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Abstract: This article explores the link between prediction error methods, nonlinear polynomial
systems and generalized eigenvalue problems. It is shown how the global minimum of the sum
of squared prediction errors can be found from solving a nonlinear polynomial system. An
algorithm is provided that effectively counts the number of affine solutions of the nonlinear
polynomial system and determines these solutions by solving a generalized eigenvalue problem.
The proposed method is illustrated by means of an example.
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1. INTRODUCTION

Prediction-error methods (PEMs) [Ljung, 1999] have been
the dominant method in system identification for the
past 30 years. Their success is partly explained by their
broad applicability to a wide spectrum of model param-
eterizations. In addition, models are given with excellent
asymptotic properties due to its kinship with maximum
likelihood and systems that operate in closed loop can be
handled without any special techniques. But these meth-
ods also have some drawbacks. For instance, an explicit
parameterization of the model is always required and the
search for the parameters can be very laborious involving
search surfaces that may have many local minima. This
parameter search is typically carried out using the damped
Gauss-Newton method [Dennis and Schnabel, 1987]. Good
initial parameter values are then of crucial importance.
These are typically obtained by using subspace methods
[Van Overschee and De Moor, 1996]. In this article we will
present a numerical method for finding the global optimum
which does not require any initial parameter value. This
article will show that PEMs are in principle nonlinear
polynomial optimization problems. These are in effect
equivalent to solving a nonlinear multivariate polynomial
system. It has been only in the past 50 years that methods
have been developed to solve such multivariate polynomial
systems [Buchberger, 1965]. But these methods are purely
symbolic and have an inherent difficulty to cope with
measured data. It was Stetter [1996, 2004] who made the
conceptual link between multivariate polynomial systems
and generalized eigenvalue problems. And although Stetter
still uses symbolic computations, he demonstrated the
natural link between linear algebra and solving nonlinear
polynomial systems. This article takes this link a step
further by introducing a method [Dreesen et al., 2011] that
does not involve any symbolic computations. The main
contribution of this article is the introduction of an affine
root counting method, a sparse QR-based implementation
and its application on prediction error methods. The arti-

cle is structured as follows: in Section 2 it will be shown
how PEMs can be formulated as polynomial optimization
problems. Section 3 reviews the basic algorithm to find the
roots of a nonlinear polynomial system using only linear
algebra. Section 4 introduces a new method to count and
find only the affine roots and therefore discard all roots
at infinity. Section 5 discusses a practical implementation
of the algorithm using a sparse matrix representation and
in Section 6 the complete method is illustrated by means
of an example. Finally, in Section 7 we present some con-
cluding remarks. Only linear time-invariant (LTI) models
are considered in this article.

2. PREDICTION ERROR METHODS ARE
POLYNOMIAL OPTIMIZATION PROBLEMS

In this section it is shown that the prediction error scheme
for finding the parameters of LTI models is equivalent
to solving a nonlinear polynomial optimization problem
under certain conditions. Let the input and output of
the system be denoted by u(t) and y(t) respectively.
The collected past data up to time N is denoted by
ZN = {u(1), y(1), . . . , u(N), y(N)}. We will assume that
the measured data have been sampled at discrete time
instants. The general form of a LTI model is

A(q)y(t) =
B(q)
F (q)

u(t) +
C(q)
D(q)

e(t) (1)

where A(q), B(q), C(q), D(q), F (q) are polynomials in the
shift operator q−1 and e(t) is a white noise sequence. The
number of coefficients of A(q), B(q), C(q), D(q), F (q) are
na, nb, nc, nd, nf respectively. The degree of B(q) includes
a time delay of nk samples. The basic idea behind PEMs
involves the description of the LTI model as a one-step
ahead predictor ŷ(t|t−1, θ) of the output y(t). The param-
eter vector θ contains all coefficients of the polynomials in
(1). The one-step ahead predictor is given by

ŷ(t|t− 1, θ) =
[
I − A(q)D(q)

C(q)

]
y(t) +

B(q)D(q)
C(q)F (q)

u(t).



Prediction errors e(t, θ) are then defined as

e(t, θ) = y(t)− ŷ(t|t− 1, θ)

=
A(q)D(q)
C(q)

y(t)− B(q)D(q)
C(q)F (q)

u(t) (2)

The maximal lag n of (2) determines how many times this
expression can be written given ZN . From rewriting (2) as
C(q)F (q)e(t, θ) = A(q)D(q)F (q)y(t)−B(q)D(q)u(t) (3)

the maximal lag n is found as
n = max(na + nd + nf , nk + nb + nd − 1, nf + nc).

Note that the definition of the prediction errors e(t, θ)
implies that they are equal to e(t). Estimates for the model
parameters, given ZN , are then found as solutions of the
following optimization problem

θ̂ = argmin
θ

N∑
t=n+1

l(e(t, θ)) (4)

subject to (2) where l refers to a suitable norm. We will
assume the quadratic norm l(e) = e2

2 throughout the rest
of this article. By using Lagrange multipliers λ1, . . . , λN−n
these constraints can be added to the cost function

N∑
t=1

e(t, θ)2

2N
+

N∑
t=n+1

λt−1

[
e(t, θ)−

A(q)D(q)

C(q)
y(t) +

B(q)D(q)

C(q)F (q)
u(t)

]
.

(5)

The cost function (5) is clearly polynomial which shows
that for the chosen norm PEMs correspond to a nonlin-
ear polynomial optimization problem. Taking the partial
derivatives of (5) with respect to every unknown, the
model parameters and Lagrange multipliers, and equating
this to zero results in a multivariate polynomial system of
2N −n+na +nb +nc +nd +nf equations and unknowns.
PEMs are therefore mathematically equivalent to solving
a multivariate polynomial system. It is however possible to
simplify the problem. Examining the cost function (5) re-
veals that the prediction errors e(t, θ) occur quadratically.
Hence, each partial derivative with respect to a certain
e(t, θ) will result in an equation which is linear in that
e(t, θ). This means that each of the N prediction errors
can be eliminated from the polynomial system resulting in
N − n+ na + nb + nc + nd + nf equations and unknowns.
The cost for eliminating N equations and indeterminates
however is the increase of the degrees of the remaining
polynomials. Equation (3) reveals that the degree will
increase with nf + nc + 1 where the +1 term is due to
the Lagrange multiplier. Now that we have established
that in the prediction-error framework one needs to solve
a multivariate polynomial system we proceed with an
algorithm that solves this problem using numerical linear
algebra.

3. PREDICTION ERROR METHODS ARE
EIGENVALUE PROBLEMS

Since PEMs are equivalent with solving a multivariate
polynomial system it can also be shown that they are
in essence an eigenvalue problem. Dreesen et al. [2011]
discuss the link between multivariate polynomial system
solving and eigenvalue problems by means of the Macaulay
matrix. We will give a quick overview of the notation
and concepts for the case that there are no roots with

multiplicities and roots at infinity. First, a monomial
ordering needs to be chosen. This will allow us to order the
different monomials when representing the multivariate
polynomials as coefficient vectors. Note that any ordering
which is defined on Nn0 automatically implies an ordering
on all monomials in n indeterminates. For further details
about monomial orderings we refer to [Cox et al., 2007].
For the remainder of this article we will use the following
ordering.
Definition 3.1. Graded Xel Order. Let a and b ∈ Nn0 . We
say a >grxel b if

|a| =
n∑
i=1

ai > |b| =
n∑
i=1

bi, or |a| = |b| and a >xel b

where a >xel b if, in the vector difference a − b ∈ Zn, the
leftmost nonzero entry is negative.
Example 3.1. In N3

0 we have that (2, 0, 0) >grxel (0, 0, 1)
because |(2, 0, 0)| > |(0, 0, 1)| and this implies that
x2

1 >grxel x3. Likewise (0, 1, 1) >grxel (2, 0, 0) because
(0, 1, 1) >xel (2, 0, 0) which implies that x2x3 >grxel x

2
1.

The most important feature of this ordering is that it is
graded. This means that we can partition the coefficients
of our polynomial in blocks of equal degree. Once a
monomial ordering > is chosen we can uniquely identify
the largest monomial of a polynomial f according to
>. This monomial is called the leading monomial of f .
In addition, it also becomes possible now to represent
multivariate polynomials as vectors. Indeed, one simply
stores the coefficients of the polynomial into a vector,
graded xel ordered, ascending from left to right.
Example 3.2. The vector representation of 2+3x1−4x2 +
x1x2 − 7x2

2 is

( 1 x1 x2 x2
1 x1x2 x2

2

2 3 −4 0 1 −7
)
.

We will denote the vector space of all polynomials in n
indeterminates and of degree d by Cnd . The key concept in
solving multivariate polynomial systems is the Macaulay
matrix which is the matrix that contains the coefficients
of the polynomial system. This matrix is defined in terms
of the degree we consider.
Definition 3.2. Given a set of polynomials f1, . . . , fs ∈ Cnd ,
each of degree di (i = 1, . . . , s) then the Macaulay matrix
of degree d, M(d), is the matrix containing the coefficients
of

M(d) =



f1
x1f1

...
xd−d1n f1
f2
x1f2

...
xd−ds
n fs


(6)

where each polynomial fi is multiplied with all monomials
from degree 0 up to d− di for all i = 1, . . . , s.
Example 3.3. Suppose the following polynomial system{

f1 : xy − 2y = 0
f2 : y − 3 = 0



and fix the degree to 2. The Macaulay matrix is then

M(2) =


1 x y x2 xy y2

f1 0 0 −2 0 1 0
f2 −3 0 1 0 0 0
x f2 0 −3 0 0 1 0
y f2 0 0 −3 0 0 1


Note that the Macaulay matrix not only contains the origi-
nal polynomials f1, . . . , fs but also ’shifted’ versions where
we define a shift as a multiplication with a monomial. The
dependence of this matrix on the degree d is of crucial
importance, hence the notation M(d). It can be shown
[Macaulay, 1902, Giusti, 1988] that the degree

d =
s∑
i=1

di − n+ 1 (7)

provides an upper bound for the degree for which all the
solutions of the polynomial system appear in the kernel of
the Macaulay matrix. The number of solutions, which is
evidently the dimension of the kernel, is then simply given
by the Bezout bound

mB =
s∏
i=1

di.

The canonical kernel K is a generalized Vandermonde
matrix. It consists of columns of monomials, graded xel
ordered and evaluated in the roots of the polynomial
system. This monomial structure allows to use a shift
property which is reminiscent of realization theory. This
shift property tells us that the multiplication of rows of
the kernel with a monomial corresponds with a mapping
to other rows of the kernel. This can be written as the
following matrix equation

S1KD = S2K (8)
where S1 and S2 are row selection matrices and D a
diagonal matrix which contains the shift monomial on the
diagonal. S1 will select the first mB linear independent
rows of K. The importance of the graded ordering is here
shown since we explicitly want the linear independent rows
to be of a degree which is as low as possible. This in order
to make sure that the mapping to the other rows, via the
row selection matrix S2, will not lead to rows which are
out of bounds. The kernel K is unfortunately unknown
but a numerical basis Z for the kernel can be computed.
This basis Z is then related to K by K = ZV where V
is a linear transformation. Writing the shift property (8)
in terms of the numerical basis Z results in the following
generalized eigenvalue problem

BVD = AV (9)
where B = S1Z and A = S2Z. The eigenvalues D are
then the shift monomial evaluated in the different roots
of the polynomial system. The canonical kernel K is then
easily reconstructed from K = ZV . After normalizing K
such that its first row contains ones, all solutions can be
determined.

4. COUNTING AND FINDING AFFINE ROOTS

In practice, multivariate polynomial systems will also have
roots at infinity. These solutions are not desired and need
to be removed when formulating the generalized eigenvalue
problem (9). It is explained in Dreesen et al. [2011] how

solutions at infinity arise from a column-rank deficiency
of the coefficient block of highest degree. We will now
describe an algorithm that allows to count and find only
the desired affine solutions. In order to do this we need
to first understand the interpretation of the rank of the
Macaulay matrix.
Lemma 1. The rank r(d) of the Macaulay matrix M(d)
counts the number of different leading monomials that are
present in the row space of the matrix.
Proof 4.1. By performing a left-right column permutation
of the Macaulay matrixM(d) and then bringing the matrix
into reduced row echelon form one easily sees that there
are r(d) different leading monomials which are present in
the row space. �

We denote the set of these r(d) leading monomials by A(d).
It is now possible to define the following subset of A(d).
Definition 4.1. Given a set of leading monomials A(d),
then the reduced monomial system A?(d) is defined as the
smallest subset of A(d) for which each element of A(d) is
divisible by an element of A?(d):

A?(d) = {a? ∈ A(d) : ∀ a ∈ A(d),∃ a?such that a?|a}
where a?|a denotes a? divides a.

Before we can proof that the reduced monomial system
accounts for only the affine solutions the concept of a pure
component needs to be introduced.
Definition 4.2. In Cnd a monomial xdk (k ∈ {1, . . . , n}, d ∈
Nn0 ) is a pure component and we denote the set of these n
monomials by Xd

n.

It is clear from the definition of the reduced monomial
system that if pure components are present in A(d) that
they will also be present in A?(d).
Lemma 2. All monomials in n indeterminates of degree
d ≥ dmax = n (d0 − 1) + 1 can be written as a product of
an element of Xd0

n with another monomial.
Proof 4.2. The proof can be completely done in Nn0 since
there is a bijection between the exponents of monomials
and Nn0 . We first show that for any degree d < dmax,
monomials can be found which cannot be written as a
product of a pure component and another monomial. For
degree dmax − 1 = n (d0 − 1) we can write the following
monomial

(d0 − 1, d0 − 1, . . . , d0 − 1) (10)
which clearly cannot be written as a product of a pure
component and another monomial. It’s possible to come
up with similar examples for all degrees between d0 and
dmax − 1 by just subtracting the necessary amount of a
component of (10). For degree dmax = n (d0 − 1) + 1 we
can write the following monomial

(d0, d0 − 1, . . . , d0 − 1) (11)

which is clearly the product of xd01 and xd0−1
2 . . . xd0−1

n .
Any other monomial of degree dmax can now be formed
by rearranging (11) (subtracting from one component and
adding to another). If, however, one component is sub-
tracted with a certain amount then the other components
should be increased such that the sum of all components
remains constant. From this it’s easy to see that there will
always be at least 1 component ≥ d0. �



Now all necessary ingredients are present to proof the
condition for the zero-dimensionality of the affine solution
set.
Theorem 3. A multivariate polynomial system f1, . . . , fs
has a zero-dimensional affine solution set if from a certain
degree A(d) contains for each indeterminate a pure com-
ponent. The number of affine solutions are then counted
by the right corank of the Macaulay matrix of the corre-
sponding reduced monomial system A?(d).
Proof 4.3. Suppose that the condition is satisfied for a
certain degree d. Let d1, . . . , dn be the degrees of the pure
components for each indeterminate x1, . . . , xn respectively
and let d0 = max(d1, . . . , dn). Now consider the reduced
monomial system A?(d). Theorem 2 tells us that from
a degree dmax = n(d0 − 1) + 1 onwards all columns of
highest degree of the Macaulay matrix of A?(d) will be
filled and hence its right corank will not increase anymore.
This proves the zero-dimensionality of the solution set. In
addition, the coefficient block of highest degree being of
full column rank also implies that the monomials of A?(d)
do not account for the solutions at infinity. �

Theorem (3) provides the basis for counting the affine solu-
tions. Algorithm 1 summarizes the different steps in pseu-
docode. The algorithm iterates over the degree d, starting
from the maximal degree in the polynomial system. For
every degree the Macaulay matrix M(d) is constructed.
From this matrix a basis Z for its kernel, the monomial
set A(d) and the reduced monomial system A?(d) are de-
termined. Once a reduced monomial system A?(d) with all
pure components is found, the number of affine solutions
are then determined by counting the zero columns of the
Macaulay matrix constructed from A?(d). Furthermore,
the indices of those zero columns provide the indices of
the rows of Z that form the B matrix of the generalized
eigenvalue problem. These indices hence determine the row
selection matrix S1 of (9). After choosing a monomial
shift, the matrix A = S2 Z can be constructed and the
generalized eigenvalue solved. After the canonical kernel
K is reconstructed and normalized such that its first row
contains ones, all affine solutions of (4) are effectively
found.

Algorithm 1. Affine Root-finding
Input : polynomials f1, . . . , fs ∈ Cnd
Output : canonical kernel K of affine roots
• d = max(d1, . . . , ds)
• A?(d) =ø
• WHILE all pure components /∈ A?(d)

· construct M(d)
· compute basis Z
· compute A(d) from M(d)
· compute A?(d) from A(d)
· IF all pure components ∈ A?(d)

construct A = S2 Z and B = S1 Z
[V,D] = eig(A,B)
K = Z V
normalize K

· ELSE
d = d+ 1

· ENDIF
• ENDWHILE

The following section explains how Algorithm 1 is imple-
mented using two sparse rank-revealing QR factorizations.

5. IMPLEMENTATION OF THE METHOD

The number of rows p(d) of the Macaulay matrix M(d) is
given by

p(d) =
s∑
i=1

(
d− deg(fi) + n

n

)
and the number of columns q(d) by

q(d) =
(
d+ n

n

)
.

Due to the this combinatorial explosion it quickly becomes
difficult to store the full matrix in memory. Fortunately
M(d) is extremely sparse and structured. This sparsity
can be exploited by using a sparse matrix representation
which stores only the nonzero elements in memory. The
rank ofM(d) and a basis for its kernel need to be computed
and a sparse setting is not suited to do a full singular
value decomposition. A sparse rank-revealing QR decom-
position is available however and the implementation used
in this article is by Davis [20xx]. Householder reflections
are applied to the sparse M(d)T matrix to obtain the
factorization M(d)T = QR where R is upper triangular
and Q orthogonal. Before the factorization, a column per-
mutation P is applied to M(d)T to reduce fill-in of R.
The rank r(d) of M(d) is estimated from the number of
nonzero diagonal elements of R and a basis Z for the kernel
is then given by the columns of Q corresponding with zero
diagonal elements of R. It is only by computing the QR
decomposition of the transpose of M(d) that a basis for
the kernel can be computed. The leading monomials A(d)
are found from the sparse QR decomposition of ZTP2

where P2 is another column permutation. Notice that the
monomials of A(d) are the linear independent columns of
M(d) and therefore linear dependent rows of Z. Let m
denote the number of columns of Z. Since Z is of full
column rank, the linear independent rows of Z are given
by the first m columns of ZTP2. These linear independent
rows of Z also form the B matrix of the generalized
eigenvalue problem. The leading monomials of A(d) are
the remaining columns of ZTP2. The reduced monomial
system A?(d) is easily obtained from the exponents of the
monomials in A(d). Checking whether all pure components
are present in A?(d) is also done by inspecting its expo-
nents. Once all pure components are found, the matrices
A and B are easily obtained from Z. Since the dimension
of the eigenvalue problem is typically much less than the
dimension of M(d), both matrices can be stored in a full
representation. Computing the first QR decomposition is
the limiting step in the algorithm. The size of the full
Q, which depends on the number of polynomials and
unknowns and the degree of each polynomial, determines
the applicability of the method. From this it can be seen
that the number of data points N will be the restrictive
factor in solving these problems. Eliminating the Lagrange
multipliers would remove this dependence of the size of the
polynomial system on N at the cost of higher degrees. How
this elimination can be achieved is not yet clear and the
subject of further research.



6. EXAMPLE: MODEL PARAMETER ESTIMATION
OF AN OUTPUT ERROR MODEL

This section illustrates the application of the described
method on a small example. The model parameters of the
following Output-Error model

y(t) =
0.2q−1

(1− 1.6q−1 + .89q−2)
u(t) + e(t) (12)

are estimated. The system is excited with a white-noise
input u(t) of 6 samples. These samples are obtained from a
zero-mean Gaussian distribution with a standard deviation
of 10. The system output y(t) is then calculated from
(12) using zero-mean Gaussian white noise e(t) with a
standard deviation of 0.1. After introducing the Lagrange
multipliers λ1, . . . , λ4 and eliminating the prediction errors
e(1) . . . , e(6), the following nonlinear polynomial system of
7 polynomials in 7 indeterminates is obtained

y(3) + f1y(2) + f2y(1)− b1u(2)− 6λ1 − 6λ2f1 − 6λ3f2

−6λ1f
2
1 − 6f1λ2f2 − 6f2

2λ1 = 0

y(4) + f1y(3) + f2y(2)− b1u(3)− 6λ2 − 6λ3f1 − 6λ4f2

−6λ1f1 − 6λ2f
2
1 − 6f1λ3f2 − 6f2λ1f1 − 6λ2f

2
2 = 0

y(5) + f1y(4) + f2y(3)− b1u(4)− 6λ3 − 6λ4f1 − 6λ2f1

−6λ3f
2
1 − 6f1λ4f2 − 6λ1f2 − 6f1λ2f2 − 6λ3f

2
2 = 0

y(6) + f1y(5) + f2y(4)− b1u(5)− 6λ4 − 6λ3f1 − 6λ4f
2
1

−6λ2f2 − 6f1λ3f2 − 6λ4f
2
2 = 0

λ1y(2)− 6λ2
1f1 − 6λ1λ2f2 + λ2y(3)− 6λ2λ1 − 6λ2

2f1

−6λ2λ3f2 + λ3y(4)− 6λ3λ2 − 6λ2
3f1 − 6λ3λ4f2

+λ4y(5)− 6λ4λ3 − 6λ2
4f1 = 0

λ1y(1)− 6λ2
1f2 + λ2y(2)− 6λ2λ1f1 − 6λ2

2f2 + λ3y(3)

−6λ3λ1 − 6λ3λ2f1 − 6λ2
3f2 + λ4y(4)− 6λ4λ2

−6λ4λ3f1 − 6λ2
4f2 = 0

−λ1u(2)− λ2u(3)− λ3u(4)− λ4u(5) = 0.

(13)

Note that in this example

x1 = b1

x2 = f1

x3 = f2

x4 = λ1

x5 = λ2

x6 = λ3

x7 = λ4.

The reduced monomial system A?(d) contains all pure
components from the degree d = 9. This is well below the
upper bound (7) which evaluates to 6(3− 1) + 1 = 13. In-
deed, (7) is in practice a very pessimistic upper bound. The
Macaulay matrix M(9) is a 16731 by 11440 matrix. The
pure components are given by {b41, f3

1 , f
4
2 , λ

3
1, λ

3
2, λ

3
3, λ4}.

The affine solution set consists of 43 solutions of a total of
801. Only 7 of the 43 are real. The solution that minimizes
the cost function

V =
1
12

6∑
t=1

e(t)2

is given by

b1 = 0.2174

f1 =−1.5738

f2 = 0.8506

λ1 = 0.0004

λ2 =−0.0009

λ3 =−0.0099

λ4 = 0.0180.

with V = 0.00822. The model corresponding with the
global miminum is hence given by

y(t) =
0.2174q−1

(1− 1.5738q−1 + 0.8506q−2)
u(t) + e(t). (14)

The 6 remaining affine solutions correspond with non-
stable solutions and therefore the Matlab System Iden-
tification toolbox [Ljung, 2008] returns exactly the same
result. This confirms that the proposed method solves the
optimization problem (4) as described in [Ljung, 1999].

7. CONCLUSION

A new method was proposed that guarantees to find the
global optimimum of nonlinear polynomial optimization
problems and was applied to the prediction-error frame-
work. The method is able to correctly find all affine so-
lutions and remove all solutions at infinity by employing
the notion of the reduced monomial system. Finding these
roots however is still a daunting task considering the
combinatorial explosion of the dimensions of the Macaulay
matrix. The dependence of the size of the polynomial sys-
tem on the number of data points N is a restricting factor
in the applicability of the method. Further elimination
of the Lagrange multipliers would be desirable but it is
not yet clear how this can be achieved. Exploiting the
sparsity of the Macaulay matrix already enables us to solve
problems which are already impossible to solve in a full
matrix representation. Surely, the next step is to exploit
the quasi-toeplitz structure of the Macaulay matrix and
to eliminate the Lagrange multipliers.
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