows. Furthermore, each of these
additional rows will propagate to higher degrees and give rise to extra binomial
terms. Similarly, if p(d)−r(d) < l(d), then too many linearly dependent rows were
counted and l(d) needs to be adjusted with l(d) − p(d) + r(d) negative binomial
contributions. The p(d) − r(d) < l(d) degrees for which positive contributions to
l(d) are made are stored in the vector d+ and likewise for the l(d) − p(d) + r(d)
negative contributions in d−. All information on how to express l(d) in terms of
binomial coefficients is hence coded in d+ and d−.

Algorithm 6.3 Find l(d) and degree of regularity d⋆

Input: polynomial system f1, . . . , fn ∈ Cn
Output: l(d) and degree of regularity d⋆

d← max(deg(f1), deg(f2), . . . , deg(fs))
d+ ← ∅

d− ← ∅

l(d)← 0
r(d)← rank M(d)
while d ≤∑si deg(fi) do

if p(d)− r(d) > l(d) then

add d p(d)− r(d) − l(d) times to d+
else if p(d)− r(d) < l(d) then

add d l(d)− p(d) + r(d) times to d−
end if

l(d)←∑|d+|
i=1

(

d−d+(i)+n
n

)

−∑|d−|i=1

(

d−d−(i)+n
n

)

d← d+ 1
r(d)← update r(d) using Theorem 4.1

end while

d⋆ ← max (d+, d−)− n

Since the algorithm iterates over the degrees, our recursive orthogonalization
algorithm can be used to determine r(d) recursively. The most economic way
is by the determination of the orthogonal basis for the null space N(d) of M(d).
Indeed, the total number of columns of N(d) is c(d) and we can therefore easily
compute the rank as r(d) = q(d) − c(d). It is then neither necessary to update
the orthogonal basis U(d) for the row space of M(d), nor store it in memory. The
binomial term in l(d) that appears at the highest degree dmax = max (d+, d−)

128 APPLICATIONS

determines the degree of regularity d⋆. Indeed,
(

d− dmax + n

n

)

has zeros for d = {dmax − n, dmax − n + 1, . . . , dmax − 1} and therefore the final
expression for l(d) is valid for all d ≥ d⋆ = dmax − n. An upper bound for dmax

comes from the theory of resultants. Macaulay showed in [60] that it is possible
to determine whether a homogeneous polynomial system fh1 , . . . , f

h
n of degrees

d1, . . . , dn has a common root by computing the determinant of a submatrix of
M(d) for d =

∑n
i=1 di − n. This essentially means that d⋆ =

∑n
i=1 di − n, which

results in a maximal degree of
∑n
i=1 di in Algorithm 6.3.

Remark 6.8 Since Theorem 4.1 can be used to recursively compute orthogonal
bases for the row and null space of M(d), it is therefore tempting to apply the
same theorem on M(d)T to directly determine l(d). This is however no possible
since M(d) does not exhibit the same structure column-wise as it has row-wise.

Remark 6.9 In computer algebra, one would need to compute a Gröbner basis G
of f1, . . . , fs in order to describe all basis syzygies and find the degree of regularity.
In the PNLA framework, no computation of a Gröbner basis is required. Instead,
one needs to determine the numerical rank of M(d) for increasing degrees d.

Example 6.8 We illustrate Algorithm 6.3 with the polynomial system from
Example 3.13:















































f1 : x2
2 x3 + 2 x1 x2 x4 − 2 x1 − x3 = 0,

f2 : −x3
1 x3 + 4 x1 x

2
2 x3 + 4 x2

1 x2 x4 + 2 x3
2 x4 + 4 x2

1 − 10 x2
2

+4 x1 x3 − 10 x2 x4 + 2 = 0,

f3 : 2 x2 x3 x4 + x1 x
2
4 − x1 − 2 x3 = 0,

f4 : −x1 x
3
3 + 4 x2 x

2
3 x4 + 4 x1 x3 x

2
4 + 2 x2 x

3
4 + 4 x1 x3

+4 x2
3 − 10 x2 x4 − 10 x2

4 + 2 = 0.

The expression for l(d) is initialized to 0. The Macaulay matrix is of full row rank
for degrees 4 and 5. For d = 6, we have that p(6)− r(6) = 100−99 = 1 > l(6) = 0.
We therefore set d+ = 6 and

l(d) =

(

d− 6 + 4

4

)

.

After incrementing the degree we find that p(7)− r(7) = 210− 201 = 9 > l(7) = 5
and we therefore update d+ and l(d) to d+ = {6, 7, 7, 7, 7} and

l(d) =

(

d− 6 + 4

4

)

+ 4

(

d− 7 + 4

4

)

MULTIVARIATE POLYNOMIAL ELIMINATION 129

respectively. The algorithm finishes at d = 14 with

d+ = {6, 7, 7, 7, 7, 8, 13, 13, 13, 13},

and
d− = {11, 11, 11, 11, 11, 11, 14},

which indeed corresponds with the final expression for l(d)

l(d) =
(

d−6+4
4

)

+ 4
(

d−7+4
4

)

+
(

d−8+4
4

)

+ 4
(

d−13+4
4

)

− 6
(

d−11+4
4

)

−
(

d−14+4
4

)

= 1
8 d

4 − 13
12 d

3 − 5
8 d

2 + 19
12 d+ 105. (d ≥ 10)

Observe that Algorithm 6.3 finds the desired expression for l(d) at d = 14. In
contrast, the basis syzygies analysis of Chapter 3 required the construction ofM(15)
and the computation of 10241 binomial terms.

6.5 Multivariate Polynomial Elimination

Gaussian elimination is probably the most known form of elimination. It involves
the manipulation of linear equations such that the solution set does not change
and one of the resulting equations is univariate. The same idea is generalized
by a Gröbner basis using a lexicographic monomial ordering. The problem of
multivariate elimination can be stated as follows:

Problem 6.2 Given a system of multivariate polynomials f1, . . . , fs and a proper
subset of variables xe ({xi : i = 1, . . . , n}, find a polynomial g =

∑s
i hifi in which

all variables xe are eliminated.

The polynomial g lies therefore obviously inMd for some degree d. In addition, g
also lies in the vector space spanned by all monomials which do not contain any
element of xe up to the same degree d.

Definition 6.1 Given a proper subset of variables xe ({xi : i = 1, . . . , n} then
the elimination vector space Ed is the vector space of polynomials with maximal
degree d spanned by all monomials that do not contain any of the variables of xe.

A canonical basis E(d) for the vector space Ed is easily obtained. The following
example illustrates this.

130 APPLICATIONS

Example 6.9 Suppose xe = {x2, x4} ∈ C4
2 . A canonical basis for E2 is then given

by















1 x1 x2 x3 x4 x2
1 x1x2 x1x3 x1x4 x2

2 x2x3 x2x4 x2
3 x3x4 x2

4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0















.

Again, notice that the q × k matrix E(d)T can always be written as

E(d)T = P

(

Ik
0

)

. (6.12)

This means that it is also possible to encode E(d) completely as a vector j of
indices. The intersection of Md and Ed brings us naturally to the geometry of
multivariate elimination.

6.5.1 The Geometry of Polynomial Elimination

The polynomial g which is to be found lies both in Md and Ed. Polynomial
elimination therefore corresponds with finding an intersection of these two vector
spaces. This is depicted in Figure 6.1. Here, both the row space ofM(d) and E(d)
are represented as two-dimensional planes. The polynomial g corresponds with
the vector lying in the one-dimensional intersection.

6.5.2 Algorithm & Numerical Implementation

In this section, we present and explain Algorithm 6.4 for doing multivariate
elimination. Since deg(g) is unknown, the algorithm iterates over the degree d with
an initial value given by the maximal degree of the given polynomials f1, . . . , fs.
In each iteration, the intersection between Md and Ed is computed (Appendix A,
Sections A.9 and A.10). If there is no intersection, then the degree is increased
and the vector of indices j and orthogonal basis N are updated. As soon as there
is an intersection between Md and Ed, the first principal vector vm that lies in
this intersection is returned as g. Again, we use the same tolerance τ for both the
determination of the zero principal angles and the rank.

MULTIVARIATE POLYNOMIAL ELIMINATION 131

Md

Ed

g

o

Figure 6.1: The polynomial g =
∑s
i hifi with all variables xe eliminated

lies in the intersection of Md and Ed.

Algorithm 6.4 Multivariate Elimination
Input: polynomials f1, . . . , fs ∈ Cnd , monomial set xe, tolerance τ
Output: g ∈ Md ∩ Ed
d← max(deg(f1), deg(f2), . . . , deg(fs))
g ← ∅

N ← orthogonal basis for null(M(d)) using Algorithm 4.2
j ← vector of nonzero row indices of canonical basis for Ed
while g = ∅ do

[W S Z]← SVD(N(j, :)T)
if arcsin(µm) < τ then

g ← vTm
else

d← d+ 1
update j
update N using Theorem 4.1

end if

end while

Remark 6.10 It is possible that the dimension of the intersection is s > 1. One
could then return all s orthogonal basis vectors vm−s+1, . . . , vm, since in this case
there are an infinite amount of solutions g ∈ span{vm−s+1, . . . , vm}.

132 APPLICATIONS

Remark 6.11 In computer algebra, multivariate elimination is achieved by
computing a Gröbner basis of f1, . . . , fs using a lexicographic monomial ordering.
This results in a Gröbner basis that has a distinct “triangular” form. In the PNLA
framework, no Gröbner basis needs to be computed. Instead, the desired polynomial
g is retrieved as the basis vector of the intersection of two subspaces.

6.5.3 Numerical Experiments

From the following polynomial system [86, p. 823] in C6
4































x2
1 + x2

3 − 1 = 0,
x2

2 + x2
4 − 1 = 0,

x5x
3
3 + x6x

3
4 − 1.2 = 0,

x5x
3
1 + x6x

3
2 − 1.2 = 0,

x5x
2
3x1 + x6x

2
4x2 − 0.7 = 0,

x5x3x
2
1 + x6x4x

2
2 − 0.7 = 0,

we eliminate xe = {x1, x2, x3, x4, x5} using Algorithm 6.4. For all d < 10 we have
that arcsin(µm) > τ . For d = 10, τ = 1.46× 10−10 and

arcsin(µm) = 4.44× 10−16 < τ.

The Macaulay matrixM(10) is a 9702×8008 matrix with 29106 nonzero elements
which corresponds with a density of 3.7%. The first principal vector is

g = 0.9011− 0.0 x6 − 0.4335 x2
6 + 0.0 x3

6 + 0.0 x4
6 − 0.0 x5

6 − 0.0 x6
6 + 0.0 x7

6 − 0.0 x8
6.

All 0.0 coefficients are bounded from above by τ and can therefore be considered
to be numerically zero. We therefore write g as

g = 0.9011− 0.4335 x2
6.

This implies that the roots of this particular polynomial system have only 2
distinct x6 components, 1.4417 and −1.4417. A Gröbner basis according to the
lexicographic monomial ordering with x1 > x2 > x3 > x4 > x5 > x6 is

G =































−6859 + 3300 x62 = 0,
−6859 + 3300 x52 = 0,

133− 330 x6 x4 + 361 x42 = 0,
3300 x5 x4 x6− 6270 x5 + 6859 x3 = 0,

−330 x6 + 361 x4 + 361 x2 = 0,
−3300 x5 x4 x6 + 6859 x1 = 0.

Observe its “triangular form”, the first polynomial is univariate in x6, the second
polynomial is univariate in x5. The monomial x4 is only present in the third

APPROXIMATE LCM AND GCD 133

Gröbner basis polynomial, etc... From this Gröbner basis G, the exact solutions
for x6 are easily computed as

x6 = ± 19

330

√
627.

These allows us to determine the absolute forward error of our numerical solutions:
7.40× 10−11.

When eliminating xe = {x1, x2, x3, x4} from the same polynomial system, we have

arcsin(µm) = 6.34× 10−16 < τ = 2.52× 10−11 for d = 8.

The principal vector is then

h = −0.0305 + 0.7141 x2
5 − 0.6994 x2

6 − 0.0004 x4
5 + 0.0009 x2

5x
2
6 − 0.0004 x4

6.

The polynomial h also contains 22 other nonzero coefficients, each of which is
bounded from above by 10−19. We have omitted these numerical zeros for the
sake of presentation.

We now add perturbations of 10−6 to the original polynomial system to obtain































1.000001 x2
1 + x2

3 − 1 = 0,
x2

2 + x2
4 − 1 = 0,

x5x
3
3 + x6x

3
4 − 1.200001 = 0,

x5x
3
1 + x6x

3
2 − 1.2 = 0,

x5x
2
3x1 + 1.000001 x6x

2
4x2 − 0.7 = 0,

1.000001 x5x3x
2
1 + x6x4x

2
2 − 0.700001 = 0.

When eliminating xe = {x1, x2, x3, x4, x5} we have again for d = 10 that

arcsin(µm) = 6.34× 10−14 < τ = 1.46× 10−10.

Since d = 10 the Macaulay matrix will have the same size and structure as for the
original polynomial system. The univariate polynomial in x6 is now given by

ĝ = 0.9011− 0.4335 x2
6,

for which ||g − ĝ||2 < 10−7. This reflects the loss of precision due to the added
noise.

6.6 Approximate LCM and GCD

In this section we present an algorithm to numerically compute both the least
common multiple (LCM) and greatest common divisor (GCD) of two multivariate

134 APPLICATIONS

polynomials. For the univariate case, this problem has been studied already quite
intensively with different formulations [19, 36, 51, 68, 73, 94]. The most common
framework is the one of the approximate LCM/GCD, which are usually defined as
the exact LCM/GCD of polynomials f̃1, f̃2 that satisfy

||f1 − f̃1||2
||f1||2

≤ ǫ, and
||f2 − f̃2||2
||f2||2

≤ ǫ,

where ǫ is some user-defined tolerance. In this section, we will propose a geometric
definition. The connection with the traditional definition will be made in Section
6.6.3. Numerical linear algebra plays a stronger role in the context of approximate
GCDs, mainly since many numerical methods are based on the SVD of either
Sylvester matrices [19, 20] or Bézout matrices [30, 41]. This is because the
determination of the degree of the (approximate) GCD corresponds with the
detection of a rank-deficiency of the Sylvester/Bézout matrix. Computing the
LCM has not received as much attention. Although most GCD-methods based on
the Sylvester matrix make use of the LCM implicitly, this is never really mentioned.
Existing literature on numerical SVD-based methods to compute multivariate
approximate GCD includes [50, 90]. These methods generalize the univariate
SVD-based methods to the multivariate case in the sense that they also detect
a numerical rank deficiency of a (multivariate) Sylvester matrix. The numerical
algorithm presented in this section differs from these multivariate algorithms in
the sense that the Sylvester matrix is not used.

The following theorem interrelates the LCM of multivariate polynomials with their
GCD and will be of crucial importance to our method.

Theorem 6.5 ([22, p. 190]) Let f1, f2 ∈ Cn and l, g their LCM and GCD
respectively, then

l g = f1 f2. (6.13)

This theorem provides a way to find the LCM or GCD once either of them has
already been found. The algorithm we propose will first compute a LCM and
derive a GCD as a least-squares solution of (6.13).

6.6.1 Computing the LCM

Finding an approximate LCM is be the first step in the proposed algorithm. As
mentioned in the previous section, the corresponding GCD will then be computed
using Theorem 6.5. We first rewrite Theorem (6.5) as

l = f1 k1 = f2 k2 (6.14)

APPROXIMATE LCM AND GCD 135

where k1, k2 ∈ Cn and of degrees deg(l) − d1 and deg(l) − d2 respectively. From
(6.14) it can be immediately deduced that the LCM of f1 and f2 lies in the row
space of both multiplication matrices Mf1

(d) and Mf2
(d). We therefore define an

approximate LCM as the polynomial that lies in the intersection Mf1
∩Mf2

for
a certain degree d and with a certain tolerance τ .

Definition 6.2 Let f1, f2 ∈ Cn and suppose a tolerance τ > 0. If the smallest
principal angle θk between Mf1

and Mf2
satisfies

θk ≤ τ,

then the corresponding principal vector vk is the approximate LCM with tolerance
τ .

This definition is completely in line with the literature, in the sense that the
tolerance τ is an explicit part of the definition. Algorithm 6.5 is a direct translation
of Definition 6.2. Since deg(l) is not known a priori, iterations over the degree are
necessary. An upper bound for deg(l) , dl is given by deg(f1)+deg(f2) since in this
case the approximate GCD g = 1. Deciding whether an intersection exists between
Mf1

and Mf2
is done by inspecting the smallest principal angle between these

two vector spaces. QT1 N2 is a p1(d)× c2(d) matrix. One can keep the dimensions
of this matrix minimal by computing the orthogonal basis Q1 for the polynomial
with the highest degree, or equivalently computing N2 for the polynomial of lowest
degree.

Algorithm 6.5 Computing an approximate LCM
Input: polynomials f1, f2 ∈ Cn, tolerance τ
Output: approximate LCM l of f1, f2

d← max(deg(f1), deg(f2))
l← ∅

Q1 ← orthogonal basis row(Mf1
(d))

N2 ← orthogonal basis null(Mf2
(d))

while l = ∅ & d ≤ deg(f1) + deg(f2) do

[W S Z]← SVD(QT1 N2)
if arcsin(µm) < τ then

l← vTm
else

d← d+ 1
update Q1 using Theorem 4.1
update N2 using Theorem 4.1

end if

end while

136 APPLICATIONS

6.6.2 Computing the GCD

Once the approximate LCM l is found a corresponding approximate GCD g is
easily retrieved from Theorem 6.5. This implies that no extra tolerance needs to
be defined anymore. One could compute the vector corresponding with f1 f2 and
divide this by l. This division is achieved by constructing the Macaulay matrix of
l and solving the sparse overdetermined system of equations

MTl (d1 + d2) gT = MTf2
(d1 + d2) fT1 .

This can be done in the least squares sense [19] using a sparse Q-less QR
decomposition [24]. The approximate GCD g is defined in this case as the solution
of

g = argmin
w

||f1Mf2
(d1 + d2)− wMl(d1 + d2)||22.

The 2-norm of the residual ||f1MTf2
(d1 + d2)− gMl(d1 + d2)||2 then provides a

measure on how well the computed GCD satisfies Theorem 6.5 with the LCM.
The problem with this approach however is that computing the product f1 f2 can
be quite costly in terms of storage. The need to do this multiplication can be
circumvented by first doing the division h2 = l/f2. This is also done by solving
another sparse overdetermined system

Mf2
(dl)

ThT2 = lT , (6.15)

where dl is the degree of l. Mf2
(dl) will typically have much smaller dimensions

thanMl(d1 +d2). From Theorem 6.5 it is easy to see that h2 = f1/g and hence an
alternative for the computation of the approximate GCD g is solving the sparse
linear system

Mh2
(d1)T gT = fT1 . (6.16)

We therefore define the approximate GCD as the least squares solution of (6.16).

Definition 6.3 Let f1, f2 ∈ Cn and let l be their approximate LCM as in
Definition 6.2, then their approximate GCD g is the solution of

g = argmin
w

||fT1 −Mh2
(d1)T wT ||22.

where h2 is the least squares solution of (6.15).

For each of the divisions described above, the 2-norm of the residual provides a
natural measure on how well the division succeeded. Since g is defined up to a
scalar, one can improve the 2-norm of the residual by normalizing the right-hand
side fT1 . The residual thus improves with a factor ||f1||2 and will typically be
of the same order as ||l − wMf2

(dl)||2. Algorithm 6.6 summarizes the high-level
algorithm of finding the approximate GCD. The computational complexity of the

APPROXIMATE LCM AND GCD 137

entire method is dominated by the cost of solving the 2 linear systems (6.15) and
(6.16). These are both O(qp2) where p and q stand for the number of rows and
columns of the matrices involved. The large number of zero elements however
make the solving of these systems still feasible.

Algorithm 6.6 Computing an approximate GCD
Input: polynomials f1, f2, l ∈ Cn with l an approximate LCM of f1, f2
Output: approximate GCD g of f1, f2

h2 ← argmin
w

||l −wMf2
(dl)||

2
2

g ← argmin
w

|| f1

||f1||2
− wMh2

(d1)||22

6.6.3 Choosing the numerical tolerance τ

In this section we will derive the relationship between the tolerance τ of
Algorithm 6.5 and the ǫ which is commonly used in other methods [30]. Let
e1 = f1 − f̃1, e2 = f2 − f̃2 with ||e1||2 ≤ ǫ1 ||f1||2, ||e2||2 ≤ ǫ2 ||f2||2. Then both
Mf1

(d) and Mf2
(d) are perturbed by structured matrices E1 and E2, which can

be interpreted as the multiplication matrices of the perturbations e1, e2. Now
suppose that

||E1||2
||Mf1

(d)||2
≤ ǭ1,

||E2||2
||Mf2

(d)||2
≤ ǭ2,

then in [14, p. 585] the following expression is proved

|∆θk| ≤
√

2 (ǭ1 κ1 + ǭ2 κ2) +O(δ2), (6.17)

where κ1, κ2 are the condition numbers of Mf1
(d) and Mf2

(d) respectively and
δ = (ǭ1 κ1 + ǭ2 κ2). Since in the exact case θk = 0, the left hand side of (6.17)
is actually |θ̃k|, the absolute value of the perturbed principal angle due to the
perturbations e1 and e2. We can therefore take the right-hand side of (6.17) as
the tolerance τ from Algorithm 6.5. We now show that we can set ǫ1 = ǭ1. It is
clear that

||E1||2 ≤ ǭ1 ||Mf1
(d)||2

⇔ σ1(E1) ≤ ǭ1 σ1(Mf1
(d))

⇔ ||e1||1 ≤ ǭ1 ||f1||1
⇔ ||e1||2 ≤ ǭ1 ||f1||2

from which the desired follows. Applying the same reasoning for f2 means that we
can also set ǭ2 = ǫ2. Defining ǫ = max(ǫ1, ǫ2) and substituting for ǫ1, ǫ2 in (6.17)
results in

|∆θk| ≤
√

2 ǫ (κ1 + κ2). (6.18)

138 APPLICATIONS

Replacing the condition numbers by their upper bounds for the nontrivial case, we
get

|∆θk| ≤
√

2 ǫ (
|||f1||1

2|m00,1| − |||f1||1
+

|||f2||1
2|m00,2| − |||f2||1

), (6.19)

where extra subscripts are introduced to m00 to distinguish between the constant
term of f1 and f2. If we assume that all principal angles have perturbations of the
same order of magnitude, then choosing the right-hand side of (6.19) as τ should
enable us to recover an approximate GCD of the same degree as the GCD of the
unperturbed polynomials. Observe also from (6.18) that the well-conditioning of
the multiplication matrices implies that the principal angles are well-determined.

6.6.4 Numerical Experiments

In this section we discuss some numerical examples and compare the results with
those obtained from NAClab, the MATLAB counterpart of ApaTools, by Zeng [91].
The ‘mvGCD’ method from NAClab improves the accuracy of its result by Gauss-
Newton iterations and will hence always produce results with lower relative errors.
We therefore use these results as a reference.

Example 1

First, consider the following two bivariate polynomials with exact coefficients

f1 = (x1x2 + x2
2 + 200) (x1x2 + x2 + 200) (100 + 2x3

1 − 2x1x2 + 3x2
2)

f2 = (x1x2 + x2
2 + 200) (x1x2 + x2 + 200) (100− 2x3

1 + 2x1x2 − 3x2
2).

Both f1 and f2 satisfy the nontrivial case. The relatively large coefficients of the
constant terms in the 3 factors have as a consequence that the absolute value of the
coefficients of f1, f2 vary between 1 and 4000000. Since we assume the coefficients
are exact, we set the tolerance τ to the tolerance when doing the determination
of the numerical rank as discussed in Section 4.5. The exact GCD g is obviously
the product of the first 2 factors of f1 and hence the exact LCM l is

l = g (100 + 2x3
1 − 2x1x2 + 3x2

2) (100− 2x3
1 + 2x1x2 − 3x2

2).

The smallest principal angle θk drops from 0.04 to 8.83× 10−16 when going from
d = 9 to d = 10. The condition numbers ofMf2

(10) andMh2
(10) are 1.05 and 1.06

respectively. The relative error between our computed LCM and the exact answer
is 8.01× 10−13. The 2-norm of the residual for calculating h2 is 2.12× 10−14 and
is for solving (6.16) 6.11 × 10−15. For the computed GCD, the relative error is
3.48×10−11. The GCD computed from NAClab has a relative error of 1.24×10−20.

APPROXIMATE LCM AND GCD 139

The 2-norm of the absolute difference between the GCD of our method compared to
one from NAClab is 5.13×10−13. In order to investigate how our method performs
when the polynomials have inexact coefficients we now add perturbations of the
order 10−3 to f1, f2 and obtain

f̃1 = (x1x2 + x2
2 + 200)(x1x2 + x2 + 200 + 10−3

x1)(100 + 2x3
1 − 2x1x2 + 3x2

2)

f̃2 = (x1x2 + x2
2 + 200)(x1x2 + x2 + 200− 10−3

x1)(100− 2x3
1 + 2x1x2 − 3x2

2).

Again, both f̃1 and f̃2 satisfy the nontrivial case. The perturbation of 10−3 in
one of the factors corresponds with ǫ1 ≈ ǫ2 ≈ 5.00 × 10−6, so we set ǫ = 10−5.
Now, the smallest principal angle θk drops from 0.04 to 7.58 × 10−9 when going
from d = 9 to d = 10. From (6.18) we have τ = 2.77 × 10−5 and from (6.19)
τ = 3.29×10−5. Both tolerances recover an approximate GCD of degree 4. The 2-
norm of the residual when calculating h2 and the approximate GCD is 7.60×10−9

and 4.22 × 10−9 respectively. The absolute difference between our approximate
GCD and the one from NAClab is of the order 10−5, which agrees with ǫ = 10−5.

Example 2

In this second numerical experiment, the capability of Algorithms 6.5 and 6.6 to
handle an increasing number of variables is tested. Suppose we have the following
polynomials

uk = (x1 + x2 + . . .+ xk + 1)2,

vk = (x1 − x2 − . . .− xk − 2)2,

wk = (x1 + x2 + . . .+ xk + 2)2.

We then set f1 = uk vk and f2 = uk wk and compute the GCD for k = 2, . . . , 10.
We will denote the exact GCD by g, the GCD found with NAClab by gn and the
GCD found by Algorithm 6.6 by gτ . Table 6.1 lists the relative forward errors

en =
||g − gn||2
||g||2

, eτ =
||g − gτ ||2
||g||2

,

for NAClab and Algorithm 6.6 respectively. As expected, gn lies slightly closer to
the exact result due to the additional Gauss-Newton iterations.

140 APPLICATIONS

Table 6.1: Relative forward errors Example 2

k = 2 k = 3 k = 4 k = 5

en 5.55× 10−17 2.32× 10−16 1.24× 10−16 2.42× 10−16

eτ 5.02× 10−16 1.14× 10−15 1.31× 10−15 3.10× 10−15

k = 6 k = 7 k = 8 k = 9 k = 10

3.09× 10−15 2.93× 10−16 2.20× 10−16 1.81× 10−16 2.61× 10−16

8.41× 10−15 1.12× 10−14 1.08× 10−14 1.56× 10−14 8.28× 10−14

Example 3

Next, the capability of Algorithms 6.5 and 6.6 to handle high degrees is tested.
Let

p = x1 − x2 x3 + 1

q = x1 − x2 + 3 x3

f1 = p6 q12

f2 = p12 q6.

For this case the exact GCD is p6 q6. This is reminiscent of f1 and f2 having
multiple common roots for the univariate case. It took NAClab several runs to
find a result. In most cases it returned an error message. This is probably somehow
related to the high degrees since for the case f1 = p4 q6 and f2 = p6 q4 a GCD
could always be computed with NAClab. For the high degree case, when NAClab
could return a computed result, the relative forward errors were en = 2.46×10−14

and eτ = 3.37× 10−13.

Example 4

The next example demonstrates the robustness of Algorithm 6.6 with respect to
noisy coefficients. We revisit the polynomials of Example 2 and set k = 3. We
therefore have

u = (x1 + x2 + x3 + 1)2

v = (x1 − x2 − x3 − 2)2

w = (x1 + x2 + x3 + 2)2

APPROXIMATE LCM AND GCD 141

and again set f1 = u v and f2 = uw. Every nonzero coefficient of f1, f2 is then
perturbed with noise, uniformly drawn from

[

0, 10−k
]

for k = 1, 3, 5, 7. Table
6.2 lists the relative forward errors en, eτ . Again, the approximate GCD from
NAClab lies slightly closer to the exact result. However, NAClab cannot find a
GCD anymore for k = 1.

Table 6.2: Errors Example 4

k = 1 k = 3 k = 5 k = 7

en NA 7.83× 10−05 4.45× 10−07 3.86× 10−09

eτ 1.17× 10−2 1.01× 10−04 5.73× 10−07 2.23× 10−08

Example 5

The final example is the blind image deconvolution problem from Chapter 1.
Since the desired image p(i, j) is 150 × 150 pixels, its z-transform P (z1, z2) is
a bivariate polynomial of degree 298. The filters D1(z1, z2), D2(z1, z2) are both of
degree 2, which means that F1(z1, z2), F2(z1, z2) are both of degree 300. Since
p(i, j) is a colour image, it is represented by 3 polynomials, one for each of
its colour channels (red-green-blue). Running Algorithm 6.6 with ǫ = 0.02 on
each of the polynomials corresponding with F1(z1, z2) and F2(z1, z2) results in
the image of Figure 6.2. The relative forward errors for each colour channel are
0.0119, 0.0199, 0.0300 respectively.

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 6.2: The image retrieved as the approximate GCD of F1(z1, z2) and
F2(z1, z2).

142 APPLICATIONS

6.7 Removing Multiplicities

In this section, we will present the theorem that removes the multiplicities of
affine roots and consequently also removes all root at infinity. Unlike the procedure
outlined in Chapter 3 Section 3.6.3, no knowledge on the roots is required and they
do not need to have the exact same multiplicity structure. The key ingredient will
be the square-free parts of specific univariate polynomials. Remember that the
square-free part pred of a univariate polynomial p is the same polynomial with all
multiplicities of its roots removed (Appendix B Section B.6). The following lemma
provides a way of computing pred from p without the need of computing its roots.

Lemma 6.2 Let p ∈ C1
d and p′ = pD1 be its first derivative then

pred =
p

GCD(p, p′)
. (6.20)

PROOF. Since

p = c (x− z1)m1 (x− z2)m2 . . . (x− zr)mr

then

p′ =
r
∏

j=1

rj (x − zj)mj−1 H(x)

with

H(x) = c

r
∑

k=1

∏

j 6=k

(x− zj)

a polynomial in Cd vanishing at none of the z1, . . . , zm. Clearly

GCD(p, p′) =

r
∏

j=1

(x− zj)mj−1

which proves (6.20). �

The zero-dimensionality of the projective variety implies that we can find for each
variable xi (i = 1, . . . , n) a univariate polynomial p(xi) = pi ∈ Md. The following
theorem tells us how we can remove the multiplicities of the affine roots and obtain
the radical ideal.

REMOVING MULTIPLICITIES 143

Theorem 6.6 ([21, p. 41]) Let I = 〈f1, . . . , fs〉 be a zero-dimensional ideal. For
each i = 1, . . . , n, let pi be the unique univariate polynomial that lies in Md, and
let pi,red be the square-free part of pi. Then

√
I = 〈f1, . . . , fs, p1,red, . . . , pn,red〉.

Theorem 6.6 is indeed quite similar to Section 3.6.3, extra polynomials are added
such that the resulting polynomial ideal is radical and hence all multiplicities of
the roots are removed. It is also quite straightforward to see that all roots at
infinity will be removed as well. Indeed, from Lemma 3.4 we know that the roots
at infinity are found from the polynomial system that is obtained from making
all generators of the radical ideal homogeneous and setting x0 = 0. The addition
of the square-free parts of the univariate polynomials then ensures that the only
root at infinity is 0 = (0, . . . , 0), which is not a valid solution. Hence, the new
polynomial system has no more roots at infinity. Converting Theorem 6.6 into an
algorithm is rather straightforward. The first step will be to apply our elimination
algorithm, Algorithm 6.4, to obtain for each variable xi (1 ≤ i ≤ n) its univariate
polynomial pi ∈ Md. The next step is to compute its square-free part pi,red by
using Lemma 6.2. Since the GCD of pi and p′i needs to be computed, we first
compute its LCM l using Algorithm 6.5. We then have from Theorem 6.5 that

l = h1 pi = h2 p
′
i,

with

h1 =
p′i

GCD(pi, p′i)
and h2 =

pi
GCD(pi, p′i)

.

This means that h2 is exactly the desired square-free part, which can be computed
as the least-squares solution of

argmin
w

||l − wMp′
i
(dl)||22 .

The whole procedure is summarized in Algorithm 6.7.

Algorithm 6.7 Compute square-free generators of radical ideal
√
I 6= I

Input: generators f1, . . . , fs of zero-dimensional ideal I
Output: square-free parts p1,red, . . . , pn,red

for i = 1, . . . , n do

pi ← univariate polynomial from Algorithm 6.4
p′i ← compute first derivative of pi
li ← LCM(pi, p

′
i) from Algorithm 6.5

pi,red ← argmin
w

||l − wMp′
i
(dl)||22

end for

144 APPLICATIONS

Example 6.10 We illustrate Algorithm 6.7 on the following polynomial system







x4
2 x1 + 3 x3

1 − x4
2 − 3 x2

1 = 0,
x2

1 x2 − 2 x2
1 = 0,

2 x4
2 x1 − x3

1 − 2 x4
2 + x2

1 = 0,

that has 13 projective roots: 4 at infinity, the affine origin (1, 0, 0) with a
multiplicity of 8 and the point (1, 1, 2). From Algorithm 6.4 we obtain the following
univariate polynomials

p1 = 0.707107x2
1 − 0.707107x3

1,

p2 = 0.894427x4
2 − 0.447213 x5

2,

with respective relative forward errors of 1.18 × 10−16 and 7.32 × 10−16. The
derivatives of each of the univariate polynomials p1, p2 are computed by right-
multiplying their coefficient vectors with the appropriate derivative operator.
Algorithm 6.5 then obtains the following LCMs

l1 = 0.324443 x2
1 − 0.811107x3

1 + 0.486664 x4
1,

l2 = −0.650492 x4
2 + 0.731804 x5

2 − 0.203279 x6
2,

with respective relative forward errors of 3.02 × 10−16 and 5.57 × 10−16. The
square-free generators for the radical ideal are then the least-squares solutions

p1,red = 0.707107x1 − 0.707107x2
1,

p2,red = 0.894427x2 − 0.447213 x2
2,

with relative forward errors of 4.82× 10−16 and 1.77× 10−16. Applying Algorithm
6.2 on the enlarged polynomial system then returns only 2 affine roots: (0, 0) and
(1, 2).

Observe that pi,red = pi implies that the roots have no multiplicities and therefore
that the ideal I = 〈f1, . . . , fs〉 is already radical. It is therefore easy to adjust
Algorithm 6.7 such that it checks whether a polynomial ideal I is radical.

Chapter 7

Conclusions and Future Work

In this chapter, we provide a summary of the thesis and give an overview of open
questions for future research.

7.1 Concluding Remarks

In this thesis the connection between numerical linear algebra and algebraic
geometry is established. As a result, we now have a numerical linear algebra
framework that allows us to solve a whole range of different kinds of problems
from algebraic geometry.

In Chapter 2, the numerical linear algebra framework for multivariate polynomials
was set up by describing 3 fundamental operations: the addition, multiplication
and division of multivariate polynomials. It was shown how addition simply
corresponds with vector addition and multiplication with computing a matrix
vector product. For the multiplication operator, an upper bound for its condition
number was derived. The division of multivariate polynomials is much more
involved. A divisor matrix was introduced, which specifies two important
subspaces. This lead to the insight that polynomial division corresponds with a
vector decomposition over these two subspaces. Introducing the oblique projectors
to compute this decomposition also lead to an elegant geometric interpretation of
multivariate polynomial division. The nonuniqueness of both the quotient and
remainder were also discussed and illustrated.

In Chapter 3, the most important matrix for applications, the Macaulay matrix,
was introduced. Its size and density were discussed and illustrated. Furthermore,

145

146 CONCLUSIONS AND FUTURE WORK

3 important fundamental subspaces associated with the Macaulay matrix were
introduced. The row space naturally lead to the ideal membership problem. The
left null space was shown to be linked with the notion of syzygies and from their
analysis the degree of regularity was derived. The final fundamental subspace
discussed was the right null space, which was shown to be linked with the number
of projective roots of a polynomial system.

Orthogonal bases for both the row space and right null space of the Macaulay
matrix played an important part in all of our algorithms. Therefore, a fast recursive
orthogonalization scheme for the Macaulay matrix was introduced in Chapter 4.
This scheme allows to recursively update orthogonal bases for both the row space
and right null space of the Macaulay matrix. Furthermore, it was shown how
the resulting orthogonal basis for the row space retains a similar structure as
the Macaulay matrix. Two implementations of the orthogonalization scheme were
discussed: one using a sparse rank-revealing QR decomposition and one using a full
SVD. The computational complexity for both implementations was investigated
and it was shown that the sparse QR implementation has about d3 times less
operations. The sparse QR implementation was shown to be far superior to the
full SVD with a 15 up to 119 times speedup and a gain of 12 up to 500 in required
storage.

In Chapter 5, we introduced both the canonical and reduced canonical decom-
position and the notion of a pure power. These concepts are linked with both a
Gröbner basis and the number of roots of a polynomial system. An algorithm was
presented that produces these decompositions through the repetitive computations
of intersections of subspaces. In addition, the effect of noise on the coefficients of
the polynomials on the resulting canonical decompositions was investigated. It was
shown that computing canonical decompositions is in fact an ill-posed problem and
that border bases do not suffer from this ill-posedness.

In Chapter 6, we discussed 7 different applications in the PNLA framework. The
first application was the numerical computation of a Gröbner basis. Its relation
with the reduced canonical decomposition was revealed for the zero-dimensional
case. This also lead to a simple stop-criterion in terms of pure powers for the
algorithm that computes the Gröbner basis. The next application discussed was
affine root-finding. It was shown how the particular Vandermonde structure of
the kernel of the Macaulay matrix together with a column compression allows to
compute all affine roots from an eigenvalue problem. Again, the appearance of
pure powers provides a stop-criterion in the affine root-finding algorithm. Next,
the link between the occurrence of a Gröbner basis in Md and solving the
ideal membership problem was demonstrated. For the zero-dimensional case,
the degree at which all pure powers are found also plays an important part in
the stop-criterion. The next application was a new recursive method to do the
full syzygy analysis and determine the polynomial expressions for l(d), r(d) and

FUTURE RESEARCH 147

c(d). The generalization of Gaussian elimination to the multivariate case was
discussed next. The geometric interpretation of multivariate elimination as finding
intersections of subspaces was also provided. This lead to the formulation of an
elimination-algorithm that primarily uses principal angles between subspaces. We
also discussed the computation of approximate LCMs and GCDs. We provided our
own geometric definition of these approximate polynomials and made the link with
the ǫ-GCD, which is more commonly used in the literature. Computation of the
approximate LCM was shown to be equivalent with finding an intersection between
two subspaces and hence an algorithm using principal angles was presented. The
corresponding approximate GCD is then found from a sparse least-squares problem.
Finally, we presented an algorithm that allows us to remove the multiplicities of
the affine roots of a polynomial system. Its two main ingredients are multivariate
elimination and the computation of an approximate LCM.

7.2 Future Research

Since this thesis constitutes the humble beginning of the PNLA framework, still
many open theoretical and computational problems remain.

7.2.1 Numerical Analysis

Many numerical algorithms were formulated in this thesis. No formal numerical
analysis was performed however. The seminal work by Stetter [78] can be rightfully
seen as a first step of bringing numerical analysis into the domain of multivariate
polynomials. Now, with the development of the PNLA framework, many existing
tools of numerical analysis [44, 82] can be used to extend the work of Stetter.

Multivariate Polynomial Division. The link between multivariate polynomial
division and oblique projections was established in this thesis. The main
conceptual tool is the divisor matrix, from which two important subspaces can be
defined. This lead to the new insight that the division of a multivariate polynomial
by a set of divisors is in fact a vector decomposition into these two subspaces. This
decomposition needs to be computed through the use of oblique projectors since the
two subspaces are not orthogonal to one another. Although a numerical algorithm
was proposed and implemented, a formal numerical analysis is still lacking. The
recently published numerical results in [81] are a useful starting point in this
respect. It is expected that this analysis will lead to a deeper understanding of
the conditioning of multivariate polynomial division.

Intersection of subspaces. Like in the case of polynomial division, a geometrical
concept plays a vital role in many algorithms: finding the intersection of subspaces.

148 CONCLUSIONS AND FUTURE WORK

The numerical algorithm that we developed depends heavily on the notion of
principal angles, for which also perturbation results are available [14]. This in
combination with the preliminary results for nonsingular matrices in the section
on computing an approximate LCM/GCD can serve as a starting point for further
studying the numerical properties of our algorithm.

Numerical rank. The notion of the numerical rank of a matrix is a well-
defined concept through the SVD. The determination of the numerical rank is
for all applications an important first step, since it specifies the dimension of
the fundamental subspaces. Measurements from real world applications are noisy
and hence the elements of the matrices will always be subject to some uncertainty.
Starting from some well-known perturbation results on singular values [82], further
research will need to investigate whether these uncertainties can be used to
determine a suitable tolerance.

7.2.2 Curse of Dimensionality

A major bottleneck in solve large problems is the polynomial growth of the
Macaulay matrix. One of the key research points is therefore obviously to look for
ways to further exploit the sparsity and structure of the Macaulay matrix.

Exploiting the structure of the Macaulay matrix. The Macaulay matrix is
extremely structured, a fact that has been partially exploited in Chapter 4, which
resulted in gains of execution time of at least one order of magnitude. This first
optimization however does not take into account the fact that always the same
numerical values appear throughout the matrix. Methods for structured matrices
such as Hankel and Toeplitz-matrices are already able to exploit the structure
even further to reduce the computational complexity from O(n3) to O(n2) or even
to O(nlog2(n)) [11, 70]. These methods can serve as a starting point to further
investigate the possibilities of exploiting the particular structure of the Macaulay
matrix.

Exploiting sparsity of the Macaulay matrix. When multivariate polynomials
are used as a modelling tool, they typically have only a few nonzero coefficients.
This sparsity in the model translates itself to a very sparse Macaulay matrix.
Indeed, its density drops very rapidly to less than 1%, which means that more
than 99% of the matrix consists of zero elements. Not storing these zeros therefore
constitutes a huge reduction in required storage space. A whole body of sparse
matrix theory and methods [23] has been developed over the past five decades.
This can also serve as a starting point to determine whether it is possible to
exploit the a priori known sparsity pattern of the Macaulay matrix. This would
not only reduce the amount of required storage space but is also expected to result
in a significant gain in run time as well.

Appendix A

Numerical Linear Algebra

In this appendix we give a quick overview of the main concepts of numerical linear
algebra that are used throughout the thesis. Good reference books on numerical
linear algebra are [29, 40, 47].

A.1 Matrix Notation

Matrices are denoted by an upper case letter such as M and its (i, j)th element
is by mij . We also use the MATLAB [72] notation M(i : j, k : l) to denote the
submatrix of M lying in rows i through j and columns k through l. A lower-
case letter like p denotes both a multivariate polynomial and its corresponding
coefficient vector. Coefficient vectors are always be row vectors. R and C denote
the set of real and complex numbers respectively; Rn, the set of n-dimensional
real vectors, and Rm×n, the set of m-by-n real matrices. Nn0 denotes the set of n-
tuples of natural numbers, including zero. MT denotes the transpose of the matrix
M : (MT)ij = mji and M−1 its inverse. Im denotes a square unit matrix of size
m and the notation diag(a1, . . . , am) stands for a diagonal matrix with diagonal
elements a1, . . . , am.

Remark A.1 Assumption 1.1 implies that the entries of all matrices in this thesis
are real numbers. Hence, there is no need for the conjugate transpose and all matrix
factorizations will involve orthogonal matrices. One could allow complex entries
at the cost of replacing the notion of orthogonality by the notion of unitarity and
replacing the transpose by the conjugate transpose.

149

150 NUMERICAL LINEAR ALGEBRA

A.2 Vector and Matrix Norms

Norms prove to be very useful in our framework. They are used to express
bounds for the computation of certain quantities, like the condition number of
the Macaulay matrix or the product of multivariate polynomials.

Definition A.1 ([40, p.52]) A vector norm on Rn is a function || · || : Rn → R

that satisfies the following properties

1. ||x|| ≥ 0, and ||x|| = 0 if and only if x = 0,

2. ||αx|| = |α| ||x|| for any real scalar α,

3. ||x+ y|| ≤ ||x||+ ||y||.

The two norms commonly used in this thesis are:

1-norm: ||x||1 = |x1|+ · · ·+ |xn|,
2-norm: ||x||2 = (|x1|2 + · · ·+ |xn|2)1/2 = (xTx)1/2.

A unit vector with respect to the norm || · || is a vector x that satisfies ||x|| = 1.
Sometimes it is necessary to express bounds in the 1-norm in terms of the 2-norm.
Then the following relationship

||x||2 ≤ ||x||1,

is used. Each of these two vector norms induces a corresponding matrix norm. A
matrix norm is defined by simply stating that it is a function of Rm×n → R that
satisfies the same 3 properties as a vector norm. In this thesis, only one particular
matrix norm is used.

Definition A.2 Let A ∈ Rm×n, and || · ||2 be the vector 2-norm. Then

||A||2 = max
x 6=0, x∈Rn

||Ax||2
||x||2

(A.1)

is called the spectral norm of the matrix A.

This matrix norm is given an interpretation in terms of bounds for multiplication
of multivariate polynomials in Chapters 2 and 3.

FOUR FUNDAMENTAL SUBSPACES 151

A.3 Four Fundamental Subspaces

Given a matrix A ∈ Rm×n, then its associated fundamental subspaces [83] are:

column space: col(A) = {y ∈ Rm | ∃x ∈ Rn : y = Ax},
null space: null(A) = {x ∈ Rn |Ax = 0},
row space: row(A) = {x ∈ Rn | ∃ z ∈ Rm : x = z A},
left null space: null(AT) = {z ∈ Rm | z A = 0}.

From this definition one can see that the vector space null(A) is orthogonal with
respect to row(A) and null(AT) is orthogonal with respect to col(A). Except for
the column space, all of these subspaces are given an interpretation in the context
of multivariate polynomials in chapter 3. The following relations between the
dimensions of the different subspaces hold:

dim (col(A)) + dim
(

null(AT)
)

= m, (A.2)

and
dim (row(A)) + dim (null(A)) = n. (A.3)

The expressions (A.2) and (A.3) are called the rank-nullity theorem of AT and A
respectively.

A.4 Dual vector space

In Chapter 3, dual vector spaces play an important role in describing the roots
of a polynomial system. Every finite dimensional vector space has a dual. The
dual of a vector space V over a field k is a vector space V ′ of linear functionals
l : V → k that map each vector of V to an element of the field k. In our case, the
field in question will always be R. The following theorem relates the dimension of
the vector space V with the dimension of its dual V ′.

Theorem A.1 ([43, p. 23]) If V is an n-dimensional vector space with a basis
{v1, . . . , vn} then there is a uniquely determined basis {l′1, . . . , l′n} in V ′, with the
property that for all 1 ≤ i ≤ n l′i(vi) = 1 and l′j(vi) = 0 for all i 6= j. Consequently
the dual space of an n-dimensional space is n-dimensional.

The basis {l′1, . . . , l′n} in V ′ is then called the dual of {v1, . . . , vn}. The most
interesting and useful dual vector space in this thesis will be the annihilator.

Definition A.3 The annihilator Vo of a vector space V is the set of vectors l ∈ V ′
such that l(v) = 0 for all v ∈ V.

152 NUMERICAL LINEAR ALGEBRA

The dimension of the annihilator is given by the following theorem.

Theorem A.2 [43, p. 26] IfM is an r-dimensional subspace of an n-dimensional
vector space V, then Mo is an (n− r)-dimensional subspace of V ′.

A.5 Moore-Penrose pseudoinverse

The Moore-Penrose pseudoinverse A† of a matrix A is a generalization of the
inverse matrix A−1. The pseudoinverse is typically defined as follows.

Definition A.4 ([40, p. 257]) Let A be a m× n matrix, then its pseudoinverse
A† is the unique matrix satisfying

AA†A = A,

A†AA† = A†,

(AA†)T = AA†,

(A†A)T = A†A.

These four conditions are called the Moore-Penrose conditions.

A.6 Condition Number for matrix inversion and least

squares

The condition number of a problem is a measure for the sensitivity of the solution
to perturbations in the data. Some applications in this thesis, like for example
polynomial division in Chapter 2 and the computation of an approximate GCD
in Chapter 6, require solving (linear) least squares problems. This problem can
hence be written as: given A ∈ Rm×n with m ≥ n and b ∈ Rm, find x ∈ Rn such
that

Ax = b.

If A is square and invertible, then the solution is given by

x = A−1 b.

The condition number κ for solving square linear systems is hence the condition
number for matrix inversion. It is defined as

κ = ||A−1||2 ||A||2.

CONDITION NUMBER FOR MATRIX INVERSION AND LEAST SQUARES 153

Suppose now that the input of the problem, A and b, are perturbed with ∆A and
∆b. The condition number κ then relates the relative error in the solution x to
the relative error in the input by

||∆x||2
||x||2

≤ κ

1− κ ||∆A||2||A||2

(||∆A||2
||A||2

+
||∆b||2
||b||2

)

,

under the assumption that κ ||∆A||2||A||2
< 1. This assumption, in fact, guarantees that

A+∆A is invertible, which we need for ∆x to exist. Furthermore, if κ ||∆A||2||A||2
≪ 1,

then the relative error in the solution is indeed proportional to the relative error
in the input.

When A is rectangular, things are a bit more complicated. First, its condition
number for matrix inversion is now given by

κ = ||A†||2 ||A||2.

The condition number κLS for the least squares problem

argmin
x∈Rn

||Ax − b||2

is then given by the following theorem.

Theorem A.3 ([29, p. 117]) Suppose that A ∈ Rm×n with m ≥ n and has full
rank. Suppose that x minimizes ||Ax− b||2. Let r = Ax− b be the residual. Let x̂

minimize ||(A+ ∆A)x̂ − (b+ ∆b)||2. Assume ǫ = max(||∆A||2||A||2
, ||∆b||2||b||2

) ≤ 1
κ . Then

||∆x||2
||x||2

≤ ǫ
(

2 κ

cosθ
+ tanθ κ2

)

+O(ǫ2) = ǫ κLS +O(ǫ2),

where sinθ = ||r||2
||b||2

. In other words, θ is the angle between the vectors b and Ax

and measures whether the residual norm ||r||2 is large (near ||b||2) or small (near
0).

The assumption that ǫ κ < 1 is necessary, like in the square case, to guarantee that
A + ∆A is of full rank, such that x̂ is uniquely determined. The theorem can be
interpreted as follows. If θ is 0 or very small, then the residual is small and the
effective condition number is about 2 κ. This is similar to the square matrix case.
If θ is not small but not close to π/2, the residual is moderately large, and the
effective condition number can be much larger, κ2. If θ is close to π/2, so the true
solution is nearly zero, then the effective condition number becomes unbounded
even if κ is small.

154 NUMERICAL LINEAR ALGEBRA

A.7 QR Decomposition

The first important matrix decomposition that we discuss is the QR decomposition.
This is basically a numerically stable implementation of the Gram-Schmidt process.

Theorem A.4 ([29, p. 107]) Let A be a m×n matrix with m ≥ n. Suppose that
A has full column rank. Then there exists a unique m × m orthogonal matrix
Q (QTQ = Im) and a unique m × n upper triangular matrix R with positive
diagonals rii > 0 such that

A = QR.

An important application of the QR decomposition is that it provides orthogonal
bases for the column space and its orthogonal complement. Since A is of full
column rank the QR decomposition can be partitioned as

A = (Q1 Q2)

(

R1

R2

)

,

where Q1 consists of the first n columns of Q. It can then be shown that

col(Q1) = col(A),
col(Q2) = null(A⊥).

Or in other words, the columns of Q1 are an orthogonal basis for col(A) and the
columns of Q2 are an orthogonal basis for null(A⊥). When A is not of full column
rank then Theorem A.4 needs a small adjustment. In exact arithmetic, if A had
rank r < n and its first r columns were independent, then its QR decomposition
would look like

A = Q

(

R11 R12

0 0

)

,

where R11 is r×r and nonsingular and R12 is r× (n−r). With roundoff, we might
hope to compute

R =

(

R11 R12

0 R22

)

with ||R22||2 very small, on the order of ǫ ||A||2. Since the first r columns are not
necessarily linearly independent some column pivoting scheme is required. This
means that we factorize AP = QR, P being a permutation matrix. The aim
of the pivoting scheme is to keep R11 as well-conditioned as possible and R22 as
small as possible. Algorithms that implement such a pivoting scheme are called
rank-revealing QR algorithms.

SINGULAR VALUE DECOMPOSITION 155

A.8 Singular Value Decomposition

The Singular Value Decomposition (SVD) can rightfully be called the mother
of all matrix factorizations. Not only does it provide orthogonal bases for all
fundamental subspaces, it also allows us to determine the rank and the spectral
norm of a matrix, in addition to providing a way to compute principal angles.

Theorem A.5 ([29, p. 109]) For every real m × n matrix A with m ≥ n there
exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n (UTU = UUT = Im and
V TV = V V T = In) such that

A = U ΣV T ,

and the m× n matrix Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn ≥ 0. The columns
of U are called the left singular vectors and the columns of V are called the right
singular vectors. The σi’s are called the singular values.

A first major application of the SVD is that it allows to determine the rank of a
matrix and it provides orthogonal bases for all fundamental subspaces. If A has
rank r, then it has r nonzero singular values and its SVD can be partitioned as

A = (U1 U2)

(

S1 0
0 0

)

(V1 V2)T . (A.4)

We then have that
row(A) = col(V1),

null(A) = col(V2),

col(A) = col(U1),

null(A⊥) = col(U2).

Note from (A.4) that
A = U1 S1 V

T
1 ,

=
∑r
i=1 σi ui v

T
i .

Or in other words, A can be written as a linear combination of r rank one matrices
ui v

T
i . This is usually called the reduced or compact SVD of A. The pseudoinverse

of A is then easily computed as

A† = V1 S
−1
1 U

T
1 , (A.5)

with S−1 = diag(1/σ1, . . . , 1/σn). This is easily verified by substituting (A.5) into
the Moore-Penrose conditions. Another application of the SVD is the computation
of the spectral norm of a matrix.

156 NUMERICAL LINEAR ALGEBRA

Lemma A.1 Let A ∈ Rm×n and σ1(A) denote the largest singular value of A
then

||A||2 = σ1(A).

If we choose x in the definition of the spectral norm such that ||x||2 = 1, then the
largest singular value of A can also be interpreted as

σ1(A) = max
||x||2=1

||Ax||2.

This will be useful for Section 2.3.2 and Section 3.3, where bounds for the products
of multivariate polynomials are derived. Furthermore, the SVD also allows us to
compute principal angles between subspaces. This brings us to the next section.

A.9 Principal Angles

Here we provide the definition of principal angles [40, 49] between subspaces and
their associated principal directions. These concepts play a fundamental role for
the algorithms in this thesis.

Definition A.5 The principal angles 0 ≤ θ1 ≤ θ2 ≤ . . . θmin(d1,d2) ≤ π/2
between the vector spaces S1 and S2 of dimension d1 and d2 respectively, and
the corresponding principal directions ui ∈ S1 and vi ∈ S2 are defined recursively
as

cos(θk) = max
u∈S1

max
v∈S2

u vT = uk v
T
k

subject to
||u|| = ||v|| = 1,

u uTi = 0, i = 1, . . . , k − 1,

v vTi = 0, i = 1, . . . , k − 1.

Several numerical algorithms have been proposed for the computation of the
principal angles and the corresponding principal directions [14]. The following
theorem shows how one can determine the cosines of the principal angles and the
corresponding principal directions by means of an SVD.

Theorem A.6 ([14, p. 582]) Assume that the columns of Q1 and Q2 are
orthogonal bases for two subspaces of Rm. Let

A = QT1 Q2,

INTERSECTION OF SUBSPACES 157

and let the SVD of this r1 × r2 matrix be

A = Y C ZT , C = diag(σ1, . . . , σr2
). (A.6)

If we assume that σ1 ≥ σ2 ≥ . . . ≥ σr2
, then the principal angles and principal

vectors associated with this pair of subspaces are given by

cos(θk) = σk(A), U = Q1Y, V = Q2Z.

Computing principal angles smaller than 10−8 in double precision is impossible
using Theorem A.6. This is easily seen from the second order approximation of
the cosine of its Maclaurin series: cos(x) ≈ 1 − x2/2. If x < 10−8 then the x2/2
term will be smaller than the machine precision ǫ ≈ 2 × 10−16 and hence cos(x)
will be exactly 1. For small principal angles it is numerically better to compute
the sines using the following Theorem.

Theorem A.7 ([14, p. 582-583] and [54, p. 6]) The singular values µ1, . . . , µm
of the matrix Q2−Q1Q

T
1 Q2 are given by µk =

√

1− σ2
k where the σk are defined

in (A.6). Moreover, the principal angles satisfy the equalities θk = arcsin(µk). The
right principal vectors can be computed as

vk = QT2 zk, k = 1, . . . , r2,

where zk are the corresponding right singular vectors of Q2 −Q1Q
T
1 Q2.

Note that Q2 − Q1Q
T
1 Q2 is the orthogonal projection of col(Q2) onto the

orthogonal complement of col(Q1). If an orthogonal basis N1 for null(Q1) is
available, then one could compute the singular values and right singular vectors
of NT1 Q2 instead.

A.10 Intersection of Subspaces

The main application of principal angles in this thesis is to find the intersection
of subspaces. Theorem A.7 can be used to compute an orthogonal basis for
col(Q1) ∩ col(Q2).

Theorem A.8 ([40, p. 604]) Let sin(θk), uk, vk be as described in Definition A.5
and Theorem A.7. Suppose the last s singular values µm−s+1 = . . . = µm = 0,
then we have

col(Q1) ∩ col(Q2) = span{um−s+1, . . . , um} = span{vm−s+1, . . . , vm}.

158 NUMERICAL LINEAR ALGEBRA

In this thesis, it will almost always be that

Q2 = P E

where P is a permutation matrix and E = (Ir2
0)
T

. This allows us to simplify
the computation of the orthogonal basis for the intersection. Remember that the
principal directions are given by the right singular vectors of NT1 Q2 where the
columns of N1 are an orthogonal basis for null(Q1). We can therefore write

NT1 Q2 = NT1 P E,

= (PTN1)T E.

Applying PT to N1 moves the r2 rows of N1 corresponding with nonzero rows of
Q2 to the top. We now partition PT N1 and substitute E by (Ir2

0)T

NT1 Q2 =
(

NT11 N
T
12

)

(

Ir2

0

)

,

= NT11.

Remark A.2 If we denote the vector containing the indices of these nonzero rows
of Q2 by j, then we can write NT1 Q2 in MATLAB notation as N1(j, :)T . Likewise
using Theorem A.6, one needs to compute the SVD of Q1(j, :)T to determine the
cosines of the principal angles.

Remark A.3 Usually we will only need the principal vector vm corresponding
with the last zero singular value µm. An alternative for the computation of the
full SVD of N1T Q2 would be to use an iterative approach (e.g. Krylov subspace
methods).

A.11 CS Decomposition

The CS decomposition relates the SVDs of the blocks of an orthogonal matrix
partitioned into 2-by-2 form. There is also a connection between the CS
decomposition and computing the intersection of subspaces. We first present the
CS decomposition.

Theorem A.9 ([2,79]) Let Q ∈ Rm×m have orthonormal columns. Partition Q
in the form

Q =

(

k m− k
k Q11 Q12

m− k Q21 Q22

)

,

PROJECTORS 159

where 2k ≤ m. Then there are orthogonal matrices U = diag(U11, U22) and
V = diag(V11, V22) such that

UTQV =





k k m− 2k

k C S 0
k −S C 0
m− 2k 0 0 I



,

where C and S are nonnegative diagonal matrices satisfying

C2 + S2 = I.

It is now easy to see that the C and S matrices contain the cosines and sines of the
principal angles as discussed in the previous section. This follows from applying
Theorem A.9 to P Q = (Q1 N1).

A.12 Projectors

A projector Π is an idempotent matrix (Π2 = Π). It is completely determined by
its column space X and its row space Y.

Theorem A.10 ([81, p. 312]) Let Π be a projector. If the columns of X and Y
are a basis for X = col(Π) and Y = row(Π) respectively, then Y TX is nonsingular
and

Π = X(Y TX)−1 Y T . (A.7)

From (A.7) it is easy to see that when X = Y then Π = X(XTX)−1XT , which
is the familiar expression for an orthogonal projector. Also observe that ||Π||2 = 1
for an orthogonal projector. Furthermore, if X is orthogonal then the expression
for the projector simplifies to Π = XXT . As soon as X 6= Y, then Π will be
an oblique projector. Note that for an oblique projector we always have that
||Π||2 > 1. If the representation of (A.7) is used for a projector Π, then Π a stands
for the projection of the column vector a onto col(X) = X . The complement of
Π a, defined as (I −Π)a, then lies in null(Y). From this it follows that the column
vector a can be decomposed into a = Π a + (I − Π)a. It is also possible to write
the oblique projector in terms of X and an orthogonal basis Z for null(Y):

Π = X
[

(I − ZZT)X
]†

(I − ZZT). (A.8)

The use of the Moore-Penrose pseudoinverse is required in (A.8) since X might be
rank deficient.

160 NUMERICAL LINEAR ALGEBRA

A.13 Sparse Matrices

A matrix is sparse when it has a large number of zero elements. What is meant by
“large” is normally not very relevant. Indeed, for the definition of a sparse matrix
a more computational point of view is adopted. Wilkinson defined a sparse matrix
as “any matrix with enough zeros that it pays to take advantage of them” [39].
Or in other words, a matrix that allows special techniques to take advantage
of the large number of zero elements. By avoiding arithmetic operations on zero
elements, sparse matrix algorithms require less computer time. And, perhaps more
importantly, by not storing many zero elements, sparse matrix data structures
require less computer memory. MATLAB uses the compressed column format
[23, p.8], which stores a sparse matrix as a collection of compressed columns. A
compressed column is a list of row indices Ai and corresponding nonzero values
Ax. The matrix

A =









4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0









,

is then stored as

Ap : [1, 4, 7, 9, 10],
Ai : [1, 2, 4, 3, 4, 2, 1, 3, 2, 4],
Ax : [4.5, 3.1, 3.5, 1.7, 0.4, 2.9, 3.2, 3.0, 0.9, 1.0] .

The second column of A is then given by the row indices Ai[Ap[2], . . . , Ap[3]−1] =
[3, 4, 2] with corresponding nonzero values Ax[Ap[2] . . . Ap[3] − 1] = [1.7, 0.4, 2.9].
Note that the row indices Ai do not even need to be sorted, as long as they point
to the correct numerical values. The 10 entry in Ap is the total number of nonzero
elements of A. Storing a matrix in compressed column format means that working
with columns is easy, since they can be retrieved very fast, while working with
rows is hard. Indeed, one needs to iterate over all columns and check whether the
row has a particular nonzero element there.

In this thesis, we frequently need to determine the numerical rank of a given sparse
matrix and compute orthogonal bases for both its row and null space. Ideally, one
should use the SVD for this purpose but unfortunately, no sparse methods are
available for computing the matrices Σ and V of the SVD. This is the reason a
sparse rank-revealing multifrontal QR decomposition algorithm, SuiteSparseQR
[24], will be used when the given matrix is stored in column compressed form.
This method computes the QR factorization of A ∈ Rm×n of rank r

AP = QR,

where P is a permutation matrix such that col(Q(:, 1 : r)) = col(A) and the number
of nonzero elements of R is minimized. Finding a column ordering optimal in this

SPARSE MATRICES 161

sense is an NP-complete problem, i.e., it cannot be solved in polynomial time.
Hence, a heuristic ordering algorithm is used. More details on the fill-reducing
column ordering used in SuiteSparseQR, the column approximate minimum degree
ordering, can be found in [25, 26]. This sparse QR algorithm, like all other
sparse methods, combines numerics together with graph theory and consist of
2 phases: a symbolical and numerical phase. In the symbolical phase, the nonzero
pattern of the R factor is predicted using graph theory and in the numerical phase,
the numerical result is computed. SuiteSparseQR is also a multifrontal method.
This means that the QR decomposition is reorganized into a sequence of partial
factorizations of small dense matrices, called frontal matrices, and is well suited for
parallelism. Indeed, the reduction of these dense matrices into upper triangular
form can be done independently of one another. This results in a significant
speedup of the algorithm, as is be demonstrated in Chapter 4.

Appendix B

Algebraic Geometry

In this appendix we give a quick overview of the main concepts of algebraic
geometry that are used throughout the thesis. Excellent introductions to algebraic
geometry are [21, 22].

B.1 Polynomials & Monomial Ordering

Definition B.1 A monomial in x1, . . . , xn is a product of the form

xα1

1 x
α2

2 . . . x
αn
n ,

where all of the exponents α1, . . . , αn are nonnegative integers. The total degree
of this monomial is the sum α1 + . . .+ αn.

A simplification of notation can be introduced by writing α as n-tuples in Nn0 , so
that α = (α1, . . . , αn). Then we set

xα = xα1

1 x
α2

2 . . . x
αn
n .

In addition, the total degree of a polynomial will be denoted by |α|.

Definition B.2 A polynomial p in x1, . . . , xn with coefficients in C is a finite
linear combination (with coefficients in C) of monomials. We write a polynomial
p in the form

p =
∑

α

aαx
α, aα ∈ C, (B.1)

where the sum is over a finite number of n-tuples α = (α1, . . . , αn).

163

164 ALGEBRAIC GEOMETRY

The ring of multivariate polynomials in n variables is denoted by Cn. The subset of
all multivariate polynomials of total degrees from 0 up to d forms a vector space,
which is denoted by Cnd . A canonical basis for this vector space consists of all
monomials from degree 0 up to d. A monomial xa = xa1

1 . . . x
an
n has a multidegree

(a1, . . . , an) ∈ Nn0 and (total) degree |a| = ∑n
i=1 ai. The degree of a polynomial p

then corresponds with the highest total degree of all monomials of p. Note that
we can reconstruct the monomial xa from its multidegree a. Furthermore, any
ordering > we establish on the space Nn0 will give us an ordering on monomials: if
a > b according to this ordering, we will also say that xa > xb. Throughout this
thesis the following monomial ordering will be used.

Definition B.3 Degree negative lexicographic. Let a and b ∈ Nn0 . We say
a >dnlex b if

|a| =
n
∑

i=1

ai > |b| =
n
∑

i=1

bi, or |a| = |b| and a >nlex b

where a >nlex b if, in the vector difference a− b ∈ Zn, the leftmost nonzero entry
is negative.

Example B.1 (2, 0, 0) >dnlex (0, 0, 1) because |(2, 0, 0)| > |(0, 0, 1)| which implies
x2

1 >dnlex x3. Likewise, (0, 1, 1) >dnlex (2, 0, 0) because (0, 1, 1) >nlex (2, 0, 0) and
this implies that x2x3 >dnlex x

2
1.

The ordering is graded because it first compares the degrees of the two monomials
and applies the negative lexicographic ordering when there is a tie. The ordering
is also multiplicative, which means that if a <dnlex b this implies that ac <dnlex bc
for all c ∈ Nn0 . Monomial orderings are important since results will typically
depend on which ordering is used. Once a monomial ordering is specified, then
the following useful concepts can be defined.

Definition B.4 Let f =
∑

α aαx
α be a nonzero polynomial in Cn and let > be a

monomial order.

1. The multidegree of f is

multideg(f) = max (α ∈ Nn0 : aα 6= 0)

where the maximum is taken with respect to >.

2. The leading monomial of f is

LM(f) = xmultideg(f)

with coefficient 1.

HOMOGENEOUS POLYNOMIALS AND COORDINATES 165

B.2 Homogeneous Polynomials and Coordinates

A polynomial of degree d is homogeneous when every term is of degree d. A non-
homogeneous polynomial can easily be made homogeneous by introducing an extra
variable x0.

Definition B.5 Let f ∈ Cnd of degree d, then its homogenization fh ∈ Cn+1
d is the

polynomial obtained by multiplying each term of f with a power of x0 such that its
degree becomes d.

Example B.2 Let
f = x2

1 + 9x3 − 5,

then its homogenization is

fh = x2
1 + 9x0x3 − 5x2

0.

The vector space of all homogeneous polynomials in n+1 variables and of degree d
is denoted by Pnd . This vector space is spanned by all monomials in n+1 variables
of degree d and hence

dim (Pnd) =

(

d+ n

n

)

. (B.2)

In order to describe solution sets of systems of homogeneous polynomials, the
projective space needs to be introduced. First, an equivalence relation ∼ on the
nonzero points of Cn+1 is defined by setting

(x′0, . . . , x
′
n) ∼ (x0, . . . , xn)

if there is a nonzero λ ∈ C such that (x′0, . . . , x
′
n) = λ (x0, . . . , xn).

Definition B.6 The n-dimensional projective space Pn is the set of equivalence
classes of ∼ on Cn+1 − {0}. Each nonzero (n + 1)-tuple (x0, . . . , xn) defines a
point p in Pn , and we say that (x0, . . . , xn) are homogeneous coordinates of p.

Note that the origin (0, . . . , 0) ∈ Cn+1 is not a point in the projective space.
Because of the equivalence relation ∼, an infinite number of projective points
(x0, . . . , xn) can be associated with 1 affine point (x1, . . . , xn). The affine space
Cn can be retrieved as a ‘slice’ of the projective space:

Cn = {(x0, x1, . . . , xn) ∈ Pn : x0 = 1}.

This means that given a projective point p = (x0, . . . , xn) with x0 6= 0, its affine
counterpart is (1, x1

x0
, . . . , xnx0

). The projective points for which x0 = 0 are called
points at infinity.

166 ALGEBRAIC GEOMETRY

B.3 Ideals

Another important algebraic concept is that of a polynomial ideal.

Definition B.7 Let f1, . . . , fs ∈ Cn. Then we set

〈f1, . . . , fs〉 =

{ s
∑

i=1

hifi : h1, . . . , hs ∈ Cn
}

(B.3)

and call it the ideal generated by f1, . . . , fs.

The ideal hence contains all polynomial combinations
∑s
i=1 hifi without any

constraints on the degrees of h1, . . . , hs. For this reason, the polynomials f1, . . . , fs
are also called the generators of the polynomial ideal. We will denote all
polynomials of the ideal 〈f1, . . . , fs〉 with a degree from 0 up to d by 〈f1, . . . , fs〉d.
Observe that this implies that

〈f1, . . . , fs〉d ⊂ Cnd

and 〈f1, . . . , fs〉d is therefore also a vector space. The set of generators is not
unique for a given polynomial ideal. An important set of generators for a given
polynomial ideal 〈f1, . . . , fs〉 is the Gröbner basis, which is explained below. For
discussing the multiplicities of polynomial roots, the concept of a radical ideal is
needed.

Definition B.8 Let I = 〈f1, . . . , fs〉 be a polynomial ideal. The radical of I,
denoted

√
I, is the set

{f : fm ∈ I for some integer m ≥ 1}.

It can be shown that
√
I is also an ideal and that I ⊂

√
I. The link with

multiplicities of roots is clear from the definition. If I has roots with multiplicities
larger than 1, so-called multiple roots, then

√
I will contain polynomials from

which these multiplicities are removed. One therefore has to enlarge the
polynomial ideal I to

√
I in order to get rid of multiple roots. This is discussed in

more detail in Chapters 3 and 6.

B.4 Varieties

Varieties are a geometrical concept and in a sense the dual of the notion of a
polynomial ideal.

GRÖBNER BASIS 167

Definition B.9 Let f1, . . . , fs ∈ Cn, then we set

V = {(a1, . . . , an) ∈ Cn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}
and call it the affine variety of f1, . . . , fs.

Or in other words, the affine variety is the set of affine roots of f1, . . . , fs. It is
easy to see that if V is a variety of a polynomial system f1, . . . , fs , then it is also
the variety of the whole polynomial ideal 〈f1, . . . , fs〉. In the same vein, we can
define a projective variety.

Definition B.10 Let fh1 , . . . , f
h
s ∈ Pn. Then

V = {(x0, . . . , xn) ∈ Pn : fhi (x0, . . . , xn) = 0 for all 1 ≤ i ≤ s}
and call it the projective variety of fh1 , . . . , f

h
s .

Again, the projective variety is the set of roots of the homogeneous polynomials
fh1 , . . . , f

h
s . Note that, since a projective variety is defined over homogeneous

coordinates, it will never contain the origin in Pn. Given a polynomial system
f1, . . . , fs with corresponding affine variety Va, one can easily transform everything
into a projective setting. This is done by making each of the polynomials of
f1, . . . , fs homogeneous. The homogeneous polynomial system fh1 , . . . , f

h
s will then

have a projective variety V . This process can be seen to extend Va, such that it
also contains roots at infinity. The affine part of V can be retrieved as the subset
of projective roots for which x0 = 1. For this reason we will sometimes say ‘a
polynomial system f1, . . . , fs with a projective variety’. By this then we mean the
process of making f1, . . . , fs homogeneous and considering the projective variety
of fh1 , . . . , f

h
s .

The notion of dimensionality of a variety can also be introduced. We will
call a variety zero-dimensional if it consists of a finite number of points. The
corresponding polynomial ideal is then also called zero-dimensional.

B.5 Gröbner Basis

As mentioned above, Gröbner bases are a particular set of generators of a
polynomial ideal 〈f1, . . . , fs〉. Their most useful property is also their defining
property.

Definition B.11 Given a set of multivariate polynomials f1, . . . , fs and a
monomial ordering, then a finite set of polynomials G = {g1, . . . , gt} ∈ 〈f1, . . . , fs〉
is a Gröbner basis of 〈f1, . . . , fs〉 if

∀ p ∈ 〈f1, . . . , fs〉, ∃ g ∈ G such that LM(g) |LM(p).

168 ALGEBRAIC GEOMETRY

In addition, a Gröbner basis is called reduced if no monomial in any element of
the basis is divisible by the leading monomials of the other elements of the basis.

Note from the definition that a Gröbner basis depends on the monomial ordering.
The defining property of a Gröbner basis is hence that the leading monomial of
every polynomial in I = 〈f1, . . . , fs〉 is divisible by at least one of the leading
monomials of the Gröbner basis. This can also be written as

〈LM(g1), . . . ,LM(gt)〉 = 〈LM(I)〉,

where LM(I) is the set of all leading monomials in I. In order to determine whether
a set of polynomials is a Gröbner basis, one needs the notion of an S-polynomial.

Definition B.12 Let f1, f2 be nonzero multivariate polynomials and xγ the least
common multiple of their leading monomials. The S-polynomial of f1, f2 is the
combination

S(f1, f2) =
xγ

LT(f1)
f1 −

xγ

LT(f2)
f2

where LT(f1),LT(f2) are the leading terms of f1, f2 with respect to a monomial
ordering.

It is clear from this definition that an S-polynomial is designed to produce
cancellation of the leading terms and that it has a degree of at most deg(xγ).
We can now state Buchberger’s Criterion.

Theorem B.1 ([22, p.85]) Let I be a polynomial ideal. Then a basis G =
{g1, . . . , gt} for I is a Gröbner basis for I if and only if for all pairs i 6= j, the
remainder on division of S(gi, gj) by G is zero.

The notion of divisibility of polynomials is very important in relation to a Gröbner
basis. Generalizing the polynomial long division to the multivariate case is rather
straightforward and is discussed in [22, p. 61]. We discuss polynomial division
in detail in Chapter 2. Now all ingredients are available to state Buchberger’s
Algorithm to find a Gröbner basis.

LEAST COMMON MULTIPLES AND GREATEST COMMON DIVISORS 169

Algorithm B.1 Buchberger’s Algorithm
Input: polynomial system F = f1, . . . , fs
Output: Gröbner basis G of 〈f1, . . . , fs〉
G← F
G′ ← ∅

while G′ 6= G do

G′ ← G
for each pair p, q, p 6= q in G′ do

S ← remainder on division of S(p, q) by G′

if S 6= 0 then

G← G ∪ S
end if

end for

end while

The algorithm is given in pseudo-code in Algorithm B.1. The candidate Gröbner
basis G is first initialized to F . Then, for each pair of distinct polynomials in
G, the S-polynomials are constructed and these are divided by G. Every nonzero
remainder S on division by G is then added to G. The algorithm terminates
when all S-polynomials of all pairs of G have zero remainders. This is effectively
Buchberger’s Criterion. The algorithm will always terminate after a finite number
of steps due to the Ascending Chain Condition [22, p. 90]. The notion of a Gröbner
basis plays a prominent role in most of the applications in Chapter 6.

B.6 Least Common Multiples and Greatest Common

Divisors

The least common multiple (LCM) and greatest common divisor (GCD) of two
multivariate polynomials are natural extensions of their univariate cousins. They
appear in Chapter 6 where algorithms are presented on how each of them can be
computed numerically.

Definition B.13 A polynomial l ∈ Cn is called a LCM of f1, f2 ∈ Cn if

1. f1 divides l and f2 divides l and

2. l divides any polynomial which both f1 and f2 divide.

Definition B.14 A polynomial g ∈ Cn is called a GCD of f1, f2 ∈ Cn if

1. g divides f1 and f2 and

170 ALGEBRAIC GEOMETRY

2. if p is any polynomial which divides both f1 and f2, then p divides g.

As explained in the blind deconvolution problem, GCDs are an important concept.
Another use of GCDs is in the computation of reduced polynomials. Only the
concept for univariate problems is needed in this thesis. Remember that the
fundamental theorem of algebra states that every non-zero univariate polynomial
with complex coefficients has exactly as many complex roots as its degree, counting
multiplicities. This means that any polynomial p ∈ C1

d with r distinct roots
z1, . . . , zr can be factorized as

p = c (x− z1)m1 (x− z2)m2 . . . (x− zr)mr ,

with c ∈ C and m1 + . . .+mr = d. The reduced part of the polynomial p is then
found by ‘stripping away’ the multiplicities of the roots.

Definition B.15 The square-free (or reduced) part of a univariate polynomial
p ∈ C1

d with distinct roots z1, . . . , zr and multiplicities m1, . . . ,mr respectively is
the polynomial

pred = c (x− z1) (x− z2) . . . (x− zr).

These square-free parts of univariate polynomials play an important role in
Chapters 3 and 6 when discussing multiplicities of roots.

References

[1] W. Auzinger and H. J. Stetter. An elimination algorithm for the computation
of all zeros of a system of multivariate polynomial equations. In Int. Conf. on
Numerical Mathematics, Singapore 1988, Birkhäuser ISNM 86, pages 11–30,
1988.

[2] Z. Bai. The CSD, GSVD, their Applications and Computations. IMA
preprint series 958,Institute for Mathematics and its Applications, University
of Minnesota, MN, 1992.

[3] K. Batselier, P. Dreesen, and B. De Moor. Maximum likelihood estimation
and polynomial system solving. Proc of the European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning 2012
(ESANN 2012), pages 1–6, 2012.

[4] K. Batselier, P. Dreesen, and B. De Moor. Prediction Error Method
Identification is an Eigenvalue Problem. Proc 16th IFAC Symposium on
System Identification (SYSID 2012), pages 221–226, 2012.

[5] K. Batselier, P. Dreesen, and B. De Moor. A fast iterative orthogonalization
scheme for the Macaulay matrix. Submitted, 2013.

[6] K. Batselier, P. Dreesen, and B. De Moor. A geometrical approach to
finding multivariate approximate LCMs and GCDs. Linear Algebra and its
Applications, 438(9):3618–3628, 2013.

[7] K. Batselier, P. Dreesen, and B. De Moor. Numerical Polynomial Algebra:
The Canonical Decomposition and Numerical Gröbner Bases. Submitted,
2013.

[8] K. Batselier, P. Dreesen, and B. De Moor. The Geometry of Multivariate
Polynomial Division and Elimination. SIAM Journal on Matrix Analysis and
Applications, 34(1):102–125, 2013.

[9] D. Bayer and M. Stillman. On the complexity of computing syzygies. Journal
of Symbolic Computation, 6(2-3):135 – 147, 1988.

171

172 REFERENCES

[10] B. Beauzamy, E. Bombieri, P. Enflo, and H. L. Montgomery. Products Of
Polynomials in Many Variables. Journal Of Number Theory, 36(2):219–245,
October 1990.

[11] D. Bini and V. Y. Pan. Polynomial and Matrix Computations (Vol. 1):
Fundamental Algorithms. Birkhauser Verlag, Basel, Switzerland, Switzerland,
1994.

[12] D. A. Bini and P. Boito. Structured matrix-based methods for polynomial
ǫ-gcd: analysis and comparisons. In Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’07, pages 9–16,
New York, NY, USA, 2007. ACM.

[13] A. P. Bird. Cpg Islands as Gene Markers in the Vertebrate Nucleus. Trends
in Genetics, 3(12):342–347, December 1987.

[14] Å. Björck and G. H. Golub. Numerical Methods for Computing Angles
Between Linear Subspaces. Mathematics of Computation, 27(123):pp. 579–
594, 1973.

[15] P. Boito. Structured Matrix Based Methods for Approximate Polynomial GCD.
Edizioni della Normale, 2011.

[16] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Mathematical Institute, University of Innsbruck, Austria, 1965.

[17] B. Buchberger. A criterion for detecting unnecessary reductions in the
construction of groebner bases. In EUROSAM, pages 3–21, 1979.

[18] P. Businger and G. H. Golub. Linear Least Squares Solutions by Householder
Transformations. Numerische Mathematik, 7:269–276, 1965.

[19] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt. The
Singular Value Decomposition for Polynomial Systems. In ACM International
Symposium on Symbolic and Algebraic Computation, pages 195–207, 1995.

[20] R. M. Corless, S. A. Watt, and L. H. Zhi. QR factoring to compute the
GCD of univariate approximate polynomials. IEEE Transactions on Signal
Processing, 52(12):3394–3402, December 2004.

[21] D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic Geometry. Graduate
Texts in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, March
2005.

[22] D. A. Cox, J. B. Little, and D. O’Shea. Ideals, Varieties and Algorithms.
Springer-Verlag, third edition, 2007.

REFERENCES 173

[23] T. A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

[24] T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded
Rank-Revealing Sparse QR Factorization. ACM Transactions on Mathemat-
ical Software, 38(1), November 2011.

[25] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836:
Colamd, a column approximate minimum degree ordering algorithm. ACM
Trans. Math. Softw., 30(3):377–380, September 2004.

[26] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column
approximate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):353–376, September 2004.

[27] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[28] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving
polynomial systems. In Proc. of ISSAC ’05, pages 116–123. ACM Press, 2005.

[29] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, 1997.

[30] G. M. Diaz-Toca and L. Gonzalez-Vega. Computing greatest common divisors
and squarefree decompositions through matrix methods: The parametric and
approximate cases. Linear Algebra and its Applications, 412(2-3):222 – 246,
2006.

[31] J. A. Dieudonné. History of Algebraic Geometry. The Wadsworth
mathematics series. Chapman & Hall, 1985.

[32] P. Dreesen. Back to the Roots: Polynomial System Solving Using Linear
Algebra. PhD thesis, Faculty of Engineering, KU Leuven (Leuven, Belgium),
2013.

[33] P. Dreesen, K. Batselier, and B. De Moor. Back to the roots: Polynomial
system solving, linear algebra, systems theory. Proc 16th IFAC Symposium
on System Identification (SYSID 2012), pages 1203–1208, 2012.

[34] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
eleventh edition, 2006.

[35] I. Z. Emiris. Sparse Elimination and Applications in Kinematics. PhD thesis,
Faculty of Computer Science, University of California (Berkeley), 1994.

[36] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate
GCDs. Journal of Pure and Applied Algebra, 117-118(0):229 – 251, 1997.

174 REFERENCES

[37] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[38] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium
on Symbolic and algebraic computation, ISSAC ’02, pages 75–83, New York,
NY, USA, 2002. ACM.

[39] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in matlab: Design
and implementation. SIAM Journal of Matrix Analysis and Applications,
13:333–356, 1992.

[40] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 3rd edition, October 1996.

[41] L. Gonzalez-Vega. An elementary proof of barnett’s theorem about the
greatest common divisor of several univariate polynomials. Linear Algebra
and its Applications, 247(0):185 – 202, 1996.

[42] J. Grabmeier, E. Kaltofen, and V. Weispfenning. Computer Algebra Handbook:
Foundations, Applications, Systems. With Cd-Rom, Demo Versions. Springer-
Verlag GmbH, 2003.

[43] P. R. Halmos. Finite-Dimensional Vector Spaces. Undergraduate Texts in
Mathematics. Springer, 1974.

[44] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition,
2002.

[45] D. Hilbert. Ueber die Theorie der algebraischen Formen. Springer, 1890.

[46] H. Hironaka. Resolution of singularities of an algebraic variety over a field of
characteristic zero: I. Annals of Mathematics, 79(1):pp. 109–203, 1964.

[47] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press,
1990.

[48] C. R. Johnson. A Gersogrin-type Lower Bound for the Smallest Singular
Value. Linear Algebra and its Applications, 112:1–7, January 1989.

[49] C. Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société
Mathématique, 3:103–174, 1875.

[50] E. Kaltofen, J. P. May, Z. Yang, and L. Zhi. Approximate factorization
of multivariate polynomials using singular value decomposition. Journal of
Symbolic Computation, 43(5):359–376, May 2008.

REFERENCES 175

[51] N. Karmarkar and Y. N. Lakshman. On approximate gcds of univariate
polynomials. Journal of Symbolic Computation, 26(6):653–666, 1998.

[52] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal of
Pure and Applied Algebra, 196(2-3):251 – 270, 2005.

[53] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure and
Applied Algebra, 205(2):279 – 295, 2006.

[54] A. V. Knyazev and M. E. Argentati. Principal Angles between Subspaces in
an A-based Scalar Product: Algorithms and Perturbation Estimates. SIAM
Journal on Scientific Computing, 23(6):2008–2040, May 17 2002.

[55] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2.
Springer, 2005.

[56] D. Lazard. Gröbner-Bases, Gaussian elimination and resolution of systems of
algebraic equations. In EUROCAL, pages 146–156, 1983.

[57] D. Lazard. A note on upper bounds for ideal-theoretic problems. Journal of
Symbolic Computation, 13(3):231 – 233, 1992.

[58] T. Y. Li and Z. Zeng. A rank-revealing method with updating, downdating,
and applications. SIAM Journal on Matrix Analysis and Applications,
26(4):918–946, 2005.

[59] L. Ljung. System Identification: Theory for the User (2nd Edition). Prentice
Hall, 2 edition, January 1999.

[60] F. S. Macaulay. On some formulae in elimination. Proc. London Math. Soc.,
35:3–27, 1902.

[61] F. S. Macaulay. The algebraic theory of modular systems. Cambridge
University Press, 1916.

[62] E. W. Mayr and A. R. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Advances in Mathematics,
46(3):305 – 329, 1982.

[63] H. M. Moller and H. J. Stetter. Multivariate Polynomial Equations with
Multiple Zeros solved by Matrix Eigenproblems. Numerische Mathematik,
70(3):311–329, May 1995.

[64] A. Morgan. Solving polynomial systems using continuation for engineering
and scientific problems. Prentice-Hall, Englewood Cliffs, N.J., 1987.

[65] B. Mourrain. A new criterion for normal form algorithms. In Proc. AAECC,
volume 1719 of LNCS, pages 430–443. Springer, 1999.

176 REFERENCES

[66] B. Mourrain and V. Y. Pan. Multivariate polynomials, duality, and structured
matrices. Journal of Complexity, 16(1):110 – 180, 2000.

[67] K. Nagasaka. Backward Error Analysis of Approximate Gröbner Basis.
Preprint, 2012.

[68] M. T. Noda and T. Sasaki. Approximate gcd and its application to ill-
conditioned equations. Journal of Computational and Applied Mathematics,
38(1-3):335 – 351, 1991.

[69] L. Pachter and B. Sturmfels, editors. Algebraic Statistics for Computational
Biology. Cambridge University Press, August 2005.

[70] V. Y. Pan. Structured matrices and polynomials: unified superfast algorithms.
Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[71] S. U. Pillai and B. Liang. Blind image deconvolution using a robust gcd
approach. Image Processing, IEEE Transactions on, 8(2):295 –301, feb 1999.

[72] MATLAB R2012a. The Mathworks Inc., 2012. Natick, Massachusetts.

[73] A. Schönhage. Quasi-gcd computations. Journal of Complexity, 1(1):118 –
137, 1985.

[74] I. Schur. Bemerkungen zur Theorie der beschränkten Bilinearformen mit
unendlich vielen Veränderlichen. Journal für die Reine und Angewandte
Mathematik, 140:1 – 28, 1911.

[75] A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical decomposition
of the solution sets of polynomial systems into irreducible components. SIAM
Journal on Numerical Analysis, 38(6):2022–2046, 2001.

[76] A. J. Sommese and C. W. Wampler. Numerical Algebraic Geometry. In The
Mathematics of Numerical Analysis. In M. Shub J.Renegar and S. Smale,
editors, Lectures in Applied Mathematics. Proceedings of the AMS-SIAM
Summer Seminar in Applied Mathematics, pages 749–763. AMS, 1996.

[77] H. J. Stetter. Matrix eigenproblems are at the heart of polynomial system
solving. SIGSAM Bulletin, 30(4):22–5, December 1996.

[78] H. J. Stetter. Numerical Polynomial Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2004.

[79] G. W. Stewart. Computing the CS decomposition of a partitioned
orthonormal matrix. Numerische Mathematik, 40(3):297–306, October 1982.

[80] G. W. Stewart. Perturbation Theory for the Singular Value Decomposition. In
SVD and Signal Processing, II: Algorithms, Analysis and Applications, pages
99–109. Elsevier, 1990.

REFERENCES 177

[81] G. W. Stewart. On the Numerical Analysis of Oblique Projectors. SIAM
Journal on Matrix Analysis and Applications, 32(1):309–348, 2011.

[82] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory (Computer Science
and Scientific Computing). Academic Press, June 1990.

[83] G. Strang. The fundamental theorem of linear algebra. The American
Mathematical Monthly, 100(9):pp. 848–855, 1993.

[84] J. J. Sylvester. On the Intersections, Contacts, and Other Correlations of
Two Conics Expressed by Indeterminate Coordinates. Cambridge and Dublin
Mathematical Journal, pages 262–282, 1850.

[85] J. J. Sylvester. On a theory of syzygetic relations of two rational integral
functions, comprising an application to the theory of Sturm’s function and
that of the greatest algebraical common measure. Trans. Roy. Soc. Lond.,
1853.

[86] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial
Systems Using a Branch and Prune Approach. SIAM Journal on Numerical
Analysis, 34(2):797–827, April 1997.

[87] J. Verschelde. Algorithm 795: PHCpack: a general-purpose solver for
polynomial systems by homotopy continuation. ACM Trans. Math. Softw.,
25(2):251–276, 1999.

[88] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer
partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der
Hohlraumstrahlung). Mathematische Annalen, 71:441–479, 1912.

[89] C. K. Yap. A New Lower Bound Construction for Commutative Thue Systems
with Applications. Journal Of Symbolic Computation, 12(1):1–27, July 1991.

[90] Z. Zeng. The approximate GCD of inexact polynomials part II: a multivariate
algorithm. In Proceedings of the 2004 international symposium on Symbolic
and algebraic computation, pages 320–327, 2004.

[91] Z. Zeng. ApaTools: A Software Toolbox for Approximate Polynomial Algebra.
In Michael Stillman, Jan Verschelde, and Nobuki Takayama, editors, Software
for Algebraic Geometry, volume 148 of The IMA Volumes in Mathematics and
its Applications, pages 149–167. Springer New York, 2008.

[92] Z. Zeng. A numerical elimination method for polynomial computations. Theor.
Comput. Sci., 409:318–331, December 2008.

[93] Z. Zeng. The closedness subspace method for computing the multiplicity
structure of a polynomial system. In Interactions of Classical and Numerical
Algebraic, 2009.

178 REFERENCES

[94] Z. Zeng and B. H. Dayton. The approximate GCD of inexact polynomials
Part I: a univariate algorithm, 2004. preprint.

Publications by the author

Journal papers

• K. Batselier, P. Dreesen, and B. De Moor, ”The Geometry of Multivariate
Polynomial Division and Elimination”, SIAM Journal on Matrix Analysis
and Applications, vol. 34, no. 1, February 2013, pp. 102-125.

• K. Batselier, P. Dreesen, and B. De Moor, ”A geometrical approach to
finding multivariate approximate LCMs and GCDs”, Linear Algebra and
its Applications, vol. 438, no. 9, May 2013, pp. 3618-3628.

• K. Batselier, P. Dreesen, and B. De Moor, ”The Canonical Decomposition
of Cnd and Numerical Gröbner and Border Bases”, submitted.

• K. Batselier, P. Dreesen, and B. De Moor, ”A fast recursive orthogonalization
scheme for the Macaulay matrix”, submitted.

International Conference papers

• D. Geebelen, K. Batselier, P. Dreesen, M. Signoretto, J.A.K. Suykens, B.
De Moor, and J. Vandewalle, ”Joint Regression and Linear Combination of
Time Series for Optimal Prediction”, in Proc. of the European Symposium
on Artificial Neural Networks (ESANN 2012), Brugge, Belgium, April 2012.

• P. Dreesen, K. Batselier, and B. De Moor, ”Weighted/Structured Total
Least Squares Problems and Polynomial System Solving”, in Proc. of the
20th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2012), Brugge, Belgium, Apr.
2012, pp. 351-356.

• K. Batselier, P. Dreesen, and B. De Moor, ”Prediction Error Method
Identification is an Eigenvalue Problem”, in Proc. of the 16th IFAC

179

180 REFERENCES

Symposium on System Identification (SYSID 2012), Brussels, Belgium, July
2012.

• P. Dreesen, K. Batselier, and B. De Moor, ”Back to the Roots: Polynomial
System Solving, Linear Algebra, Systems Theory”, in Proc. of the 16th IFAC
Symposium on System Identification (SYSID 2012), Brussels, Belgium, July
2012, pp. 1203-1208.

• K. Batselier, P. Dreesen, and B. De Moor, ”Maximum Likelihood Estimation
and Polynomial System Solving”, in Proc. of the European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning 2012 (ESANN 2012), Brugge, Belgium, April 2012.

Curriculum vitae

Kim Batselier was born in Geraardsbergen in 1981. He received his Master of
Science degree in Electrical Engineering from the KU Leuven, Belgium in 2005.
He then worked for BIORICS, a spin-off of the research unit Measure, Model
and Manage Bio Responses (M3-BIORES), of the Department Biosystems of
the KU Leuven. His main work within BIORICS was the development of real-
time monitoring algorithms that use system identification techniques to monitor
professional football players during their training. This was in collaboration with
Milan Lab, the research centre of AC Milan. In 2009 he started to pursue a Ph.D.
degree at the STADIUS research unit of the Department of Electrical Engineering
of the KU Leuven, under the supervision of Prof. Bart De Moor. His Ph.D.
constituted the development of a numerical linear algebra framework in which
problems with multivariate polynomials are solved. His main research interests
are numerical linear and polynomial algebra, systems theory, system identification
and signal processing.

181

	Contents
	Introduction
	Motivating Problems
	Prediction Error Method System Identification
	Maximum Likelihood Estimation of Mixtures of Multinomial Distributions
	Blind Image Deconvolution

	Contributions
	Polynomial Numerical Linear Algebra Framework
	Bounds for the singular values and condition number of the multiplication matrix and Macaulay matrix
	Recursive orthogonalization algorithm for the Macaulay matrix
	Interpretations and the introduction of the canonical decomposition

	Chapter overview of the thesis

	Basic Operations on Polynomials
	Multivariate polynomials as vectors
	Multivariate polynomial Addition
	Multivariate Polynomial Multiplication
	Multiplication matrix
	Condition number

	Multivariate Polynomial Division
	Divisor matrix
	Quotient Space
	Nonuniqueness of quotient
	Nonuniqueness of remainder
	The Geometry of Polynomial Division
	Algorithm & Numerical Implementation
	Numerical Experiments
	Division by a Gröbner Basis
	Buchberger's Algorithm

	Macaulay matrix
	Definition
	Size, number of nonzero coefficients and density
	Upper bound on largest singular value
	Row space
	Affine interpretation
	Projective interpretation

	Left null space
	Syzygy analysis
	Degree of regularity

	Null space
	Link with projective roots
	Dual vector space
	Removing multiplicities of affine roots
	Conditions for existence of particular roots

	Fast Recursive Orthogonalization of the Macaulay matrix
	Introduction
	Notation
	The Orthogonalization Scheme
	Computational Complexity
	SVD
	Rank revealing QR decomposition

	Choosing the numerical tolerance
	Numerical Experiments
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	The Canonical Decomposition of Cnd
	The canonical decomposition of Cnd
	Definition
	Importance of the canonical decomposition
	Numerical Computation of the Canonical Decomposition
	Numerical Experiment - no perturbations on the coefficients
	Numerical Experiment - perturbed coefficients

	The Reduced Canonical Decomposition of Cnd
	The Reduced Monomials A(d),B(d) and Polynomials G(d)
	Numerical Computation of A(d),B(d) and G(d)
	Numerical Experiments

	Border Bases

	Applications
	Gröbner basis
	Affine root-finding
	Ideal Membership problem
	Iterative algorithm for finding l(d) and d
	Multivariate Polynomial Elimination
	The Geometry of Polynomial Elimination
	Algorithm & Numerical Implementation
	Numerical Experiments

	Approximate LCM and GCD
	Computing the LCM
	Computing the GCD
	Choosing the numerical tolerance
	Numerical Experiments

	Removing Multiplicities

	Conclusions and Future Work
	Concluding Remarks
	Future Research
	Numerical Analysis
	Curse of Dimensionality

	Numerical Linear Algebra
	Matrix Notation
	Vector and Matrix Norms
	Four Fundamental Subspaces
	Dual vector space
	Moore-Penrose pseudoinverse
	Condition Number for matrix inversion and least squares
	QR Decomposition
	Singular Value Decomposition
	Principal Angles
	Intersection of Subspaces
	CS Decomposition
	Projectors
	Sparse Matrices

	Algebraic Geometry
	Polynomials & Monomial Ordering
	Homogeneous Polynomials and Coordinates
	Ideals
	Varieties
	Gröbner Basis
	Least Common Multiples and Greatest Common Divisors

	References

