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Preface to LS-SVMLab v1.8

LS-SVMLab v1.8 contains some bug fixes from the previous version

• When using the preprocessing option, class labels are not considered as real variables. This
problem occurred when the number of dimensions were larger than the number of data
points.

• The error “matrix is not positive definite” in the crossvalidatelssvm command has been
solved.

• The error in the robustlssvm command with functional interface has been solved. robustlssvm
now only works with the object oriented interface. This is also adapted in the manual at
pages 33 and 99.

• The error “Reference to non-existent field implementation ” has been solved in the bay_optimize
command.

The LS-SVMLab Team
Heverlee, Belgium
June 2011
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Preface to LS-SVMLab v1.7

We have added new functions to the toolbox and updated some of the existing commands with
respect to the previous version v1.6. Because many readers are familiar with the layout of version
1.5 and version 1.6, we have tried to change it as little as possible. Here is a summary of the main
changes:

• The major difference with the previous version is the optimization routine used to find
the minimum of the cross-validation score function. The tuning procedure consists out of
two steps: 1) Coupled Simulated Annealing determines suitable tuning parameters and 2)
a simplex method uses these previous values as starting values in order to perform a fine-
tuning of the parameters. The major advantage is speed. The number of function evaluations
needed to find optimal parameters reduces from ±200 in v1.6 to 50 in this version.

• The construction of bias-corrected approximate 100(1− α)% pointwise/simulataneous con-
fidence and prediction intervals have been added to this version.

• Some bug-fixes are performed in the function roc. The class labels do not need to be +1 or
−1, but can also be 0 and 1. The conversion is automatically done.

The LS-SVMLab Team
Heverlee, Belgium
September 2010

5



6



Preface to LS-SVMLab v1.6

We have added new functions to the toolbox and updated some of the existing commands with
respect to the previous version v1.5. Because many readers are familiar with the layout of version
1.5, we have tried to change it as little as possible. The major difference is the speed-up of several
methods. Here is a summary of the main changes:

Chapter/solver/function What’s new
1. A birds eye on LS-SVMLab

2. LS-SVMLab toolbox examples Roadmap to LS-SVM; Addition of more regres-
sion and classification examples; Easier interface for
multi-class classification; Changed implementation
for robust LS-SVM.

3. Matlab functions Possibility of regression or classification using only
one command!; The function validate has been
deleted; Faster (robust) training and (robust) model
selection criteria are provided; In case of robust re-
gression different weight functions are provided to
be used with iteratively reweighted LS-SVM.

4. LS-SVM solver All CMEX and/or C files have been removed. The
linear system is solved by using the Matlab com-
mand “backslash” (\).

The LS-SVMLab Team
Heverlee, Belgium
June 2010
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Chapter 1

Introduction

Support Vector Machines (SVM) is a powerful methodology for solving problems in nonlinear
classification, function estimation and density estimation which has also led to many other recent
developments in kernel based learning methods in general [14, 5, 27, 28, 48, 47]. SVMs have
been introduced within the context of statistical learning theory and structural risk minimization.
In the methods one solves convex optimization problems, typically quadratic programs. Least
Squares Support Vector Machines (LS-SVM) are reformulations to standard SVMs [32, 43] which
lead to solving linear KKT systems. LS-SVMs are closely related to regularization networks [10]
and Gaussian processes [51] but additionally emphasize and exploit primal-dual interpretations.
Links between kernel versions of classical pattern recognition algorithms such as kernel Fisher
discriminant analysis and extensions to unsupervised learning, recurrent networks and control [33]
are available. Robustness, sparseness and weightings [7, 34] can be imposed to LS-SVMs where
needed and a Bayesian framework with three levels of inference has been developed [44]. LS-SVM
alike primal-dual formulations are given to kernel PCA [37, 1], kernel CCA and kernel PLS [38].
For very large scale problems and on-line learning a method of Fixed Size LS-SVM is proposed
[8], based on the Nyström approximation [12, 49] with active selection of support vectors and
estimation in the primal space. The methods with primal-dual representations have also been
developed for kernel spectral clustering [2], data visualization [39], dimensionality reduction and
survival analysis [40]

The present LS-SVMlab toolbox User’s Guide contains Matlab implementations for a number
of LS-SVM algorithms related to classification, regression, time-series prediction and unsupervised
learning. All functions are tested with Matlab R2008a, R2008b, R2009a, R2009b and R2010a. Ref-
erences to commands in the toolbox are written in typewriter font.

A main reference and overview on least squares support vector machines is

J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle,
Least Squares Support Vector Machines,
World Scientific, Singapore, 2002 (ISBN 981-238-151-1).

The LS-SVMlab homepage is

http://www.esat.kuleuven.be/sista/lssvmlab/

The LS-SVMlab toolbox is made available under the GNU general license policy:

Copyright (C) 2010 KULeuven-ESAT-SCD

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

11



12 CHAPTER 1. INTRODUCTION

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the website of LS-SVMlab or the GNU
General Public License for a copy of the GNU General Public License specifications.



Chapter 2

A birds eye view on LS-SVMlab

The toolbox is mainly intended for use with the commercial Matlab package. The Matlab toolbox
is compiled and tested for different computer architectures including Linux and Windows. Most
functions can handle datasets up to 20.000 data points or more. LS-SVMlab’s interface for Matlab
consists of a basic version for beginners as well as a more advanced version with programs for multi-
class encoding techniques and a Bayesian framework. Future versions will gradually incorporate
new results and additional functionalities.

A number of functions are restricted to LS-SVMs (these include the extension “lssvm” in the
function name), the others are generally usable. A number of demos illustrate how to use the
different features of the toolbox. The Matlab function interfaces are organized in two principal
ways: the functions can be called either in a functional way or using an object oriented structure
(referred to as the model) as e.g. in Netlab [22], depending on the user’s choice1.

2.1 Classification and regression

Function calls: trainlssvm, simlssvm, plotlssvm, prelssvm, postlssvm, cilssvm,

predlssvm;
Demos: Subsections 3.2, 3.3, demofun, democlass, democonfint.

The Matlab toolbox is built around a fast LS-SVM training and simulation algorithm. The
corresponding function calls can be used for classification as well as for function estimation. The
function plotlssvm displays the simulation results of the model in the region of the training
points.

The linear system is solved via the flexible and straightforward code implemented in Matlab
(lssvmMATLAB.m), which is based on the Matlab matrix division (backslash command \).

Functions for single and multiple output regression and classification are available. Training
and simulation can be done for each output separately by passing different kernel functions, kernel
and/or regularization parameters as a column vector. It is straightforward to implement other
kernel functions in the toolbox.

The performance of a model depends on the scaling of the input and output data. An appro-
priate algorithm detects and appropriately rescales continuous, categorical and binary variables
(prelssvm, postlssvm).

An important tool accompanying the LS-SVM for function estimation is the construction of
interval estimates such as confidence intervals. In the area of kernel based regression, a popular
tool to construct interval estimates is the bootstrap (see e.g. [15] and reference therein). The
functions cilssvm and predlssvm result in confidence and prediction intervals respectively for

1See http://www.kernel-machines.org/software.html for other software in kernel based learning techniques.

13



14 CHAPTER 2. A BIRDS EYE VIEW ON LS-SVMLAB

LS-SVM [9]. This method is not based on bootstrap and thus obtains in a fast way interval
estimates.

2.1.1 Classification extensions

Function calls: codelssvm, code, deltablssvm, roc, latentlssvm;
Demos: Subsection 3.2, democlass.

A number of additional function files are available for the classification task. The latent vari-
able of simulating a model for classification (latentlssvm) is the continuous result obtained by
simulation which is discretised for making the final decisions. The Receiver Operating Characteris-
tic curve [16] (roc) can be used to measure the performance of a classifier. Multiclass classification
problems are decomposed into multiple binary classification tasks [45]. Several coding schemes can
be used at this point: minimum output, one-versus-one, one-versus-all and error correcting coding
schemes. To decode a given result, the Hamming distance, loss function distance and Bayesian
decoding can be applied. A correction of the bias term can be done, which is especially interesting
for small data sets.

2.1.2 Tuning and robustness

Function calls: tunelssvm, crossvalidatelssvm, leaveoneoutlssvm, robustlssvm;
Demos: Subsections 3.2.2, 3.2.6, 3.3.6, 3.3.8, demofun, democlass, demomodel.

A number of methods to estimate the generalization performance of the trained model are
included. For classification, the rate of misclassifications (misclass) can be used. Estimates based
on repeated training and validation are given by crossvalidatelssvm and leaveoneoutlssvm. A
robust crossvalidation (based on iteratively reweighted LS-SVM) score function [7, 6] is called by
rcrossvalidatelssvm. In the case of outliers in the data, corrections to the support values will
improve the model (robustlssvm) [34]. These performance measures can be used to determine the
tuning parameters (e.g. the regularization and kernel parameters) of the LS-SVM (tunelssvm). In
this version, the tuning of the parameters is conducted in two steps. First, a state-of-the-art global
optimization technique, Coupled Simulated Annealing (CSA) [52], determines suitable parameters
according to some criterion. Second, these parameters are then given to a second optimization
procedure (simplex or gridsearch) to perform a fine-tuning step. CSA have already proven to
be more effective than multi-start gradient descent optimization [35]. Another advantage of CSA
is that it uses the acceptance temperature to control the variance of the acceptance probabilities
with a control scheme. This leads to an improved optimization efficiency because it reduces the
sensitivity of the algorithm to the initialization parameters while guiding the optimization process
to quasi-optimal runs. By default, CSA uses five multiple starters.

2.1.3 Bayesian framework

Function calls: bay lssvm, bay optimize, bay lssvmARD, bay errorbar, bay modoutClass,

kpca, eign;
Demos: Subsections 3.2.5, 3.3.3.

Functions for calculating the posterior probability of the model and hyper-parameters at
different levels of inference are available (bay_lssvm) [41]. Errors bars are obtained by tak-
ing into account model- and hyper-parameter uncertainties (bay_errorbar). For classification
[44], one can estimate the posterior class probabilities (this is also called the moderated output)
(bay_modoutClass). The Bayesian framework makes use of the eigenvalue decomposition of the
kernel matrix. The size of the matrix grows with the number of data points. Hence, one needs
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approximation techniques to handle large datasets. It is known that mainly the principal eigenval-
ues and corresponding eigenvectors are relevant. Therefore, iterative approximation methods such
as the Nyström method [46, 49] are included, which is also frequently used in Gaussian processes.
Input selection can be done by Automatic Relevance Determination (bay_lssvmARD) [42]. In a
backward variable selection, the third level of inference of the Bayesian framework is used to infer
the most relevant inputs of the problem.

2.2 NARX models and prediction

Function calls: predict, windowize;
Demo: Subsection 3.3.8.

Extensions towards nonlinear NARX systems for time-series applications are available [38].
A NARX model can be built based on a nonlinear regressor by estimating in each iteration
the next output value given the past output (and input) measurements. A dataset is converted
into a new input (the past measurements) and output set (the future output) by windowize and
windowizeNARX for respectively the time-series case and in general the NARX case with exogenous
input. Iteratively predicting (in recurrent mode) the next output based on the previous predictions
and starting values is done by predict.

2.3 Unsupervised learning

Function calls: kpca, denoise kpca, preimage rbf;
Demo: Subsection 3.4.

Unsupervised learning can be done by kernel based PCA (kpca) as described by [30], for which
a primal-dual interpretation with least squares support vector machine formulation has been given
in [37], which has also be further extended to kernel canonical correlation analysis [38] and kernel
PLS.

2.4 Solving large scale problems with fixed size LS-SVM

Function calls: demo fixedsize, AFEm, kentropy;
Demos: Subsection 3.3.9, demo fixedsize, demo fixedclass.

Classical kernel based algorithms like e.g. LS-SVM [32] typically have memory and computa-
tional requirements of O(N2). Work on large scale methods proposes solutions to circumvent this
bottleneck [38, 30].

For large datasets it would be advantageous to solve the least squares problem in the primal
weight space because then the size of the vector of unknowns is proportional to the feature vector
dimension and not to the number of datapoints. However, the feature space mapping induced
by the kernel is needed in order to obtain non-linearity. For this purpose, a method of fixed size
LS-SVM is proposed [38]. Firstly the Nyström method [44, 49] can be used to estimate the feature
space mapping. The link between Nyström approximation, kernel PCA and density estimation has
been discussed in [12]. In fixed size LS-SVM these links are employed together with the explicit
primal-dual LS-SVM interpretations. The support vectors are selected according to a quadratic
Renyi entropy criterion (kentropy). In a last step a regression is done in the primal space which
makes the method suitable for solving large scale nonlinear function estimation and classification
problems. The method of fixed size LS-SVM is suitable for handling very large data sets.

An alternative criterion for subset selection was presented by [3, 4], which is closely related to
[49] and [30]. It measures the quality of approximation of the feature space and the space induced
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by the subset (see Automatic Feature Extraction or AFEm). In [49] the subset was taken as a
random subsample from the data (subsample).



Chapter 3

LS-SVMlab toolbox examples

3.1 Roadmap to LS-SVM

In this Section we briefly sketch how to obtain an LS-SVM model (valid for classification and
regression), see Figure 3.1.

1. Choose between the functional or objected oriented interface (initlssvm), see A.3.16

2. Search for suitable tuning parameters (tunelssvm), see A.3.36

3. Train the model given the previously determined tuning parameters (trainlssvm), see A.3.35

4a. Simulate the model on e.g. test data (simlssvm), see A.3.34

4b. Visualize the results when possible (plotlssvm), see A.3.25

  data
 (X,Y)

functional 
 interface

object oriented
    interface

tunelssvm trainlssvm simlssvm

plotlssvm

Figure 3.1: List of commands for obtaining an LS-SVM model

3.2 Classification

At first, the possibilities of the toolbox for classification tasks are illustrated.

3.2.1 Hello world

A simple example shows how to start using the toolbox for a classification task. We start with
constructing a simple example dataset according to the correct formatting. Data are represented
as matrices where each row of the matrix contains one datapoint:

>> X = 2.*rand(100,2)-1;

>> Y = sign(sin(X(:,1))+X(:,2));

>> X

17
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X =

0.9003 -0.9695

-0.5377 0.4936

0.2137 -0.1098

-0.0280 0.8636

0.7826 -0.0680

0.5242 -0.1627

.... ....

-0.4556 0.7073

-0.6024 0.1871

>> Y

Y =

-1

-1

1

1

1

1

...

1

-1

In order to make an LS-SVM model (with Gaussian RBF kernel), we need two tuning parame-
ters: γ (gam) is the regularization parameter, determining the trade-off between the training error
minimization and smoothness. In the common case of the Gaussian RBF kernel, σ2 (sig2) is the
squared bandwidth:

>> gam = 10;

>> sig2 = 0.4;

>> type = ’classification’;

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’});

The parameters and the variables relevant for the LS-SVM are passed as one cell. This cell
allows for consistent default handling of LS-SVM parameters and syntactical grouping of related
arguments. This definition should be used consistently throughout the use of that LS-SVM model.
The corresponding object oriented interface to LS-SVMlab leads to shorter function calls (see
demomodel).

By default, the data are preprocessed by application of the function prelssvm to the raw
data and the function postlssvm on the predictions of the model. This option can explicitly be
switched off in the call:

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’original’});

or be switched on (by default):

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’preprocess’});

Remember to consistently use the same option in all successive calls.
To evaluate new points for this model, the function simlssvm is used.

>> Xt = 2.*rand(10,2)-1;

>> Ytest = simlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b},Xt);
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Figure 3.2: Figure generated by plotlssvm in the simple classification task.

The LS-SVM result can be displayed if the dimension of the input data is two.

>> plotlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b});

All plotting is done with this simple command. It looks for the best way of displaying the result
(Figure 3.2).

3.2.2 Example

The well-known Ripley dataset problem consists of two classes where the data for each class have
been generated by a mixture of two normal distributions (Figure 3.3a).

First, let us build an LS-SVM on the dataset and determine suitable tuning parameters. These
tuning parameters are found by using a combination of Coupled Simulated Annealing (CSA) and
a standard simplex method. First, CSA finds good starting values and these are passed to the
simplex method in order to fine tune the result.

>> % load dataset ...

>> type = ’classification’;

>> L_fold = 10; % L-fold crossvalidation

>> [gam,sig2] = tunelssvm({X,Y,type,[],[],’RBF_kernel’},’simplex’,...

’crossvalidatelssvm’,{L_fold,’misclass’});

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’});

>> plotlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b});

It is still possible to use a gridsearch in the second run i.e. as a replacement for the simplex
method

>> [gam,sig2] = tunelssvm({X,Y,type,[],[],’RBF_kernel’},’gridsearch’,...

’crossvalidatelssvm’,{L_fold,’misclass’});

The Receiver Operating Characteristic (ROC) curve gives information about the quality of the
classifier:

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’});



20 CHAPTER 3. LS-SVMLAB TOOLBOX EXAMPLES

>> % latent variables are needed to make the ROC curve

>> Y_latent = latentlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b},X);

>> [area,se,thresholds,oneMinusSpec,Sens]=roc(Y_latent,Y);

>> [thresholds oneMinusSpec Sens]

ans =

-2.1915 1.0000 1.0000

-1.1915 0.9920 1.0000

-1.1268 0.9840 1.0000

-1.0823 0.9760 1.0000

... ... ...

-0.2699 0.1840 0.9360

-0.2554 0.1760 0.9360

-0.2277 0.1760 0.9280

-0.1811 0.1680 0.9280

... ... ...

1.1184 0 0.0080

1.1220 0 0

2.1220 0 0

The corresponding ROC curve is shown on Figure 3.3b.
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Figure 3.3: ROC curve of the Ripley classification task. (a) Original LS-SVM classifier. (b)
Receiver Operating Characteristic curve.
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3.2.3 Using the object oriented interface: initlssvm

Another possibility to obtain the same results is by using the object oriented interface. This goes
as follows:

>> % load dataset ...

>> % gateway to the object oriented interface

>> model = initlssvm(X,Y,type,[],[],’RBF_kernel’);

>> model = tunelssvm(model,’simplex’,’crossvalidatelssvm’,{L_fold,’misclass’});

>> model = trainlssvm(model);

>> plotlssvm(model);

>> % latent variables are needed to make the ROC curve

>> Y_latent = latentlssvm(model,X);

>> [area,se,thresholds,oneMinusSpec,Sens]=roc(Y_latent,Y);

3.2.4 LS-SVM classification: only one command line away!

The simplest way to obtain an LS-SVM model goes as follows (binary classification problems and
one versus one encoding for multiclass)

>> % load dataset ...

>> type = ’classification’;

>> Yp = lssvm(X,Y,type);

The lssvm command automatically tunes the tuning parameters via 10-fold cross-validation (CV)
or leave-one-out CV depending on the sample size. This function will automatically plot (when
possible) the solution. By default, the Gaussian RBF kernel is taken. Further information can be
found in A.3.24.



22 CHAPTER 3. LS-SVMLAB TOOLBOX EXAMPLES

3.2.5 Bayesian inference for classification

This Subsection further proceeds on the results of Subsection 3.2.2. A Bayesian framework is used
to optimize the tuning parameters and to obtain the moderated output. The optimal regularization
parameter gam and kernel parameter sig2 can be found by optimizing the cost on the second and
the third level of inference, respectively. It is recommended to initiate the model with appropriate
starting values:

>> [gam, sig2] = bay_initlssvm({X,Y,type,gam,sig2,’RBF_kernel’});

Optimization on the second level leads to an optimal regularization parameter:

>> [model, gam_opt] = bay_optimize({X,Y,type,gam,sig2,’RBF_kernel’},2);

Optimization on the third level leads to an optimal kernel parameter:

>> [cost_L3,sig2_opt] = bay_optimize({X,Y,type,gam_opt,sig2,’RBF_kernel’},3);

The posterior class probabilies are found by incorporating the uncertainty of the model parameters:

>> gam = 10;

>> sig2 = 1;

>> Ymodout = bay_modoutClass({X,Y,type,10,1,’RBF_kernel’},’figure’);

One can specify a prior class probability in the moderated output in order to compensate for
an unbalanced number of training data points in the two classes. When the training set contains
N+ positive instances and N− negative ones, the moderated output is calculated as:

prior =
N+

N+ +N−

>> Np = 10;

>> Nn = 50;

>> prior = Np / (Nn + Np);

>> Posterior_class_P = bay_modoutClass({X,Y,type,10,1,’RBF_kernel’},...

’figure’, prior);

The results are shown in Figure 3.4.
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Figure 3.4: (a) Moderated output of the LS-SVM classifier on the Ripley data set. The colors
indicate the probability to belong to a certain class; (b) This example shows the moderated output
of an unbalanced subset of the Ripley data; (c) One can compensate for unbalanced data in the
calculation of the moderated output. Notice that the area of the blue zone with the positive
samples increases by the compensation. The red zone shrinks accordingly.
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3.2.6 Multi-class coding

The following example shows how to use an encoding scheme for multi-class problems. The encod-
ing and decoding are considered as a separate and independent preprocessing and postprocessing
step respectively (Figure 3.5(a) and 3.5(b)). A demo file demomulticlass is included in the
toolbox.

>> % load multiclass data ...

>> [Ycode, codebook, old_codebook] = code(Y,’code_MOC’);

>>

>> [alpha,b] = trainlssvm({X,Ycode,’classifier’,gam,sig2});

>> Yhc = simlssvm({X,Ycode,’classifier’,gam,sig2},{alpha,b},Xtest);

>>

>> Yhc = code(Yh,old_codebook,[],codebook,’codedist_hamming’);

In multiclass classification problems, it is easiest to use the object oriented interface which
integrates the encoding in the LS-SVM training and simulation calls:

>> % load multiclass data ...

>> model = initlssvm(X,Y,’classifier’,[],[],’RBF_kernel’);

>> model = tunelssvm(model,’simplex’,...

’leaveoneoutlssvm’,{’misclass’},’code_OneVsOne’);

>> model = trainlssvm(model);

>> plotlssvm(model);

The last argument of the tunelssvm routine can be set to

• code OneVsOne: One versus one coding

• code MOC: Minimum output coding

• code ECOC: Error correcting output code

• code OneVsAll: One versus all coding
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Figure 3.5: LS-SVM multi-class example: (a) one versus one encoding; (b) error correcting output
code; (c) Minimum output code; (d) One versus all encoding.

3.3 Regression

3.3.1 A simple example

This is a simple demo, solving a simple regression task using LS-SVMlab. A dataset is constructed
in the correct formatting. The data are represented as matrices where each row contains one
datapoint:

>> X = linspace(-1,1,50)’;

>> Y = (15*(X.^2-1).^2.*X.^4).*exp(-X)+normrnd(0,0.1,length(X),1);

>> X

X =

-1.0000

-0.9592

-0.9184

-0.8776
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-0.8367

-0.7959

...

0.9592

1.0000

>> Y =

Y =

0.0138

0.2953

0.6847

1.1572

1.5844

1.9935

...

-0.0613

-0.0298

In order to obtain an LS-SVM model (with the RBF kernel), we need two extra tuning pa-
rameters: γ (gam) is the regularization parameter, determining the trade-off between the training
error minimization and smoothness of the estimated function. σ2 (sig2) is the kernel function
parameter. In this case we use leave-one-out CV to determine the tuning parameters.

>> type = ’function estimation’;

>> [gam,sig2] = tunelssvm({X,Y,type,[],[],’RBF_kernel’},’simplex’,...

’leaveoneoutlssvm’,{’mse’});

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’});

>> plotlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b});

The parameters and the variables relevant for the LS-SVM are passed as one cell. This cell
allows for consistent default handling of LS-SVM parameters and syntactical grouping of related
arguments. This definition should be used consistently throughout the use of that LS-SVM model.
The object oriented interface to LS-SVMlab leads to shorter function calls (see demomodel).

By default, the data are preprocessed by application of the function prelssvm to the raw
data and the function postlssvm on the predictions of the model. This option can be explicitly
switched off in the call:

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’original’});

or can be switched on (by default):

>> [alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’preprocess’});

Remember to consistently use the same option in all successive calls.
To evaluate new points for this model, the function simlssvm is used. At first, test data is

generated:

>> Xt = rand(10,1).*sign(randn(10,1));

Then, the obtained model is simulated on the test data:
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>> Yt = simlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’preprocess’},{alpha,b},Xt);

ans =

0.0847

0.0378

1.9862

0.4688

0.3773

1.9832

0.2658

0.2515

1.5571

0.3130

The LS-SVM result can be displayed if the dimension of the input data is one or two.

>> plotlssvm({X,Y,type,gam,sig2,’RBF_kernel’,’preprocess’},{alpha,b});

All plotting is done with this simple command. It looks for the best way of displaying the result
(Figure 3.6).

3.3.2 LS-SVM regression: only one command line away!

As an alternative one can use the one line lssvm command:

>> type = ’function estimation’;

>> Yp = lssvm(X,Y,type);

By default, the Gaussian RBF kernel is used. Further information can be found in A.3.24.
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Figure 3.6: Simple regression problem. The solid line indicates the estimated outputs, the dotted
line represents the true underlying function. The dots indicate the training data points.
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3.3.3 Bayesian Inference for Regression

An example on the sinc data is given:

>> type = ’function approximation’;

>> X = linspace(-2.2,2.2,250)’;

>> Y = sinc(X) +normrnd(0,.1,size(X,1),1);

>> [Yp,alpha,b,gam,sig2] = lssvm(X,Y,type);

The errorbars on the training data are computed using Bayesian inference:

>> sig2e = bay_errorbar({X,Y,type, gam, sig2},’figure’);

See Figure 3.7 for the resulting error bars.
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Figure 3.7: This figure gives the 68% errorbars (green dotted and green dashed-dotted line) and
the 95% error bars (red dotted and red dashed-dotted line) of the LS-SVM estimate (solid line)
of a simple sinc function.

In the next example, the procedure of the automatic relevance determination is illustrated:

>> X = normrnd(0,2,100,3);

>> Y = sinc(X(:,1)) + 0.05.*X(:,2) +normrnd(0,.1,size(X,1),1);

Automatic relevance determination is used to determine the subset of the most relevant inputs for
the proposed model:

>> inputs = bay_lssvmARD({X,Y,type, 10,3});

>> [alpha,b] = trainlssvm({X(:,inputs),Y,type, 10,1});
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3.3.4 Using the object oriented model interface

This case illustrates how one can use the model interface. Here, regression is considered, but the
extension towards classification is analogous.

>> type = ’function approximation’;

>> X = normrnd(0,2,100,1);

>> Y = sinc(X) +normrnd(0,.1,size(X,1),1);

>> kernel = ’RBF_kernel’;

>> gam = 10;

>> sig2 = 0.2;

A model is defined

>> model = initlssvm(X,Y,type,gam,sig2,kernel);

>> model

model =

type: ’f’

x_dim: 1

y_dim: 1

nb_data: 100

kernel_type: ’RBF_kernel’

preprocess: ’preprocess’

prestatus: ’ok’

xtrain: [100x1 double]

ytrain: [100x1 double]

selector: [1x100 double]

gam: 10

kernel_pars: 0.2000

x_delays: 0

y_delays: 0

steps: 1

latent: ’no’

code: ’original’

codetype: ’none’

pre_xscheme: ’c’

pre_yscheme: ’c’

pre_xmean: -0.0690

pre_xstd: 1.8282

pre_ymean: 0.2259

pre_ystd: 0.3977

status: ’changed’

weights: []

Training, simulation and making a plot is executed by the following calls:

>> model = trainlssvm(model);

>> Xt = normrnd(0,2,150,1);

>> Yt = simlssvm(model,Xt);

>> plotlssvm(model);

The second level of inference of the Bayesian framework can be used to optimize the regular-
ization parameter gam. For this case, a Nyström approximation of the 20 principal eigenvectors is
used:
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>> model = bay_optimize(model,2,’eign’, 50);

Optimization of the cost associated with the third level of inference gives an optimal kernel
parameter. For this procedure, it is recommended to initiate the starting points of the kernel
parameter. This optimization is based on Matlab’s optimization toolbox. It can take a while.

>> model = bay_initlssvm(model);

>> model = bay_optimize(model,3,’eign’,50);

3.3.5 Confidence/Predition Intervals for Regression

Consider the following example: Fossil data set

>> % Load data set X and Y

Initializing and tuning the parameters

>> model = initlssvm(X,Y,’f’,[],[], ’RBF_kernel’,’o’);

>> model = tunelssvm(model,’simplex’,’crossvalidatelssvm’,{10,’mse’});

Bias corrected approximate 100(1−α)% pointwise confidence intervals on the estimated LS-SVM
model can then be obtained by using the command cilssvm:

>> ci = cilssvm(model,alpha,’pointwise’);

Typically, the value of the significance level alpha is set to 5%. The confidence intervals obtained
by this command are pointwise. For example, by looking at two pointwise confidence intervals in
Figure 3.8(a) (Fossil data set [26]) we can make the following two statements separately

• (0.70743, 0.70745) is an approximate 95% pointwise confidence interval for m(105);

• (0.70741, 0.70744) is an approximate 95% pointwise confidence interval for m(120).

However, as is well known in multiple comparison theory, it is wrong to state that m(105) is
contained in (0.70743, 0.70745) and simultaneously m(120) is contained in (0.70741, 0.70744) with
95% confidence. Therefore, it is not correct to connect the pointwise confidence intervals to
produce a band around the estimated function. In order to make these statements we have to
modify the interval to obtain simultaneous confidence intervals. Three major groups exist to
modify the interval: Monte Carlo simulations, Bonferroni, S̆idák corrections and results based
on distributions of maxima and upcrossing theory [25, 36, 18]. The latter is implemented in the
software. Figure 3.8(b) shows the 95% pointwise and simultaneous confidence intervals on the
estimated LS-SVM model. As expected the simultaneous intervals are much wider than pointwise
intervals. Simultaneous confidence intervals can be obtained by

>> ci = cilssvm(model,alpha,’simultaneous’);

In some cases one may also be interested in the uncertainty on the prediction for a new
observation Xt. This type of requirement is fulfilled by the construction of a prediction interval.
As before, pointwise and simultaneous prediction intervals can be found by

>> pi = predlssvm(model,Xt,alpha,’pointwise’);

and

>> pi = predlssvm(model,Xt,alpha,’simultaneous’);

respectively. We illustrate both type of prediction intervals on the following example. Note that
the software can also handle heteroscedastic data. Also, the cilssvm and predlssvm can be called
by the functional interface (see A.3.9 and A.3.27).
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Figure 3.8: (a) Fossil data with two pointwise 95% confidence intervals.; (b) Simultaneous and
pointwise 95% confidence intervals. The outer (inner) region corresponds to simultaneous (point-
wise) confidence intervals. The full line (in the middle) is the estimated LS-SVM model. For
illustration purposes the 95% pointwise confidence intervals are connected.

>> X = linspace(-5,5,200)’;

>> Y = sin(X)+sqrt(0.05*X.^2+0.01).*randn(200,1);

>> model = initlssvm(X,Y,’f’,[],[], ’RBF_kernel’,’o’);

>> model = tunelssvm(model,’simplex’,’crossvalidatelssvm’,{10,’mae’});

>> Xt = linspace(-4.5,4.7,200)’;

Figure 3.9 shows the 95% pointwise and simultaneous prediction intervals on the test set Xt. As
expected the simultaneous intervals are again much wider than pointwise intervals.
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Figure 3.9: Pointwise and simultaneous 95% prediction intervals for the above given data. The
outer (inner) region corresponds to simultaneous (pointwise) prediction intervals. The full line
(in the middle) is the estimated LS-SVM model. For illustration purposes the 95% pointwise
prediction intervals are connected.
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As a final example, consider the Boston Housing data set (multivariate example). We selected
randomly 338 training data points and 168 test data points. The corresponding simultaneous
confidence and prediction intervals are shown in Figure 3.10(a) and Figure 3.10(b) respectively.
The outputs on training as well as on test data are sorted and plotted against their correspond-
ing index. Also, the respective intervals are sorted accordingly. For illustration purposes the
simultaneous confidence/prediction intervals are not connected.

>> % load full data set X and Y

>> sel = randperm(506);

>>

>> % Construct test data

>> Xt = X(sel(1:168),:);

>> Yt = Y(sel(1:168));

>>

>> % training data

>> X = X(sel(169:end),:);

>> Y = Y(sel(169:end));

>>

>> model = initlssvm(X,Y,’f’,[],[],’RBF_kernel’,’o’);

>> model = tunelssvm(model,’simplex’,’crossvalidatelssvm’,{10,’mse’});

>> model = trainlssvm(model);

>> Yhci = simlssvm(model,X);

>> Yhpi = simlssvm(model,Xt);

>> [Yhci,indci] = sort(Yhci,’descend’);

>> [Yhpi,indpi] = sort(Yhpi,’descend’);

>>

>> % Simultaneous confidence intervals

>> ci = cilssvm(model,0.05,’simultaneous’); ci = ci(indci,:);

>> plot(Yhci); hold all, plot(ci(:,1),’g.’); plot(ci(:,2),’g.’);

>>

>> % Simultaneous prediction intervals

>> pi = predlssvm(model,Xt,0.05,’simultaneous’); pi = pi(indpi,:);

>> plot(Yhpi); hold all, plot(pi(:,1),’g.’); plot(pi(:,2),’g.’);

0 50 100 150 200 250 300 350
−3

−2

−1

0

1

2

3

4

Index

so
rt
ed

m̂
(X

)
(T

ra
in
in
g
d
a
ta
)

(a)

0 20 40 60 80 100 120 140 160 180
−4

−3

−2

−1

0

1

2

3

4

5

Index

so
rt
ed

m̂
(X
t)

(T
es
t
d
a
ta
)

(b)

Figure 3.10: (a) Simultaneous 95% confidence intervals for the Boston Housing data set (dots).
Sorted outputs are plotted against their index; (b) Simultaneous 95% prediction intervals for the
Boston Housing data set (dots). Sorted outputs are plotted against their index.
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3.3.6 Robust regression

First, a dataset containing 15% outliers is constructed:

>> X = (-5:.07:5)’;

>> epsilon = 0.15;

>> sel = rand(length(X),1)>epsilon;

>> Y = sinc(X)+sel.*normrnd(0,.1,length(X),1)+(1-sel).*normrnd(0,2,length(X),1);

Robust tuning of the tuning parameters is performed by rcrossvalildatelssvm. Also notice
that the preferred loss function is the L1 (mae). The weighting function in the cost function is
chosen to be the Huber weights. Other possibilities, included in the toolbox, are logistic weights,
myriad weights and Hampel weights. Note that the function robustlssvm only works with the
object oriented interface!

>> model = initlssvm(X,Y,’f’,[],[],’RBF_kernel’);

>> L_fold = 10; %10 fold CV

>> model = tunelssvm(model,’simplex’,...

’rcrossvalidatelssvm’,{L_fold,’mae’},’whuber’);

Robust training is performed by robustlssvm:

>> model = robustlssvm(model);

>> plotlssvm(model);
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Figure 3.11: Experiments on a noisy sinc dataset with 15% outliers: (a) Application of the
standard training and hyperparameter selection techniques; (b) Application of an iteratively
reweighted LS-SVM training together with a robust crossvalidation score function, which enhances
the test set performance.
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In a second, more extreme, example, we have taken the contamination distribution to be a
cubic standard Cauchy distribution and ǫ = 0.3.

>> X = (-5:.07:5)’;

>> epsilon = 0.3;

>> sel = rand(length(X),1)>epsilon;

>> Y = sinc(X)+sel.*normrnd(0,.1,length(X),1)+(1-sel).*trnd(1,length(X),1).^3;

As before, we use the robust version of cross-validation. The weight function in the cost function is

chosen to be the myriad weights. All weight functions W : R → [0, 1], with W (r) = ψ(r)
r

satisfying
W (0) = 1, are shown in Table 3.1 with corresponding loss function L(r) and score function

ψ(r) = dL(r)
dr

. This type of weighting function is especially designed to handle extreme outliers.
The results are shown in Figure 3.12. Three of the four weight functions contain parameters which
have to be tuned (see Table 3.1). The software automatically tunes the parameters of the huber
and myriad weight function according to the best performance for these two weight functions. The
two parameters of the Hampel weight function are set to b1 = 2.5 and b2 = 3.

>> model = initlssvm(X,Y,’f’,[],[],’RBF_kernel’);

>> L_fold = 10; %10 fold CV

>> model = tunelssvm(model,’simplex’,...

’rcrossvalidatelssvm’,{L_fold,’mae’},’wmyriad’);

>> model = robustlssvm(model);

>> plotlssvm(model);
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Figure 3.12: Experiments on a noisy sinc dataset with extreme outliers. (a) Application of the
standard training and tuning parameter selection techniques; (b) Application of an iteratively
reweighted LS-SVM training (myriad weights) together with a robust cross-validation score func-
tion, which enhances the test set performance;
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Table 3.1: Definitions for the Huber, Hampel, Logistic and Myriad (with parameter δ ∈ R
+
0 )

weight functions W (·). The corresponding loss L(·) and score function ψ(·) are also given.

Huber Hampel Logistic Myriad

W (r)

{

1, if |r| < β;
β

|r|
, if |r| ≥ β.







1, if |r| < b1;
b2−|r|
b2−b1

, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

tanh(r)

r

δ2

δ2 + r2

ψ(r)

L(r)
{

r2, if |r| < β;
β|r| − 1

2
c2, if |r| ≥ β.











r2, if |r| < b1;
b2r

2−|r3|
b2−b1

, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

r tanh(r) log(δ2 + r2)

3.3.7 Multiple output regression

In the case of multiple output data one can treat the different outputs separately. One can also let
the toolbox do this by passing the right arguments. This case illustrates how to handle multiple
outputs:

>> % load data in X, Xt and Y

>> % where size Y is N x 3

>>

>> gam = 1;

>> sig2 = 1;

>> [alpha,b] = trainlssvm({X,Y,’classification’,gam,sig2});

>> Yhs = simlssvm({X,Y,’classification’,gam,sig2},{alpha,b},Xt);

Using different kernel parameters per output dimension:

>> gam = 1;

>> sigs = [1 2 1.5];

>> [alpha,b] = trainlssvm({X,Y,’classification’,gam,sigs});

>> Yhs = simlssvm({X,Y,’classification’,gam,sigs},{alpha,b},Xt);

Tuning can be done per output dimension:

>> % tune the different parameters

>> [gam,sigs] = tunelssvm({X,Y,’classification’,[],[],’RBF_kernel’},’simplex’,...

’crossvalidatelssvm’,{10,’mse’});
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3.3.8 A time-series example: Santa Fe laser data prediction

Using the static regression technique, a nonlinear feedforward prediction model can be built. The
NARX model takes the past measurements as input to the model.

>> % load time-series in X and Xt

>> lag = 50;

>> Xu = windowize(X,1:lag+1);

>> Xtra = Xu(1:end-lag,1:lag); %training set

>> Ytra = Xu(1:end-lag,end); %training set

>> Xs=X(end-lag+1:end,1); %starting point for iterative prediction

Cross-validation is based upon feedforward simulation on the validation set using the feedfor-
wardly trained model:

>> [gam,sig2] = tunelssvm({Xtra,Ytra,’f’,[],[],’RBF_kernel’},’simplex’,...

’crossvalidatelssvm’,{10,’mae’});

Prediction of the next 100 points is done in a recurrent way:

>> [alpha,b] = trainlssvm({Xtra,Ytra,’f’,gam,sig2,’RBF_kernel’});

>> %predict next 100 points

>> prediction = predict({Xtra,Ytra,’f’,gam,sig2,’RBF_kernel’},Xs,100);

>> plot([prediction Xt]);

In Figure 3.13 results are shown for the Santa Fe laser data.
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Figure 3.13: The solid line denotes the Santa Fe chaotic laser data. The dashed line shows the
iterative prediction using LS-SVM with the RBF kernel with optimal hyper-parameters obtained
by tuning.
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3.3.9 Fixed size LS-SVM

The fixed size LS-SVM is based on two ideas (see also Section 2.4): the first is to exploit the
primal-dual formulations of the LS-SVM in view of a Nyström approximation (Figure 3.14).

Figure 3.14: Fixed Size LS-SVM is a method for solving large scale regression and classification
problems. The number of support vectors is pre-fixed beforehand and the support vectors are
selected from a pool of training data. After estimating eigenfunctions in relation to a Nyström
approximation with selection of the support vectors according to an entropy criterion, the LS-SVM
model is estimated in the primal space.

The second one is to do active support vector selection (here based on entropy criteria). The
first step is implemented as follows:

>> % X,Y contains the dataset, svX is a subset of X

>> sig2 = 1;

>> features = AFEm(svX,’RBF_kernel’,sig2, X);

>> [Cl3, gam_optimal] = bay_rr(features,Y,1,3);

>> [W,b] = ridgeregress(features, Y, gam_optimal);

>> Yh = features*W+b;

Optimal values for the kernel parameters and the capacity of the fixed size LS-SVM can be
obtained using a simple Monte Carlo experiment. For different kernel parameters and capacities
(number of chosen support vectors), the performance on random subsets of support vectors are
evaluated. The means of the performances are minimized by an exhaustive search (Figure 3.15b):

>> caps = [10 20 50 100 200]

>> sig2s = [.1 .2 .5 1 2 4 10]

>> nb = 10;

>> for i=1:length(caps),

for j=1:length(sig2s),

for t = 1:nb,

sel = randperm(size(X,1));

svX = X(sel(1:caps(i)));

features = AFEm(svX,’RBF_kernel’,sig2s(j), X);

[Cl3, gam_opt] = bay_rr(features,Y,1,3);

[W,b] = ridgeregress(features, Y, gam_opt);

Yh = features*W+b;

performances(t) = mse(Y - Yh);

end
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minimal_performances(i,j) = mean(performances);

end

end

The kernel parameter and capacity corresponding to a good performance are searched:

>> [minp,ic] = min(minimal_performances,[],1);

>> [minminp,is] = min(minp);

>> capacity = caps(ic);

>> sig2 = sig2s(is);

The following approach optimizes the selection of support vectors according to the quadratic
Renyi entropy:

>> % load data X and Y, ’capacity’ and the kernel parameter ’sig2’

>> sv = 1:capacity;

>> max_c = -inf;

>> for i=1:size(X,1),

replace = ceil(rand.*capacity);

subset = [sv([1:replace-1 replace+1:end]) i];

crit = kentropy(X(subset,:),’RBF_kernel’,sig2);

if max_c <= crit, max_c = crit; sv = subset; end

end

This selected subset of support vectors is used to construct the final model (Figure 3.15a):

>> features = AFEm(svX,’RBF_kernel’,sig2, X);

>> [Cl3, gam_optimal] = bay_rr(features,Y,1,3);

>> [W,b, Yh] = ridgeregress(features, Y, gam_opt);
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Figure 3.15: Illustration of fixed size LS-SVM on a noisy sinc function with 20.000 data points: (a)
fixed size LS-SVM selects a subset of the data after Nyström approximation. The regularization
parameter for the regression in the primal space is optimized here using the Bayesian framework;
(b) Estimated cost surface of the fixed size LS-SVM based on random subsamples of the data, of
different subset capacities and kernel parameters.
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The same idea can be used for learning a classifier from a huge data set.

>> % load the input and output of the trasining data in X and Y

>> cap = 25;

The first step is the same: the selection of the support vectors by optimizing the entropy cri-
terion. Here, the pseudo code is showed. For the working code, one can study the code of
demo_fixedclass.m.

% initialise a subset of cap points: Xs

>> for i = 1:1000,

Xs_old = Xs;

% substitute a point of Xs by a new one

crit = kentropy(Xs, kernel, kernel_par);

% if crit is not larger then in the previous loop,

% substitute Xs by the old Xs_old

end

By taking the values -1 and +1 as targets in a linear regression, the Fisher discriminant is obtained:

>> features = AFEm(Xs,kernel, sigma2,X);

>> [w,b] = ridgeregress(features,Y,gamma);

New data points can be simulated as follows:

>> features_t = AFEm(Xs,kernel, sigma2,Xt);

>> Yht = sign(features_t*w+b);

An example of a resulting classifier and the selected support vectors is displayed in Figure 3.16
(see demo_fixedclass).
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Figure 3.16: An example of a binary classifier (Ripley data set) obtained by application of a fixed
size LS-SVM (20 support vectors) on a classification task.
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3.4 Unsupervised learning using kernel principal compo-
nent analysis

A simple example shows the idea of denoising in the input space by means of kernel PCA. The
demo can be called by:

>> demo_yinyang

and uses the routine preimage_rbf.m which is a fixed-point iteration algorithm for computing
pre-images in the case of RBF kernels. The pseudo-code is shown as follows:

>> % load training data in Xtrain and test data in Xtest

>> dim = size(Xtrain,2);

>> nb_pcs = 4;

>> factor = 0.25;

>> sig2 = factor*dim*mean(var(Xtrain)); % A rule of thumb for sig2;

>> [lam,U] = kpca(Xtrain,’RBF_kernel’,sig2,Xtest,’eigs’,nb_pcs);

The whole dataset is denoised by computing approximate pre-images:

>> Xd = preimage_rbf(X,sig2,U,[Xtrain;Xtest],’d’);

Figure 3.17 shows the original dataset in gray (’+’) and the denoised data in blue (’o’). Note
that, the denoised data points preserve the underlying nonlinear structure of the data which is
not the case in linear PCA.
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Appendix A

MATLAB functions

A.1 General notation

In the full syntax description of the function calls, a star (*) indicates that the argument is optional.
In the description of the arguments, a (*) denotes the default value. In this extended help of the
function calls of LS-SVMlab, a number of symbols and notations return in the explanation and
the examples. These are defined as follows:

Variables Explanation
d Dimension of the input vectors

empty Empty matrix ([])
m Dimension of the output vectors
N Number of training data
Nt Number of test data
nb Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation
X N×d matrix with the inputs of the training data
Xt Nt×d matrix with the inputs of the test data
Y N×m matrix with the outputs of the training data
Yt Nt×m matrix with the outputs of the test data
Zt Nt×m matrix with the predicted latent variables of a classifier

This toolbox supports a classical functional interface as well as an object oriented interface.
The latter has a few dedicated structures which will appear many times:

Structures Explanation
bay Object oriented representation of the results of the Bayesian

inference
model Object oriented representation of the LS-SVM model

41
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A.2 Index of function calls

A.2.1 Training and simulation

Function Call Short Explanation Reference

latentlssvm Calculate the latent variables of the LS-SVM
classifier

A.3.20

plotlssvm Plot the LS-SVM results in the environment of
the training data

A.3.25

simlssvm Evaluate the LS-SVM at the given points A.3.34
trainlssvm Find the support values and the bias term of a

Least Squares Support Vector Machine
A.3.35

lssvm One line LS-SVM A.3.24
cilssvm pointwise or simultaneous confidence intervals A.3.9

predlssvm pointwise or simultaneous prediction intervals A.3.27
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A.2.2 Object oriented interface

This toolbox supports a classical functional interface as well as an object oriented interface. The
latter has a few dedicated functions. This interface is recommended for the more experienced user.

Function Call Short Explanation Reference

changelssvm Change properties of an LS-SVM object A.3.16
demomodel Demo introducing the use of the compact calls

based on the model structure
initlssvm Initiate the LS-SVM object before training A.3.16
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A.2.3 Training and simulating functions

Function Call Short Explanation Reference

lssvmMATLAB.m MATLAB implementation of training -
prelssvm Internally called preprocessor A.3.29

postlssvm Internally called postprocessor A.3.29
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A.2.4 Kernel functions

Function Call Short Explanation Reference

lin_kernel Linear kernel for MATLAB implementation A.3.22
poly_kernel Polynomial kernel for MATLAB implementa-

tion
A.3.22

RBF_kernel Radial Basis Function kernel for MATLAB im-
plementation

A.3.22

MLP_kernel Multilayer Perceptron kernel for MATLAB im-
plementation

??
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A.2.5 Tuning, sparseness and robustness

Function Call Short Explanation Reference

crossvalidate Estimate the model performance with L-fold
crossvalidation

A.3.11

gcrossvalidate Estimate the model performance with general-
ized crossvalidation

A.3.15

rcrossvalidate Estimate the model performance with robust
L-fold crossvalidation

A.3.30

gridsearch A two-dimensional minimization procedure
based on exhaustive search in a limited range

A.3.36

leaveoneout Estimate the model performance with leave-
one-out crossvalidation

A.3.21

mae, medae L1 cost measures of the residuals A.3.23
linf, misclass L∞ and L0 cost measures of the residuals A.3.23

mse L2 cost measures of the residuals A.3.23
tunelssvm Tune the tuning parameters of the model with

respect to the given performance measure
A.3.36

robustlssvm Robust training in the case of non-Gaussian
noise or outliers

A.3.32
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A.2.6 Classification extensions

Function Call Short Explanation Reference

code Encode and decode a multi-class classification
task to multiple binary classifiers

A.3.10

code_ECOC Error correcting output coding A.3.10
code_MOC Minimum Output Coding A.3.10

code_OneVsAll One versus All encoding A.3.10
code_OneVsOne One versus One encoding A.3.10

codedist_hamming Hamming distance measure between two en-
coded class labels

A.3.10

codelssvm Encoding the LS-SVM model A.3.10
deltablssvm Bias term correction for the LS-SVM classifi-

catier
A.3.12

roc Receiver Operating Characteristic curve of a bi-
nary classifier

A.3.33
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A.2.7 Bayesian framework

Function Call Short Explanation Reference

bay_errorbar Compute the error bars for a one dimensional
regression problem

A.3.2

bay_initlssvm Initialize the tuning parameters for Bayesian in-
ference

A.3.3

bay_lssvm Compute the posterior cost for the different lev-
els in Bayesian inference

A.3.4

bay_lssvmARD Automatic Relevance Determination of the in-
puts of the LS-SVM

A.3.5

bay_modoutClass Estimate the posterior class probabilities of a
binary classifier using Bayesian inference

A.3.6

bay_optimize Optimize model- or tuning parameters with re-
spect to the different inference levels

A.3.7

bay_rr Bayesian inference for linear ridge regression A.3.8
eign Find the principal eigenvalues and eigenvectors

of a matrix with Nyström’s low rank approxi-
mation method

A.3.14

kernel_matrix Construct the positive (semi-) definite kernel
matrix

A.3.18

kpca Kernel Principal Component Analysis A.3.19
ridgeregress Linear ridge regression A.3.31
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A.2.8 NARX models and prediction

Function Call Short Explanation Reference

predict Iterative prediction of a trained LS-SVM
NARX model (in recurrent mode)

A.3.26

windowize Rearrange the data points into a Hankel matrix
for (N)AR time-series modeling

A.3.37

windowize_NARX Rearrange the input and output data into
a (block) Hankel matrix for (N)AR(X) time-
series modeling

A.3.37
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A.2.9 Unsupervised learning

Function Call Short Explanation Reference

AFEm Automatic Feature Extraction from Nyström
method

A.3.1

denoise_kpca Reconstruct the data mapped on the principal
components

A.3.13

kentropy Quadratic Renyi Entropy for a kernel based es-
timator

A.3.17

kpca Compute the nonlinear kernel principal compo-
nents of the data

A.3.19

preimage_rbf Compute an approximate pre-image in the in-
put space (for RBF kernels)

A.3.28
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A.2.10 Fixed size LS-SVM

The idea of fixed size LS-SVM is still under development. However, in order to enable the user
to explore this technique a number of related functions are included in the toolbox. A demo
illustrates how to combine these in order to build a fixed size LS-SVM.

Function Call Short Explanation Reference

AFEm Automatic Feature Extraction from Nyström
method

A.3.1

bay_rr Bayesian inference of the cost on the 3 levels of
linear ridge regression

A.3.8

demo_fixedsize Demo illustrating the use of fixed size LS-SVMs
for regression

-

demo_fixedclass Demo illustrating the use of fixed size LS-SVMs
for classification

-

kentropy Quadratic Renyi Entropy for a kernel based es-
timator

A.3.17

ridgeregress Linear ridge regression A.3.31
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A.2.11 Demos

name of the demo Short Explanation

demofun Simple demo illustrating the use of LS-SVMlab
for regression

demo_fixedsize Demo illustrating the use of fixed size LS-SVMs
for regression

democlass Simple demo illustrating the use of LS-SVMlab
for classification

demo_fixedclass Demo illustrating the use of fixed size LS-SVMs
for classification

demomodel Simple demo illustrating the use of the object
oriented interface of LS-SVMlab

demo_yinyang Demo illustrating the possibilities of unsuper-
vised learning by kernel PCA

democonfint Demo illustrating the construction of confi-
dence intervals for LS-SVMs (regression)
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A.3 Alphabetical list of function calls

A.3.1 AFEm

Purpose

Automatic Feature Extraction by Nyström method

Basic syntax

>> features = AFEm(X, kernel, sig2, Xt)

Description

Using the Nyström approximation method, the mapping of data to the feature space can be evalu-
ated explicitly. This gives features that one can use for a parametric regression or classification in
the primal space. The decomposition of the mapping to the feature space relies on the eigenvalue
decomposition of the kernel matrix. The Matlab (’eigs’) or Nyström’s (’eign’) approximation
using the nb most important eigenvectors/eigenvalues can be used. The eigenvalue decomposition
is not re-calculated if it is passed as an extra argument.

Full syntax

>> [features, U, lam] = AFEm(X, kernel, sig2, Xt)

>> [features, U, lam] = AFEm(X, kernel, sig2, Xt, etype)

>> [features, U, lam] = AFEm(X, kernel, sig2, Xt, etype, nb)

>> features = AFEm(X, kernel, sig2, Xt, [],[], U, lam)

Outputs
features Nt×nb matrix with extracted features
U(*) N×nb matrix with eigenvectors
lam(*) nb×1 vector with eigenvalues

Inputs
X N×d matrix with input data
kernel Name of the used kernel (e.g. ’RBF_kernel’)
sig2 Kernel parameter(s) (for linear kernel, use [])
Xt Nt×d data from which the features are extracted
etype(*) ’eig’(*), ’eigs’ or ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation
U(*) N×nb matrix with eigenvectors
lam(*) nb×1 vector with eigenvalues

See also:

kernel_matrix, RBF_kernel, demo_fixedsize
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A.3.2 bay errorbar

Purpose

Compute the error bars for a one dimensional regression problem

Basic syntax

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2}, Xt)

>> sig_e = bay_errorbar(model, Xt)

Description

The computation takes into account the estimated noise variance and the uncertainty of the model
parameters, estimated by Bayesian inference. sig_e is the estimated standard deviation of the
error bars of the points Xt. A plot is obtained by replacing Xt by the string ’figure’.

Full syntax

• Using the functional interface:

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2,kernel,preprocess}, Xt)

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2,kernel,preprocess}, Xt, etype)

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2,kernel,preprocess}, Xt, etype, nb)

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2,kernel,preprocess}, ’figure’)

>> sig_e = bay_errorbar({X,Y,’function’,gam,sig2,kernel,preprocess}, ’figure’, etype, nb)

Outputs
sig_e Nt×1 vector with the σ2 error bars of the test data

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the inputs of the training data
type ’function estimation’ (’f’)
gam Regularization parameter
sig2 Kernel parameter
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
Xt Nt×d matrix with the inputs of the test data
etype(*) ’svd’(*), ’eig’, ’eigs’ or ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

• Using the object oriented interface:

>> [sig_e, bay, model] = bay_errorbar(model, Xt)

>> [sig_e, bay, model] = bay_errorbar(model, Xt, etype)

>> [sig_e, bay, model] = bay_errorbar(model, Xt, etype, nb)

>> [sig_e, bay, model] = bay_errorbar(model, ’figure’)

>> [sig_e, bay, model] = bay_errorbar(model, ’figure’, etype)

>> [sig_e, bay, model] = bay_errorbar(model, ’figure’, etype, nb)
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Outputs
sig_e Nt×1 vector with the σ2 error bars of the test data
model(*) Object oriented representation of the LS-SVM model
bay(*) Object oriented representation of the results of the Bayesian

inference
Inputs

model Object oriented representation of the LS-SVM model
Xt Nt×d matrix with the inputs of the test data
etype(*) ’svd’(*), ’eig’, ’eigs’ or ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

See also:

bay_lssvm, bay_optimize, bay_modoutClass, plotlssvm
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A.3.3 bay initlssvm

Purpose

Initialize the tuning parameters γ and σ2 before optimization with bay_optimize

Basic syntax

>> [gam, sig2] = bay_initlssvm({X,Y,type,[],[]})

>> model = bay_initlssvm(model)

Description

A starting value for σ2 is only given if the model has kernel type ’RBF_kernel’.

Full syntax

• Using the functional interface:

>> [gam, sig2] = bay_initlssvm({X,Y,type,[],[],kernel})

Outputs
gam Proposed initial regularization parameter
sig2 Proposed initial ’RBF_kernel’ parameter

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
kernel(*) Kernel type (by default ’RBF_kernel’)

• Using the object oriented interface:

>> model = bay_initlssvm(model)

Outputs
model Object oriented representation of the LS-SVMmodel with initial

tuning parameters
Inputs

model Object oriented representation of the LS-SVM model

See also:

bay_lssvm, bay_optimize
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A.3.4 bay lssvm

Purpose

Compute the posterior cost for the 3 levels in Bayesian inference

Basic syntax

>> cost = bay_lssvm({X,Y,type,gam,sig2}, level, etype)

>> cost = bay_lssvm(model , level, etype)

Description

Estimate the posterior probabilities of model tuning parameters on the different inference levels.
By taking the negative logarithm of the posterior and neglecting all constants, one obtains the
corresponding cost.

Computation is only feasible for one dimensional output regression and binary classification
problems. Each level has its different input and output syntax:

• First level: The cost associated with the posterior of the model parameters (support values
and bias term) is determined. The type can be:

– ’train’: do a training of the support values using trainlssvm. The total cost, the
cost of the residuals (Ed) and the regularization parameter (Ew) are determined by the
solution of the support values

– ’retrain’: do a retraining of the support values using trainlssvm

– the cost terms can also be calculated from an (approximate) eigenvalue decomposition
of the kernel matrix: ’svd’, ’eig’, ’eigs’ or Nyström’s ’eign’

• Second level: The cost associated with the posterior of the regularization parameter is
computed. The etype can be ’svd’, ’eig’, ’eigs’ or Nyström’s ’eign’.

• Third level: The cost associated with the posterior of the chosen kernel and kernel param-
eters is computed. The etype can be: ’svd’, ’eig’, ’eigs’ or Nyström’s ’eign’.

Full syntax

• Outputs on the first level

>> [costL1,Ed,Ew,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 1)

>> [costL1,Ed,Ew,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 1, etype)

>> [costL1,Ed,Ew,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 1, etype, nb)

>> [costL1,Ed,Ew,bay] = bay_lssvm(model, 1)

>> [costL1,Ed,Ew,bay] = bay_lssvm(model, 1, etype)

>> [costL1,Ed,Ew,bay] = bay_lssvm(model, 1, etype, nb)

With

costL1 Cost proportional to the posterior
Ed(*) Cost of the training error term
Ew(*) Cost of the regularization parameter
bay(*) Object oriented representation of the results of the Bayesian

inference

• Outputs on the second level
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>> [costL2,DcostL2, optimal_cost, bay] = ...

bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 2, etype, nb)

>> [costL2,DcostL2, optimal_cost, bay] = bay_lssvm(model, 2, etype, nb)

With

costL2 Cost proportional to the posterior on the second level
DcostL2(*) Derivative of the cost
optimal_cost(*) Optimality of the regularization parameter (optimal = 0)
bay(*) Object oriented representation of the results of the Bayesian

inference

• Outputs on the third level

>> [costL3,bay] = bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, 3, etype, nb)

>> [costL3,bay] = bay_lssvm(model, 3, etype, nb)

With

costL3 Cost proportional to the posterior on the third level
bay(*) Object oriented representation of the results of the Bayesian

inference

• Inputs using the functional interface

>> bay_lssvm({X,Y,type,gam,sig2,kernel,preprocess}, level, etype, nb)

X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
level 1, 2, 3
etype(*) ’svd’(*), ’eig’, ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

• Inputs using the object oriented interface

>> bay_lssvm(model, level, etype, nb)

model Object oriented representation of the LS-SVM model
level 1, 2, 3
etype(*) ’svd’(*), ’eig’, ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

See also:

bay_lssvmARD, bay_optimize, bay_modoutClass, bay_errorbar
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A.3.5 bay lssvmARD

Purpose

Bayesian Automatic Relevance Determination of the inputs of an LS-SVM

Basic syntax

>> dimensions = bay_lssvmARD({X,Y,type,gam,sig2})

>> dimensions = bay_lssvmARD(model)

Description

For a given problem, one can determine the most relevant inputs for the LS-SVM within the
Bayesian evidence framework. To do so, one assigns a different weighting parameter to each
dimension in the kernel and optimizes this using the third level of inference. According to the
used kernel, one can remove inputs based on the larger or smaller kernel parameters. This routine
only works with the ’RBF_kernel’ with a sig2 per input. In each step, the input with the largest
optimal sig2 is removed (backward selection). For every step, the generalization performance is
approximated by the cost associated with the third level of Bayesian inference.

The ARD is based on backward selection of the inputs based on the sig2s corresponding in
each step with a minimal cost criterion. Minimizing this criterion can be done by ’continuous’ or
by ’discrete’. The former uses in each step continuous varying kernel parameter optimization,
the latter decides which one to remove in each step by binary variables for each component (this
can only be applied for rather low dimensional inputs as the number of possible combinations
grows exponentially with the number of inputs). If working with the ’RBF_kernel’, the kernel
parameter is rescaled appropriately after removing an input variable.

The computation of the Bayesian cost criterion can be based on the singular value decompo-
sition ’svd’ of the full kernel matrix or by an approximation of these eigenvalues and vectors by
the ’eigs’ or ’eign’ approximation based on ’nb’ data points.

Full syntax

• Using the functional interface:

>> [dimensions, ordered, costs, sig2s] = ...

bay_lssvmARD({X,Y,type,gam,sig2,kernel,preprocess}, method, etype, nb)

Outputs
dimensions r×1 vector of the relevant inputs
ordered(*) d×1 vector with inputs in decreasing order of relevance
costs(*) Costs associated with third level of inference in every selection

step
sig2s(*) Optimal kernel parameters in each selection step

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
method(*) ’discrete’(*) or ’continuous’
etype(*) ’svd’(*), ’eig’, ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation
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• Using the object oriented interface:

>> [dimensions, ordered, costs, sig2s, model] = bay_lssvmARD(model, method, etype, nb)

Outputs
dimensions r×1 vector of the relevant inputs
ordered(*) d×1 vector with inputs in decreasing order of relevance
costs(*) Costs associated with third level of inference in every selection

step
sig2s(*) Optimal kernel parameters in each selection step
model(*) Object oriented representation of the LS-SVM model trained

only on the relevant inputs
Inputs

model Object oriented representation of the LS-SVM model
method(*) ’discrete’(*) or ’continuous’
etype(*) ’svd’(*), ’eig’, ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

See also:

bay_lssvm, bay_optimize, bay_modoutClass, bay_errorbar
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A.3.6 bay modoutClass

Purpose

Estimate the posterior class probabilities of a binary classifier using Bayesian inference

Basic syntax

>> [Ppos, Pneg] = bay_modoutClass({X,Y,’classifier’,gam,sig2}, Xt)

>> [Ppos, Pneg] = bay_modoutClass(model, Xt)

Description

Calculate the probability that a point will belong to the positive or negative classes taking into
account the uncertainty of the parameters. Optionally, one can express prior knowledge as a
probability between 0 and 1, where prior equal to 2/3 means that the prior positive class probability
is 2/3 (more likely to occur than the negative class).

For binary classification tasks with a two dimensional input space, one can make a surface plot
by replacing Xt by the string ’figure’.

Full syntax

• Using the functional interface:

>> [Ppos, Pneg] = bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, Xt)

>> [Ppos, Pneg] = bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, Xt, prior)

>> [Ppos, Pneg] = bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, Xt, prior, etype)

>> [Ppos, Pneg] = bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, Xt, prior, etype, nb)

>> bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, ’figure’)

>> bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, ’figure’, prior)

>> bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, ’figure’, prior, etype)

>> bay_modoutClass({X,Y,’classifier’,...

gam,sig2, kernel, preprocess}, ’figure’, prior, etype, nb)
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Outputs
Ppos Nt×1 vector with probabilities that testdata Xt belong to the

positive class
Pneg Nt×1 vector with probabilities that testdata Xt belong to the

negative(zero) class
Inputs

X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
Xt(*) Nt×d matrix with the inputs of the test data
prior(*) Prior knowledge of the balancing of the training data (or [])
etype(*) ’svd’(*), ’eig’, ’eigs’ or ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue de-

composition approximation

• Using the object oriented interface:

>> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt)

>> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior)

>> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, etype)

>> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, etype, nb)

>> bay_modoutClass(model, ’figure’)

>> bay_modoutClass(model, ’figure’, prior)

>> bay_modoutClass(model, ’figure’, prior, etype)

>> bay_modoutClass(model, ’figure’, prior, etype, nb)

Outputs
Ppos Nt×1 vector with probabilities that testdata Xt belong to the positive

class
Pneg Nt×1 vector with probabilities that testdata Xt belong to the nega-

tive(zero) class
bay(*) Object oriented representation of the results of the Bayesian inference
model(*) Object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model
Xt(*) Nt×d matrix with the inputs of the test data
prior(*) Prior knowledge of the balancing of the training data (or [])
etype(*) ’svd’(*), ’eig’, ’eigs’ or ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation

See also:

bay_lssvm, bay_optimize, bay_errorbar, ROC
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A.3.7 bay optimize

Purpose

Optimize the posterior probabilities of model (hyper-) parameters with respect to the different levels
in Bayesian inference

Basic syntax

One can optimize on the three different inference levels as described in section 2.1.3.

• First level: In the first level one optimizes the support values α’s and the bias b.

• Second level: In the second level one optimizes the regularization parameter gam.

• Third level: In the third level one optimizes the kernel parameter. In the case of the
common ’RBF_kernel’ the kernel parameter is the bandwidth sig2.

This routine is only tested with Matlab R2008a, R2008b, R2009a, R2009b and R2010a using the
corresponding optimization toolbox.

Full syntax

• Outputs on the first level:

>> [model, alpha, b] = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, 1)

>> [model, alpha, b] = bay_optimize(model, 1)

With

model Object oriented representation of the LS-SVM model optimized on the
first level of inference

alpha(*) Support values optimized on the first level of inference
b(*) Bias term optimized on the first level of inference

• Outputs on the second level:

>> [model,gam] = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, 2)

>> [model,gam] = bay_optimize(model, 2)

With

model Object oriented representation of the LS-SVM model optimized on the
second level of inference

gam(*) Regularization parameter optimized on the second level of inference

• Outputs on the third level:

>> [model, sig2] = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, 3)

>> [model, sig2] = bay_optimize(model, 3)

With

model Object oriented representation of the LS-SVM model optimized on the
third level of inference

sig2(*) Kernel parameter optimized on the third level of inference

• Inputs using the functional interface
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>> model = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, level)

>> model = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, level, etype)

>> model = bay_optimize({X,Y,type,gam,sig2,kernel,preprocess}, level, etype, nb)

X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
level 1, 2, 3
etype(*) ’eig’, ’svd’(*), ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation

• Inputs using the object oriented interface

>> model = bay_optimize(model, level)

>> model = bay_optimize(model, level, etype)

>> model = bay_optimize(model, level, etype, nb)

model Object oriented representation of the LS-SVM model
level 1, 2, 3
etype(*) ’eig’, ’svd’(*), ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation

See also:

bay_lssvm, bay_lssvmARD, bay_modoutClass, bay_errorbar
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A.3.8 bay rr

Purpose

Bayesian inference of the cost on the three levels of linear ridge regression

Basic syntax

>> cost = bay_rr(X, Y, gam, level)

Description

This function implements the cost functions related to the Bayesian framework of linear ridge
Regression [44]. Optimizing these criteria results in optimal model parameters W,b and tuning
parameters. The criterion can also be used for model comparison. The obtained model parameters
w and b are optimal on the first level for J = 0.5*w’*w+gam*0.5*sum(Y-X*w-b).^2.

Full syntax

• Outputs on the first level: Cost proportional to the posterior of the model parameters.

>> [costL1, Ed, Ew] = bay_rr(X, Y, gam, 1)

With

costL1 Cost proportional to the posterior
Ed(*) Cost of the training error term
Ew(*) Cost of the regularization parameter

• Outputs on the second level: Cost proportional to the posterior of gam.

>> [costL2, DcostL2, Deff, mu, ksi, eigval, eigvec] = bay_rr(X, Y, gam, 2)

With

costL2 Cost proportional to the posterior on the second level
DcostL2(*) Derivative of the cost proportional to the posterior
Deff(*) Effective number of parameters
mu(*) Relative importance of the fitting error term
ksi(*) Relative importance of the regularization parameter
eigval(*) Eigenvalues of the covariance matrix
eigvec(*) Eigenvectors of the covariance matrix

• Outputs on the third level: The following commands can be used to compute the level
3 cost function for different models (e.g. models with different selected sets of inputs). The
best model can then be chosen as the model with best level 3 cost (CostL3).

>> [costL3, gam_optimal] = bay_rr(X, Y, gam, 3)

With

costL3 Cost proportional to the posterior on the third inference level
gam_optimal(*) Optimal regularization parameter obtained from optimizing the second

level
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• Inputs:

>> cost = bay_rr(X, Y, gam, level)

X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
gam Regularization parameter
level 1, 2, 3

See also:

ridgeregress,bay_lssvm
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A.3.9 cilssvm

Purpose

Construction of bias corrected 100(1− α)% pointwise or simultaneous confidence intervals

Basic syntax

>> ci = cilssvm({X,Y,type,gam,kernel_par,kernel,preprocess},alpha,conftype)

>> ci = cilssvm(model,alpha,conftype)

Description

This function calculates bias corrected 100(1−α)% pointwise or simultaneous confidence intervals.
The procedure support homoscedastic data sets as well heteroscedastic data sets. The construction
of the confidence intervals are based on the central limit theorem for linear smoothers combined
with bias correction and variance estimation.

Full syntax

• Using the functional interface:

>> ci = cilssvm({X,Y,type,gam,kernel_par,kernel,preprocess})

>> ci = cilssvm({X,Y,type,gam,kernel_par,kernel,preprocess}, alpha)

>> ci = cilssvm({X,Y,type,gam,kernel_par,kernel,preprocess}, alpha, conftype)

Outputs
ci N × 2 matrix containing the lower and upper confidence intervals

Inputs
X Training input data used for defining the LS-SVM and the preprocessing
Y Training output data used for defining the LS-SVM and the preprocess-

ing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
alpha(*) Significance level (by default 5%)
conftype(*) Type of confidence interval ’pointwise’ or ’simultaneous’ (by default ’si-

multaneous’)

• Using the object oriented interface:

>> ci = cilssvm(model)

>> ci = cilssvm(model, alpha)

>> ci = cilssvm(model, alpha, conftype)

Outputs
ci N × 2 matrix containing the lower and upper confidence intervals

Inputs
model Object oriented representation of the LS-SVM model
alpha(*) Significance level (by default 5%)
conftype(*) Type of confidence interval ’pointwise’ or ’simultaneous’ (by default

simultaneous)

See also:

trainlssvm, simlssvm, predlssvm
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A.3.10 code, codelssvm

Purpose

Encode and decode a multi-class classification task into multiple binary classifiers

Basic syntax

>> Yc = code(Y, codebook)

Description

The coding is defined by the codebook. The codebook is represented by a matrix where the
columns represent all different classes and the rows indicate the result of the binary classifiers.
An example is given: the 3 classes with original labels [1 2 3] can be encoded in the following
codebook (using Minimum Output Coding):

>> codebook

= [-1 -1 1;

1 -1 1]

For this codebook, a member of the first class is found if the first binary classifier is negative
and the second classifier is positive. A don’t care is represented by NaN. By default it is assumed
that the original classes are represented as different numerical labels. One can overrule this by
passing the old_codebook which contains information about the old representation.

A codebook can be created by one of the functions (codefct) code_MOC, code_OneVsOne,
code_OneVsAll, code_ECOC. Additional arguments to this function can be passed as a cell in
codefct_args.

>> Yc = code(Y,codefct,codefct_args)

>> Yc = code(Y,codefct,codefct_args, old_codebook)

>> [Yc, codebook, oldcodebook] = code(Y,codefct,codefct_args)

To detect the classes of a disturbed encoded signal given the corresponding codebook, one
needs a distance function (fctdist) with optional arguments given as a cell (fctdist_args). By
default, the Hamming distance (of function codedist_hamming) is used.

>> Yc = code(Y, codefct, codefct_args, old_codebook, fctdist, fctdist_args)

A simple example is given here, a more elaborated example is given in section 3.2.6. Here, a
short categorical signal Y is encoded in Yec using Minimum Output Coding and decoded again to
its original form:

>> Y = [1; 2; 3; 2; 1]

>> [Yc,codebook,old_codebook] = code(Y,’code_MOC’) % encode

>> Yc

= [-1 -1

-1 1

1 -1

-1 1

-1 -1]

>> codebook

= [ -1 -1 1

-1 1 -1]

>> old_codebook

= [1 2 3]
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>> code(Yc, old_codebook, [], codebook, ’codedist_hamming’) % decode

ans

= [1; 2; 3; 2; 1]

Different encoding schemes are available:

• Minimum Output Coding (code_MOC)
Here the minimal number of bits nb is used to encode the nc classes:

nb = ⌈log2 nc⌉.

• Error Correcting Output Code (code_ECOC)
This coding scheme uses redundant bits. Typically, one bounds the number of binary clas-
sifiers nb by

nb ≤ 15⌈log2 nc⌉.

However, it is not guaranteed to have a valid nb-representation of nc classes for all combi-
nations. This routine based on backtracking can take some memory and time.

• One versus All Coding (code_OneVsAll)
Each binary classifier k = 1, ..., nc is trained to discriminate between class k and the union
of the others.

• One Versus One Coding (code_OneVsOns)
Each of the nb binary classifiers is used to discriminate between a specific pair of nc classes

nb =
nc(nc − 1)

2
.

Different decoding schemes are implemented:

• Hamming Distance (codedist_hamming)
This measure equals the number of corresponding bits in the binary result and the codeword.
Typically, it is used for the Error Correcting Code.

• Bayesian Distance Measure (codedist_bay)
The Bayesian moderated output of the binary classifiers is used to estimate the posterior
probability.

Encoding using the previous algorithms of the LS-SVM multi-class classifier can easily be done
by codelssvm. It will be invoked by trainlssvm if an appropriate encoding scheme is defined in
a model. An example shows how to use the Bayesian distance measure to extract the estimated
class from the simulated encoded signal. Assumed are input and output data X and Y (size is
respectively Ntrain×Din and Ntrain×1), a kernel parameter sig2 and a regularization parameter
gam. Yt corresponding to a set of data points Xt (size is Ntest ×Din) is to be estimated:

% encode for training

>> model = initlssvm(X, Y, ’classifier’, gam, sig2)

>> model = changelssvm(model, ’codetype’, ’code_MOC’)

>> model = changelssvm(model, ’codedist_fct’, ’codedist_hamming’)

>> model = codelssvm(model) % implicitly called by next command

>> model = trainlssvm(model)

>> plotlssvm(model);

% decode for simulating

>> model = changelssvm(model, ’codedist_fct’, ’codedist_bay’)

>> model = changelssvm(model, ’codedist_args’,...

{bay_modoutClass(model,Xt)})

>> Yt = simlssvm(model, Xt)
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Full syntax

We denote the number of used binary classifiers by nbits and the number of different represented
classes by nc.

• For encoding:

>> [Yc, codebook, old_codebook] = code(Y, codefct)

>> [Yc, codebook, old_codebook] = code(Y, codefct, codefct_args)

>> Yc = code(Y, given_codebook)

Outputs
Yc N×nbits encoded output classifier
codebook(*) nbits*nc matrix representing the used encoding
old_codebook(*) d*nc matrix representing the original encoding

Inputs
Y N×d matrix representing the original classifier
codefct(*) Function to generate a new codebook (e.g. code_MOC)
codefct_args(*) Extra arguments for codefct
given_codebook(*) nbits*nc matrix representing the encoding to use

• For decoding:

>> Yd = code(Yc, codebook,[], old_codebook)

>> Yd = code(Yc, codebook,[], old_codebook, codedist_fct)

>> Yd = code(Yc, codebook,[], old_codebook, codedist_fct, codedist_args)

Outputs
Yd N×nc decoded output classifier

Inputs
Y N×d matrix representing the original classifier
codebook d*nc matrix representing the original encoding
old_codebook bits*nc matrix representing the encoding of the given classifier
codedist_fct Function to calculate the distance between to encoded classifiers (e.g.

codedist_hamming)
codedist_args(*) Extra arguments of codedist_fct

See also:

code_ECOC, code_MOC, code_OneVsAll, code_OneVsOne, codedist_hamming
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A.3.11 crossvalidate

Purpose

Estimate the model performance of a model with l-fold crossvalidation.

CAUTION!! Use this function only to obtain the value of the crossvalidation score function given
the tuning parameters. Do not use this function together with tunelssvm, but use crossvalidatelssvm
instead. The latter is a faster implementation which uses previously computed results.

Basic syntax

>> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2})

>> cost = crossvalidate(model)

Description

The data is once permutated randomly, then it is divided into L (by default 10) disjoint sets.
In the i-th (i = 1, ..., l) iteration, the i-th set is used to estimate the performance (’validation
set’) of the model trained on the other l − 1 sets (’training set’). Finally, the l (denoted by L)
different estimates of the performance are combined (by default by the ’mean’). The assumption
is made that the input data are distributed independent and identically over the input space. As
additional output, the costs in the different folds (’costs’) of the data are returned:

>> [cost, costs] = crossvalidate(model)

Some commonly used criteria are:

>> cost = crossvalidate(model, 10, ’misclass’, ’mean’)

>> cost = crossvalidate(model, 10, ’mse’, ’mean’)

>> cost = crossvalidate(model, 10, ’mae’, ’median’)

Full syntax

• Using LS-SVMlab with the functional interface:

>> [cost, costs] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess})

>> [cost, costs] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess}, L)

>> [cost, costs] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},...

L, estfct, combinefct)

Outputs
cost Cost estimation of the L-fold cross-validation
costs(*) L×1 vector with costs estimated on the L different folds

Inputs
X Training input data used for defining the LS-SVM and the preprocessing
Y Training output data used for defining the LS-SVM and the preprocess-

ing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
L(*) Number of folds (by default 10)
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)



72 APPENDIX A. MATLAB FUNCTIONS

• Using the object oriented interface:

>> [cost, costs] = crossvalidate(model)

>> [cost, costs] = crossvalidate(model, L)

>> [cost, costs] = crossvalidate(model, L, estfct)

>> [cost, costs] = crossvalidate(model, L, estfct, combinefct)

Outputs
cost Cost estimation of the L-fold cross-validation
costs(*) L×1 vector with costs estimated on the L different folds

Inputs
model Object oriented representation of the LS-SVM model
L(*) Number of folds (by default 10)
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)

See also:

leaveoneout, gcrossvalidate, trainlssvm, simlssvm
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A.3.12 deltablssvm

Purpose

Bias term correction for the LS-SVM classifier

Basic syntax

>> model = deltablssvm(model, b_new)

Description

This function is only useful in the object oriented function interface. Set explicitly the bias term
b_new of the LS-SVM model.

Full syntax

>> model = deltablssvm(model, b_new)

Outputs
model Object oriented representation of the LS-SVM model with initial tuning

parameters
Inputs

model Object oriented representation of the LS-SVM model
b_new m×1 vector with new bias term(s) for the model

See also:

roc, trainlssvm, simlssvm, changelssvm
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A.3.13 denoise kpca

Purpose

Reconstruct the data mapped on the most important principal components.

Basic syntax

>> Xd = denoise_kpca(X, kernel, kernel_par);

Description

Denoising can be done by moving the point in input space so that its corresponding map to the
feature space is optimized. This means that the data point in feature space is as close as possible
with its corresponding reconstructed points by using the principal components. If the principal
components are to be calculated on the same data ’X’ as one wants to denoise, use the command:

>> Xd = denoise_kpca(X, kernel, kernel_par);

>> [Xd,lam,U] = denoise_kpca(X, kernel, kernel_par, [], etype, nb);

When one wants to denoise data ’Xt’ other than the data used to obtain the principal components:

>> Xd = denoise_kpca(X, kernel, kernel_par, Xt);

>> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt, etype, nb);

Full syntax

• >> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt);

>> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt, etype);

>> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt, etype, nb);

Outputs
Xd N×d (Nt×d) matrix with denoised data X (Xt)
lam(*) nb×1 vector with eigenvalues of principal components
U(*) N×nb (Nt×d) matrix with principal eigenvectors

Inputs
X N×d matrix with data points used for finding the principal components
kernel Kernel type (e.g. ’RBF_kernel’)
kernel_par Kernel parameter(s) (for linear kernel, use [])
Xt(*) Nt×d matrix with noisy points (if not specified, X is denoised instead)
etype(*) ’eig’(*), ’svd’, ’eigs’, ’eign’
nb(*) Number of principal components used in approximation

• >> Xd = denoise_kpca(X, U, lam, kernel, kernel_par, Xt);

Outputs
Xd N×d (Nt×d) matrix with denoised data X (Xt)

Inputs
X N×d matrix with data points used for finding the principal components
U N×nb (Nt×d) matrix with principal eigenvectors
lam nb×1 vector with eigenvalues of principal components
kernel Kernel type (e.g. ’RBF_kernel’)
kernel_par Kernel parameter(s) (for linear kernel, use [])
Xt(*) Nt×d matrix with noisy points (if not specified, X is denoised instead)

See also:

kpca, kernel_matrix, RBF_kernel
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A.3.14 eign

Purpose

Find the principal eigenvalues and eigenvectors of a matrix with Nyström’s low rank approximation
method

Basic syntax

>> D = eign(A, nb)

>> [V, D] = eign(A, nb)

Description

In the case of using this method for low rank approximation and decomposing the kernel matrix,
one can call the function without explicit construction of the matrix A.

>> D = eign(X, kernel, kernel_par, nb)

>> [V, D] = eign(X, kernel, kernel_par, nb)

Full syntax

We denote the size of positive definite matrix A with a*a.

• Given the full matrix:

>> D = eign(A,nb)

>> [V,D] = eign(A,nb)

Outputs
V(*) a×nb matrix with estimated principal eigenvectors of A
D nb×1 vector with principal estimated eigenvalues of A

Inputs
A a*a positive definite symmetric matrix
nb(*) Number of approximated principal eigenvalues/eigenvectors

• Given the function to calculate the matrix elements:

>> D = eign(X, kernel, kernel_par, n)

>> [V,D] = eign(X, kernel, kernel_par, n)

Outputs
V(*) a×nb matrix with estimated principal eigenvectors of A
D nb×1 vector with estimated principal eigenvalues of A

Inputs
X N×d matrix with the training data
kernel Kernel type (e.g. ’RBF_kernel’)
kernel_par Kernel parameter(s) (for linear kernel, use [])
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation

See also:

eig, eigs, kpca, bay_lssvm
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A.3.15 gcrossvalidate

Purpose

Estimate the model performance of a model with generalized crossvalidation.

CAUTION!! Use this function only to obtain the value of the generalized crossvalidation score
function given the tuning parameters. Do not use this function together with tunelssvm, but
use gcrossvalidatelssvm instead. The latter is a faster implementation which uses previously
computed results.

Basic syntax

>> cost = gcrossvalidate({Xtrain,Ytrain,type,gam,sig2})

>> cost = gcrossvalidate(model)

Description

Instead of dividing the data into L disjoint sets, one takes the complete data and the effective
degrees of freedom (effective number of parameters) into account. The assumption is made that
the input data are distributed independent and identically over the input space.

>> cost = gcrossvalidate(model)

Some commonly used criteria are:

>> cost = gcrossvalidate(model, ’misclass’)

>> cost = gcrossvalidate(model, ’mse’)

>> cost = gcrossvalidate(model, ’mae’)

Full syntax

• Using LS-SVMlab with the functional interface:

>> cost = gcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess})

>> cost = gcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess}, estfct)

Outputs
cost Cost estimation of the generalized cross-validation

Inputs
X Training input data used for defining the LS-SVM and the preprocessing
Y Training output data used for defining the LS-SVM and the preprocess-

ing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
estfct(*) Function estimating the cost based on the residuals (by default mse)

• Using the object oriented interface:

>> cost = gcrossvalidate(model)

>> cost = gcrossvalidate(model, estfct)
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Outputs
cost Cost estimation of the generalized cross-validation

Inputs
model Object oriented representation of the LS-SVM model
estfct(*) Function estimating the cost based on the residuals (by default mse)

See also:

leaveoneout, crossvalidatelssvm, trainlssvm, simlssvm
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A.3.16 initlssvm, changelssvm

Purpose

Only for use with the object oriented model interface

Description

The Matlab toolbox interface is organized in two equivalent ways. In the functional way, func-
tion calls need explicit input and output arguments. An advantage is their similarity with the
mathematical equations.

An alternative syntax is based on the concept of a model, gathering all the relevant signals,
parameters and algorithm choices. The model is initialized by model=initlssvm(...), or will be
initiated implicitly by passing the arguments of initlssvm(...) in one cell as the argument of
the LS-SVM specific functions, e.g. for training:

>> model = trainlssvm({X,Y,type,gam,sig2})

...

>> model = changelssvm(model,’field’,’value’)

After training, the model contains the solution of the training including the used default values. All
contents of the model can be requested (model.<contenttype>) or changed (changelssvm) each
moment. The user is advised not to change the fields of the model by model.<field>=<value>

as the toolbox cannot guarantee consistency anymore in this way.
The different options are given in following table:

• General options representing the kind of model:

type: ’classifier’ ,’function estimation’

status: Status of this model (’trained’ or ’changed’ )

alpha: Support values of the trained LS-SVM model

b: Bias term of the trained LS-SVM model

duration: Number of seconds the training lasts

latent: Returning latent variables (’no’ ,’yes’ )

x_delays: Number of delays of eXogeneous variables (by default 0 )

y_delays: Number of delays of responses (by default 0 )

steps: Number of steps to predict (by default 1 )

gam: Regularisation parameter

kernel_type: Kernel function

kernel_pars: Extra parameters of the kernel function

weights: Weighting function for robust regression

• Fields used to specify the used training data:

x_dim: Dimension of input space

y_dim: Dimension of responses

nb_data: Number of training data

xtrain: (preprocessed) inputs of training data

ytrain: (preprocessed,coded) outputs of training data

selector: Indexes of training data effectively used during training

costCV: Cost of the cross-validation score function when model is tuned
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• Fields with the information for pre- and post-processing (only given if appropriate):

preprocess: ’preprocess’ or ’original’

schemed: Status of the preprocessing

(’coded’ ,’original’ or ’schemed’ )

pre_xscheme: Scheme used for preprocessing the input data

pre_yscheme: Scheme used for preprocessing the output data

pre_xmean: Mean of the input data

pre_xstd: Standard deviation of the input data

pre_ymean: Mean of the responses

pre_ystd: Standard deviation of the reponses

• The specifications of the used encoding (only given if appropriate):

code: Status of the coding

(’original’ ,’changed’ or ’encoded’)

codetype: Used function for constructing the encoding

for multiclass classification (by default ’none’)

codetype_args: Arguments of the codetype function

codedist_fct: Function used to calculate to which class a

coded result belongs

codedist_args: Arguments of the codedist function

codebook2: Codebook of the new coding

codebook1: Codebook of the original coding

Full syntax

• >> model = initlssvm(X, Y, type, gam, sig2, kernel, preprocess)

Outputs
model Object oriented representation of the LS-SVM model

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’

• >> model = changelssvm(model, field, value)

Outputs
model(*) Obtained object oriented representation of the LS-SVM model

Inputs
model Original object oriented representation of the LS-SVM model
field Field of the model that one wants to change (e.g. ’preprocess’)
value New value of the field of the model that one wants to change

See also:

trainlssvm, initlssvm, simlssvm, plotlssvm.
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A.3.17 kentropy

Purpose

Quadratic Renyi Entropy for a kernel based estimator

Basic syntax

Given the eigenvectors and the eigenvalues of the kernel matrix, the entropy is computed by

>> H = kentropy(X, U, lam)

The eigenvalue decomposition can also be computed (or approximated) implicitly:

>> H = kentropy(X, kernel, sig2)

Full syntax

• >> H = kentropy(X, kernel, kernel_par)

>> H = kentropy(X, kernel, kernel_par, etype)

>> H = kentropy(X, kernel, kernel_par, etype, nb)

Outputs
H Quadratic Renyi entropy of the kernel matrix

Inputs
X N×d matrix with the training data
kernel Kernel type (e.g. ’RBF_kernel’)
kernel_par Kernel parameter(s) (for linear kernel, use [])
etype(*) ’eig’(*), ’eigs’, ’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation

• >> H = kentropy(X, U, lam)

Outputs
H Quadratic Renyi entropy of the kernel matrix

Inputs
X N×d matrix with the training data
U N×nb matrix with principal eigenvectors
lam nb×1 vector with eigenvalues of principal components

See also:

kernel_matrix, demo_fixedsize, RBF_kernel



A.3. ALPHABETICAL LIST OF FUNCTION CALLS 81

A.3.18 kernel matrix

Purpose

Construct the positive (semi-) definite and symmetric kernel matrix

Basic Syntax

>> Omega = kernel_matrix(X, kernel_fct, sig2)

Description

This matrix should be positive definite if the kernel function satisfies the Mercer condition. Con-
struct the kernel values for all test data points in the rows of Xt, relative to the points of X.

>> Omega_Xt = kernel_matrix(X, kernel_fct, sig2, Xt)

Full syntax

>> Omega = kernel_matrix(X, kernel_fct, sig2)

>> Omega = kernel_matrix(X, kernel_fct, sig2, Xt)

Outputs
Omega N×N (N×Nt) kernel matrix

Inputs
X N×d matrix with the inputs of the training data
kernel Kernel type (by default ’RBF_kernel’)
sig2 Kernel parameter(s) (for linear kernel, use [])
Xt(*) Nt×d matrix with the inputs of the test data

See also:

RBF_kernel, lin_kernel, kpca, trainlssvm
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A.3.19 kpca

Purpose

Kernel Principal Component Analysis (KPCA)

Basic syntax

>> [eigval, eigvec] = kpca(X, kernel_fct, sig2)

>> [eigval, eigvec, scores] = kpca(X, kernel_fct, sig2, Xt)

Description

Compute the nb largest eigenvalues and the corresponding rescaled eigenvectors corresponding
with the principal components in the feature space of the centered kernel matrix. To calculate
the eigenvalue decomposition of this N × N matrix, Matlab’s eig is called by default. The
decomposition can also be approximated by Matlab (’eigs’) or by Nyström’s method (’eign’)
using nb components. In some cases one wants to disable (’original’) the rescaling of the
principal components in feature space to unit length.

The scores of a test set Xt on the principal components is computed by the call:

>> [eigval, eigvec, scores] = kpca(X, kernel_fct, sig2, Xt)

Full syntax

>> [eigval, eigvec, empty, omega] = kpca(X, kernel_fct, sig2)

>> [eigval, eigvec, empty, omega] = kpca(X, kernel_fct, sig2, [], etype)

>> [eigval, eigvec, empty, omega] = kpca(X, kernel_fct, sig2, [],etype, nb)

>> [eigval, eigvec, empty, omega] = kpca(X, kernel_fct, sig2, [],etype, nb, rescaling)

>> [eigval, eigvec, scores, omega] = kpca(X, kernel_fct, sig2, Xt)

>> [eigval, eigvec, scores, omega] = kpca(X, kernel_fct, sig2, Xt, etype)

>> [eigval, eigvec, scores, omega] = kpca(X, kernel_fct, sig2, Xt,etype, nb)

>> [eigval, eigvec, scores, omega] = kpca(X, kernel_fct, sig2, Xt,etype, nb, rescaling)

>> [eigval, eigvec, scores, omega, recErrors] = kpca(X, kernel_fct, sig2, Xt, etype)

>> [eigval, eigvec, scores, omega, recErrors] = kpca(X, kernel_fct, sig2, Xt, ...

etype, nb)

>> [eigval, eigvec, scores, omega, recErrors] = kpca(X, kernel_fct, sig2, Xt, ...

etype, nb, rescaling)

>> [eigval, eigvec, scores, omega, recErrors, optOut] = kpca(X, kernel_fct, ...

sig2, Xt, etype)

>> [eigval, eigvec, scores, omega, recErrors, optOut] = kpca(X, kernel_fct, sig2, Xt, ...

etype, nb)

>> [eigval, eigvec, scores, omega, recErrors, optOut] = kpca(X, kernel_fct, sig2, Xt, ...

etype, nb, rescaling)
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Outputs
eigval N (nb)×1 vector with eigenvalues values
eigvec N×N (N×nb) matrix with the principal directions
scores(*) Nt×nb matrix of the scores of test data (or [])
omega(*) N×N centered kernel matrix
recErrors(*) Nt×1 vector with the reconstruction errors of test data
optOut(*) 1×2 cell array with the centered test kernel matrix in optOut{1} and

the squared norms of the test points in the feature space in optOut{2}
Inputs

X N×d matrix with the inputs of the training data
kernel Kernel type (e.g. ’RBF_kernel’)
sig2 Kernel parameter(s) (for linear kernel, use [])
Xt(*) Nt×d matrix with the inputs of the test data (or [])
etype(*) ’svd’, ’eig’(*),’eigs’,’eign’
nb(*) Number of eigenvalues/eigenvectors used in the eigenvalue decomposi-

tion approximation
rescaling(*) ’original size’ (’o’) or ’rescaling’(*) (’r’)

See also:

bay_lssvm, bay_optimize, eign
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A.3.20 latentlssvm

Purpose

Calculate the latent variables of the LS-SVM classifier at the given test data

Basic syntax

>> Zt = latentlssvm({X,Y,’classifier’,gam,sig2,kernel}, {alpha,b}, Xt)

>> Zt = latentlssvm({X,Y,’classifier’,gam,sig2,kernel}, Xt)

>> [Zt, model] = latentlssvm(model, Xt)

Description

The latent variables of a binary classifier are the continuous simulated values of the test or training
data which are used to make the final classifications. The classification of a test point depends on
whether the latent value exceeds the model’s threshold (b). If appropriate, the model is trained
by the standard procedure (trainlssvm) first.

Full syntax

• Using the functional interface:

>> Zt = latentlssvm({X,Y,’classifier’,gam,sig2,kernel}, {alpha,b}, Xt)

>> Zt = latentlssvm({X,Y,type,gam,sig2,kernel,preprocess}, Xt)

Outputs
Zt Nt×m matrix with predicted latent simulated outputs

Inputs
X N×d matrix with the inputs of the training data
Y N×m vector with the outputs of the training data
type ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
alpha(*) N×1 matrix with the support values
b(*) the bias terms
Xt Nt×d matrix with the inputs of the test data

• Using the object oriented interface:

>> [Zt, model] = latentlssvm(model, Xt)

Outputs
Zt Nt×m matrix with continuous latent simulated outputs
model(*) Trained object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model
Xt Nt×d matrix with the inputs of the test data

See also:

trainlssvm, simlssvm
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A.3.21 leaveoneout

Purpose

Estimate the performance of a trained model with leave-one-out crossvalidation.

CAUTION!! Use this function only to obtain the value of the leave-one-out crossvalidation score
function given the tuning parameters. Do not use this function together with tunelssvm, but use
leaveoneoutlssvm instead. The latter is a faster implementation based on one full matrix inverse.

Basic syntax

>> leaveoneout({X,Y,type,gam,sig2})

>> leaveoneout(model)

Description

In each iteration, one leaves out one point, and fits a model on the other data points. The
performance of the model is estimated based on the point left out. This procedure is repeated for
each data point. Finally, all the different estimates of the performance are combined (default by
computing the mean). The assumption is made that the input data is distributed independent
and identically over the input space.

Full syntax

• Using the functional interface for the LS-SVMs:

>> cost = leaveoneout({X,Y,type,gam,sig2,kernel,preprocess})

>> cost = leaveoneout({X,Y,type,gam,sig2,kernel,preprocess}, estfct, combinefct)

Outputs
cost Cost estimated by leave-one-out crossvalidation

Inputs
X Training input data used for defining the LS-SVM and the preprocessing
Y Training output data used for defining the LS-SVM and the preprocess-

ing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)

• Using the object oriented interface for the LS-SVMs:

>> cost = leaveoneout(model)

>> cost = leaveoneout(model, estfct)

>> cost = leaveoneout(model, estfct, combinefct)
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Outputs
cost Cost estimated by leave-one-out crossvalidation

Inputs
model Object oriented representation of the model
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)

See also:

crossvalidate, trainlssvm, simlssvm
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A.3.22 lin kernel, poly kernel, RBF kernel

Purpose

Kernel implementations used with the Matlab training and simulation procedure

Description

lin kernel

Linear kernel:
K(xi, xj) = xTi xj

poly kernel

Polynomial kernel:
K(xi, xj) = (xTi xj + t)d, t ≥ 0

with t the intercept and d the degree of the polynomial.

RBF kernel

Radial Basis Function kernel:

K(xi, xj) = e−
||xi−xj ||

2

2σ2

with σ2 the variance of the Gaussian kernel.

Full syntax

>> v = RBF_kernel(x1, X2, sig2)

Outputs
v N×1 vector with kernel values

Calls
RBF_kernel or lin_kernel, MLP_kernel, poly_kernel,...

Inputs
x1 1×d matrix with a data point
X2 N×d matrix with data points
sig2 Kernel parameters

See also:

kernel_matrix, kpca, trainlssvm
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A.3.23 linf, mae, medae, misclass, mse

Purpose

Cost measures of residuals

Description

A variety of global distance measures can be defined:

• mae: L1 CL1
(e) =

∑
N
i=1

|ei|

N

• medae: L1 CmedianL1
(e) = medianNi=1|ei|

• linf: L∞ CL∞(e) = supi |ei|

• misclass: L0 CL0
(e) =

∑
N
i=1

|yi 6=ŷi|

N

• mse: L2 CL2
(e) =

∑
N
i=1

e2i
N

Full syntax

• >> C = mse(e)

Outputs
C Estimated cost of the residuals

Calls
mse mae, medae, linf or mse

Inputs
e N×d matrix with residuals

• >> [C, which] = trimmedmse(e, beta, norm)

Outputs
C Estimated cost of the residuals
which(*) N×d matrix with indexes of the used residuals

Inputs
e N×d matrix with residuals
beta(*) Trimming factor (by default 0.15)
norm(*) Function implementing norm (by default squared norm)

• >> [rate, n, which] = misclass(Y, Yh)

Outputs
rate Rate of misclassification (between 0 (none

misclassified) and 1 (all misclassified))
n(*) Number of misclassified data points
which(*) Indexes of misclassified points

Inputs
Y N×d matrix with true class labels
Yh N×d matrix with estimated class labels

See also:

crossvalidate, leaveoneout, rcrossvalidate
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A.3.24 lssvm

Purpose

Construct an LS-SVM model with one command line and visualize results if possible

Basic syntax

>> yp = lssvm(X,Y,type)

>> yp = lssvm(X,Y,type,kernel)

Description

type can be ’classifier’ or ’function estimation’ (these strings can be abbreviated into
’c’ or ’f’, respectively). X and Y are matrices holding the training input and training output.
The i-th data point is represented by the i-th row X(i,:) and Y(i,:). The tuning parameters
are automatically tuned via leave-one-out cross-validation or 10-fold cross-validation depending
on the size of the data set. Leave-one-out cross-validation is used when the size is less or equal
than 300 points. The loss functions for cross-validation are mse for regression and misclass for
classification. If possible, the results will be visualized using plotlssvm. By default the Gaussian
RBF kernel is used. Other kernels can be used, for example

>> Yp = lssvm(X,Y,type,’lin_kernel’)

>> Yp = lssvm(X,Y,type,’poly_kernel’)

When using the polynomial kernel there is no need to specify the degree of the polynomial, the
software will automatically tune it to obtain best performance on the cross-validation or leave-
one-out score functions.

>> Yp = lssvm(X,Y,type,’RBF_kernel’)

>> Yp = lssvm(X,Y,type,’lin_kernel’)

>> Yp = lssvm(X,Y,type,’poly_kernel’)

Full syntax

>> [Yp,alpha,b,gam,sig2,model] = lssvm(X,Y,type)

>> [Yp,alpha,b,gam,sig2,model] = lssvm(X,Y,type,kernel)

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
kernel(*) Kernel type (by default ’RBF_kernel’)

Outputs
Yp N ×m matrix with output of the training data
alpha(*) N ×m matrix with support values of the LS-SVM
b(*) 1×m vector with bias term(s) of the LS-SVM
gam(*) Regularization parameter (determined by cross-validation)
sig2(*) Squared bandwidth (determined by cross-validation), for linear kernel sig2=0
model(*) Trained object oriented representation of the LS-SVM model

See also:

trainlssvm, simlssvm, crossvalidate, leaveoneout, plotlssvm.
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A.3.25 plotlssvm

Purpose

Plot the LS-SVM results in the environment of the training data

Basic syntax

>> plotlssvm({X,Y,type,gam, sig2, kernel})

>> plotlssvm({X,Y,type,gam, sig2, kernel}, {alpha,b})

>> model = plotlssvm(model)

Description

The first argument specifies the LS-SVM. The latter specifies the results of the training if already
known. Otherwise, the training algorithm is first called. One can specify the precision of the plot
by specifying the grain of the grid. By default this value is 50. The dimensions (seldims) of the
input data to display can be selected as an optional argument in case of higher dimensional inputs
(> 2). A grid will be taken over this dimension, while the other inputs remain constant (0).

Full syntax

• Using the functional interface:

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b})

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain)

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain, seldims)

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess})

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [], grain)

>> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [], grain, seldims)

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
alpha(*) Support values obtained from training
b(*) Bias term obtained from training
grain(*) The grain of the grid evaluated to compose the surface (by default 50)
seldims(*) The principal inputs one wants to span a grid (by default [1 2])

• Using the object oriented interface:

>> model = plotlssvm(model)

>> model = plotlssvm(model, [], grain)

>> model = plotlssvm(model, [], grain, seldims)

Outputs
model(*) Trained object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model
grain(*) The grain of the grid evaluated to compose the surface (by default 50)
seldims(*) The principal inputs one wants to span a grid (by default [1 2])

See also:

trainlssvm, simlssvm.
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A.3.26 predict

Purpose

Iterative prediction of a trained LS-SVM NARX model (in recurrent mode)

Description

>> Yp = predict({Xw,Yw,type,gam,sig2}, Xt, nb)

>> Yp = predict(model, Xt, nb)

Description

The model needs to be trained using Xw, Yw which is the result of windowize or windowizeNARX.
The number of time lags for the model is determined by the dimension of the input, or if not
appropriate, by the number of given starting values.

By default, the model is evaluated on the past points using simlssvm. However, if one wants
to use this procedure for other models, this default can be overwritten by your favorite training
function. This function (denoted by simfct) has to follow the following syntax:

>> simfct(model,inputs,arguments)

thus:

>> Yp = predict(model, Xt, nb, simfct)

>> Yp = predict(model, Xt, nb, simfct, arguments)

Full syntax

• Using the functional interface for the LS-SVMs:

>> Yp = predict({Xw,Yw,type,gam,sig2,kernel,preprocess}, Xt)

>> Yp = predict({Xw,Yw,type,gam,sig2,kernel,preprocess}, Xt, nb)

Outputs
Yp nb×1 matrix with the predictions

Inputs
Xw N×d matrix with the inputs of the training data
Yw N×1 matrix with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’ or ’original’ (by default)
Xt nb×1 matrix of the starting points for the prediction
nb(*) Number of outputs to predict

• Using the object oriented interface with LS-SVMs:

>> Yp = predict(model, Xt)

>> Yp = predict(model, Xt, nb)

Outputs
Yp nb×1 matrix with the predictions

Inputs
model Object oriented representation of the LS-SVM model
Xt nb×1 matrix of the starting points for the prediction
nb(*) Number of outputs to predict
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• Using another model:

>> Yp = predict(model, Xt, nb, simfct, arguments)

Outputs
Yp nb×1 matrix with the predictions

Inputs
model Object oriented representation of the LS-SVM model
Xt nb×1 matrix of the starting points for the prediction
nb Number of outputs to predict
simfct Function used to evaluate a test point
arguments(*) Cell with the extra arguments passed to simfct

See also:

windowize, trainlssvm, simlssvm.
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A.3.27 predlssvm

Purpose

Construction of bias corrected 100(1− α)% pointwise or simultaneous prediction intervals

Description

>> pi = predlssvm({X,Y,type,gam,sig2,kernel,preprocess}, Xt, alpha, conftype)

>> pi = predlssvm(model,Xt, alpha, conftype)

Description

This function calculates bias corrected 100(1−α)% pointwise or simultaneous prediction intervals.
The procedure support homoscedastic data sets as well heteroscedastic data sets. The construction
of the prediction intervals are based on the central limit theorem for linear smoothers combined
with bias correction and variance estimation.

Full syntax

• Using the functional interface:

>> pi = predlssvm({X,Y,type,gam,kernel_par,kernel,preprocess}, Xt)

>> pi = predlssvm({X,Y,type,gam,kernel_par,kernel,preprocess}, Xt, alpha)

>> pi = predlssvm({X,Y,type,gam,kernel_par,kernel,preprocess}, Xt, alpha, conftype)

Outputs
pi N × 2 matrix containing the lower and upper prediction intervals

Inputs
X Training input data used for defining the LS-SVM and preprocessing
Y Training output data used for defining the LS-SVM and preprocessing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
Xt Test points where prediction intervals are calculated
alpha(*) Significance level (by default 5%)
conftype(*) Type of prediction interval ’pointwise’ or ’simultaneous’ (by default ’si-

multaneous’)

• Using the object oriented interface:

>> pi = predlssvm(model)

>> pi = predlssvm(model, Xt, alpha)

>> pi = predlssvm(model, Xt, alpha, conftype)

Outputs
pi N × 2 matrix containing the lower and upper prediction intervals

Inputs
model Object oriented representation of the LS-SVM model
alpha(*) Significance level (by default 5%)
conftype(*) Type of prediction interval ’pointwise’ or ’simultaneous’ (by default ’si-

multaneous’)

See also:

trainlssvm, simlssvm, cilssvm
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A.3.28 preimage rbf

Purpose

Reconstruction or denoising after kernel PCA with RBF kernels, i.e. to find the approximate
pre-image (in the input space) of the corresponding feature space expansions.

Basic syntax

>> Xdtr = preimage_rbf(Xtr,sig2,U) % denoising on training data;

Description

This method uses a fixed-point iteration scheme to obtain approximate pre-images for RBF kernels
only. Denoising a test set Xnoisy can be done using:

>> Xd = preimage_rbf(Xtr,sig2,U,Xnoisy,’d’);

and for reconstructing feature space expansions:

>> Xr = preimage_rbf(Xtr,sig2,U,projections,’r’);

Full syntax

• >> Ximg = preimage_rbf(Xtr,sig2,U,B,type);

>> Ximg = preimage_rbf(Xtr,sig2,U,B,type,npcs);

>> Ximg = preimage_rbf(Xtr,sig2,U,B,type,npcs,maxIts);

Outputs
Ximg N×d (Nt×d) matrix with reconstructed or denoised data

Inputs
Xtr N×d matrix with training data points used for finding the principal com-

ponents
sig2 parameter of the RBF kernel
U N×npcs matrix of principal eigenvectors
B for reconstruction B are the projections, for denoising B is the Nt×d

matrix of noisy data. If B is not specified, then Xtr is denoised instead
type ’reconstruct’ or ’denoise’
npcs number of PCs used for approximation
maxIts maximum iterations allowed, 1000 by default.

See also:

denoise_kpca, kpca, kernel_matrix, RBF_kernel
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A.3.29 prelssvm, postlssvm

Purpose

Pre- and postprocessing of the LS-SVM

Description

These functions should only be called by trainlssvm or by simlssvm. At first the preprocessing
assigns a label to each input and output component (a for categorical, b for binary variables or c
for continuous). According to this label each dimension is rescaled:

• continuous: zero mean and unit variance

• categorical: no preprocessing

• binary: labels −1 and +1

Full syntax

Using the object oriented interface:

• Preprocessing:

>> model = prelssvm(model)

>> Xp = prelssvm(model, Xt)

>> [empty, Yp] = prelssvm(model, [], Yt)

>> [Xp, Yp] = prelssvm(model, Xt, Yt)

Outputs
model Preprocessed object oriented representation of the LS-SVM model
Xp Nt×d matrix with the preprocessed inputs of the test data
Yp Nt×d matrix with the preprocessed outputs of the test data

Inputs
model Object oriented representation of the LS-SVM model
Xt Nt×d matrix with the inputs of the test data to preprocess
Yt Nt×d matrix with the outputs of the test data to preprocess

• Postprocessing:

>> model = postlssvm(model)

>> Xt = postlssvm(model, Xp)

>> [empty, Yt] = postlssvm(model, [], Yp)

>> [Xt, Yt] = postlssvm(model, Xp, Yp)

Outputs
model Postprocessed object oriented representation of the LS-SVM model
Xt Nt×d matrix with the postprocessed inputs of the test data
Yt Nt×d matrix with the postprocessed outputs of the test data

Inputs
model Object oriented representation of the LS-SVM model
Xp Nt×d matrix with the inputs of the test data to postprocess
Yp Nt×d matrix with the outputs of the test data to postprocess
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A.3.30 rcrossvalidate

Purpose

Estimate the model performance with robust L-fold crossvalidation (only regression).

CAUTION!! Use this function only to obtain the value of the robust L-fold crossvalidation score
function given the tuning parameters. Do not use this function together with tunelssvm, but use
rcrossvalidatelssvm instead.

Basic syntax

>> cost = rcrossvalidate(model)

>> cost = rcrossvalidate({X,Y,’function’,gam,sig2})

Description

Robustness in the l-fold crossvalidation score function is obtained by iteratively reweighting
schemes. This routine is ONLY valid for regression!!

Full syntax

• Using LS-SVMlab with the functional interface:

>> [cost, costs] = rcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess})

>> [cost, costs] = rcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess}, L)

>> [cost, costs] = rcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess}, L,...

wfun, estfct)

>> [cost, costs] = rcrossvalidate({X,Y,type,gam,sig2,kernel,preprocess}, L,...

wfun, estfct, combinefct)

Outputs
cost Cost estimation of the robust L-fold cross-validation
costs(*) L×1 vector with costs estimated on the L different folds

Inputs
X Training input data used for defining the LS-SVM and the preprocessing
Y Training output data used for defining the LS-SVM and the preprocess-

ing
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
L(*) Number of folds (by default 10)
wfun(*) weighting scheme (by default: whuber)
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)

• Using the object oriented interface:

>> [cost, costs] = rcrossvalidate(model)

>> [cost, costs] = rcrossvalidate(model, L)

>> [cost, costs] = rcrossvalidate(model, L, wfun)

>> [cost, costs] = rcrossvalidate(model, L, wfun, estfct)
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>> [cost, costs] = rcrossvalidate(model, L, wfun, ...

estfct, combinefct)

Outputs
cost Cost estimation of the robust L-fold cross-validation
costs(*) L×1 vector with costs estimated on the L different folds
ec(*) N×1 vector with residuals of all data

Inputs
model Object oriented representation of the LS-SVM model
L(*) Number of folds (by default 10)
wfun(*) weighting scheme (by default: whuber)
estfct(*) Function estimating the cost based on the residuals (by default mse)
combinefct(*) Function combining the estimated costs on the different folds (by default

mean)

See also:

mae,weightingscheme, crossvalidate, trainlssvm, robustlssvm
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A.3.31 ridgeregress

Purpose

Linear ridge regression

Basic syntax

>> [w, b] = ridgeregress(X, Y, gam)

>> [w, b, Yt] = ridgeregress(X, Y, gam, Xt)

Description

Ordinary least squares on training errors together with minimization of a regularization parameter
(gam).

Full syntax

>> [w, b] = ridgeregress(X, Y, gam)

>> [w, b, Yt] = ridgeregress(X, Y, gam, Xt)

Outputs
w d×1 vector with the regression coefficients
b bias term
Yt(*) Nt×1 vector with predicted outputs of test data

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
gam Regularization parameter
Xt(*) Nt×d matrix with the inputs of the test data

See also:

bay_rr,bay_lssvm
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A.3.32 robustlssvm

Purpose

Robust training in the case of non-Gaussian noise or outliers

Basic syntax

>> model = robustlssvm(model)

Robustness towards outliers can be achieved by reducing the influence of support values cor-
responding to large errors. One should first use the function tunelssvm so all the necessary
parameters are optimally tuned before calling this routine. Note that the function robustlssvm

only works with the object oriented interface!

Full syntax

• Using the object oriented interface:

>> model = robustlssvm(model)

Outputs
model Robustly trained object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model

See also:

trainlssvm, tunelssvm, rcrossvalidate
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A.3.33 roc

Purpose

Receiver Operating Characteristic (ROC) curve of a binary classifier

Basic syntax

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(Zt, Y)

Description

The ROC curve [11] shows the separation abilities of a binary classifier: by setting different possible
classifier thresholds, the data set is tested on misclassifications [16]. As a result, a plot is shown
where the various outcomes are described. If the plot has an area under the curve of 1 on test
data, a perfectly separating classifier is found (on that particular dataset), if the area equals 0.5,
the classifier has no discriminative power at all. In general, this function can be called with the
latent variables Zt and the corresponding class labels Yclass

>> Zt = [-.7 Yclass = [-1

.3 -1

1.5 1

... ..

-.2] 1]

>> roc(Zt, Yclass)

For use in LS-SVMlab, a shorthand notation allows making the ROC curve on the training
data. Implicit training and simulation of the latent values simplifies the call.

>> roc({X,Y,’classifier’,gam,sig2,kernel})

>> roc(model)

Full syntax

• Standard call (LS-SVMlab independent):

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(Zt, Y)

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(Zt, Y, figure)

Outputs
area(*) Area under the ROC curve
se(*) Standard deviation of the residuals
thresholds(*) N×1 different thresholds value
oneMinusSpec(*) 1-Specificity of each threshold value
sens(*) Sensitivity for each threshold value
TN(*) Number of true negative predictions
TP(*) Number of true positive predictions
FN(*) Number of false negative predictions
FP(*) Number of false positive predictions

Inputs
Zt N×1 latent values of the predicted outputs
Y N×1 of true class labels
figure(*) ’figure’(*) or ’nofigure’
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• Using the functional interface for the LS-SVMs:

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = ...

roc({X,Y,’classifier’,gam,sig2,kernel})

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = ...

roc({X,Y,’classifier’,gam,sig2,kernel}, figure)

Outputs
area(*) Area under the ROC curve
se(*) Standard deviation of the residuals
thresholds(*) Different thresholds
oneMinusSpec(*) 1-Specificity of each threshold value
sens(*) Sensitivity for each threshold value
TN(*) Number of true negative predictions
TP(*) Number of true positive predictions
FN(*) Number of false negative predictions
FP(*) Number of false positive predictions

Inputs
X N×d matrix with the inputs of the training data
Y N×1 vector with the outputs of the training data
type ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
figure(*) ’figure’(*) or ’nofigure’

• Using the object oriented interface for the LS-SVMs:

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(model)

>> [area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(model, figure)

Outputs
area(*) Area under the ROC curve
se(*) Standard deviation of the residuals
thresholds(*) N×1 vector with different thresholds
oneMinusSpec(*) 1-Specificity of each threshold value
sens(*) Sensitivity for each threshold value
TN(*) Number of true negative predictions
TP(*) Number of true positive predictions
FN(*) Number of false negative predictions
FP(*) Number of false positive predictions

Inputs
model Object oriented representation of the LS-SVM model
figure(*) ’figure’(*) or ’nofigure’

See also:

deltablssvm, trainlssvm



102 APPENDIX A. MATLAB FUNCTIONS

A.3.34 simlssvm

Purpose

Evaluate the LS-SVM at given points

Basic syntax

>> Yt = simlssvm({X,Y,type,gam,sig2,kernel}, {alpha,b}, Xt)

>> Yt = simlssvm({X,Y,type,gam,sig2,kernel}, Xt)

>> Yt = simlssvm(model, Xt)

Description

The matrix Xt represents the points one wants to predict. The first cell contains all arguments
needed for defining the LS-SVM (see also trainlssvm, initlssvm). The second cell contains the
results of training this LS-SVM model. The cell syntax allows for flexible and consistent default
handling.

Full syntax

• Using the functional interface:

>> [Yt, Zt] = simlssvm({X,Y,type,gam,sig2}, Xt)

>> [Yt, Zt] = simlssvm({X,Y,type,gam,sig2,kernel}, Xt)

>> [Yt, Zt] = simlssvm({X,Y,type,gam,sig2,kernel,preprocess}, Xt)

>> [Yt, Zt] = simlssvm({X,Y,type,gam,sig2,kernel}, {alpha,b}, Xt)

Outputs
Yt Nt×m matrix with predicted output of test data
Zt(*) Nt×m matrix with predicted latent variables of a classifier

Inputs
X N×d matrix with the inputs of the training data
Y N×m vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’
alpha(*) Support values obtained from training
b(*) Bias term obtained from training
Xt Nt×d inputs of the test data

• Using the object oriented interface:

>> [Yt, Zt, model] = simlssvm(model, Xt)

Outputs
Yt Nt×m matrix with predicted output of test data
Zt(*) Nt×m matrix with predicted latent variables of a classifier
model(*) Object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model
Xt Nt×d matrix with the inputs of the test data

See also:

trainlssvm, initlssvm, plotlssvm, code, changelssvm
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A.3.35 trainlssvm

Purpose

Train the support values and the bias term of an LS-SVM for classification or function approxi-
mation

Basic syntax

>> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})

>> model = trainlssvm(model)

Description

type can be ’classifier’ or ’function estimation’ (these strings can be abbreviated into
’c’ or ’f’, respectively). X and Y are matrices holding the training input and training output.
The i-th data point is represented by the i-th row X(i,:) and Y(i,:). gam is the regularization
parameter: for gam low minimizing of the complexity of the model is emphasized, for gam high,
fitting of the training data points is stressed. kernel par is the parameter of the kernel; in the
common case of an RBF kernel, a large sig2 indicates a stronger smoothing. The kernel type

indicates the function that is called to compute the kernel value (by default RBF kernel). Other
kernels can be used for example:

>> [alpha, b] = trainlssvm({X,Y,type,gam,[d; p],’poly_kernel’})

>> [alpha, b] = trainlssvm({X,Y,type,gam,[] ,’lin_kernel’})

The kernel parameter(s) are passed as a column vector, in the case no kernel parameter is needed,
pass the empty vector!

The training can either be proceeded by the preprocessing function (’preprocess’) (by de-
fault) or not (’original’). The training calls the preprocessing (prelssvm, postlssvm) and the
encoder (codelssvm) if appropriate.

In the remainder of the text, the content of the cell determining the LS-SVM is given by
{X,Y, type, gam, sig2}. However, the additional arguments in this cell can always be added
in the calls.

If one uses the object oriented interface (see also A.3.16), the training is done by

>> model = trainlssvm(model)

>> model = trainlssvm(model, X, Y)

The status of the model checks whether a retraining is needed. The extra arguments X, Y allow
to re-initialize the model with this new training data as long as its dimensions are the same as the
old initiation.

One implementation is included:

• The Matlab implementation: a straightforward implementation based on the matrix
division ’\’ (lssvmMATLAB.m).

This implementation allows to train a multidimensional output problem. If each output uses
the same kernel type, kernel parameters and regularization parameter, this is straightforward. If
not so, one can specify the different types and/or parameters as a row vector in the appropriate
argument. Each dimension will be trained with the corresponding column in this vector.

>> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...

[ gam_1 ... gam_d], ...

[sig2_1 ... sig2_d],...

{kernel_1,...,kernel_d}})
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Full syntax

• Using the functional interface:

>> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})

>> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})

>> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})

Outputs
alpha N×m matrix with support values of the LS-SVM
b 1×m vector with bias term(s) of the LS-SVM

Inputs
X N×d matrix with the inputs of the training data
Y N×m vector with the outputs of the training data
type ’function estimation’ (’f’) or ’classifier’ (’c’)
gam Regularization parameter
sig2 Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’

• Using the object oriented interface:

>> model = trainlssvm(model)

>> model = trainlssvm({X,Y,type,gam,sig2})

>> model = trainlssvm({X,Y,type,gam,sig2,kernel})

>> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})

Outputs
model(*) Trained object oriented representation of the LS-SVM model

Inputs
model Object oriented representation of the LS-SVM model
X(*) N×d matrix with the inputs of the training data
Y(*) N×m vector with the outputs of the training data
type(*) ’function estimation’ (’f’) or ’classifier’ (’c’)
gam(*) Regularization parameter
sig2(*) Kernel parameter(s) (for linear kernel, use [])
kernel(*) Kernel type (by default ’RBF_kernel’)
preprocess(*) ’preprocess’(*) or ’original’

See also:

simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm
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A.3.36 tunelssvm, linesearch & gridsearch

Purpose

Tune the tuning parameters of the model with respect to the given performance measure

Basic syntax

[gam, sig2, cost] = tunelssvm({X,Y,type,[],[]}, optfun, costfun, costargs)

where the values for tuning parameters (fourth and fifth argument) are set to the status of empty.
Using the object oriented interface this becomes:

model = tunelssvm(model, optfun, costfun, costargs)

where model is the object oriented interface of the LS-SVM. This is created by the command
initlssvm.

model = initlssvm(X,Y,type,[],[]);

Description

There are three optimization algorithms: simplex which works for all kernels, gridsearch is
used (this one is restricted to 2-dimensional tuning parameter optimization); and the third one
is linesearch (used with the linear kernel). The complete tuning process goes as follows: First,
for every kernel, first Coupled Simulated Annealing (CSA) determines suitable starting points for
every method. The search limits of the CSA method are set to [exp(−10), exp(10)]. Second, these
starting points are then given to on of the three optimization routines above. These routines have
to be explicitly specified by the user. CSA have already proven to be more effective than multi-
start gradient descent optimization. Another advantage of CSA is that it uses the acceptance
temperature to control the variance of the acceptance probabilities with a control scheme. This
leads to an improved optimization efficiency because it reduces the sensitivity of the algorithm
to the initialization parameters while guiding the optimization process to quasi-optimal runs. By
default, CSA uses five multiple starters.

The tuning parameters are the regularization parameter gam and the squared kernel parame-
ter (or sig2 in the case of the ’RBF_kernel’). costfun gives an estimate of the performance
of the model. Possible functions for costfun are crossvalidatelssvm, leaveoneoutlssvm,
rcrossvalidatelssvm and gcrossvalidatelssvm. Possible combinations are

>> model = tunelssvm(model, ’simplex’, ’crossvalidatelssvm’, {10,’mse’})

>> model = tunelssvm(model, ’gridsearch’, ’crossvalidatelssvm’, {10,’mse’})

>> model = tunelssvm(model, ’linesearch’, ’crossvalidatelssvm’, {10,’mse’})

In the robust cross-validation case, other possibilities for the weights are whampel, wlogistic and
wmyriad.

In case of function approximation for a linear kernel:

>> gam = tunelssvm({X,Y,’f’,[],[],’lin_kernel’},’simplex’,...

’leaveoneoutlssvm’, {’mse’});

>> gam = tunelssvm({X,Y,’f’,[],[],’RBF_kernel’}, ’linesearch’,...

’leaveoneoutlssvm’, {’mse’})

In the case of the RBF kernel:

>> [gam, sig2] = tunelssvm({X,Y,’f’,[],[],’RBF_kernel’}, ’simplex’,...

’leaveoneoutlssvm’, {’mse’});

>> [gam, sig2] = tunelssvm({X,Y,’f’,[],[],’RBF_kernel’}, ’gridsearch’,...

’leaveoneoutlssvm’, {’mse’});
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In case of the polynomial (degree is automatically tuned) and robust 10-fold cross-validation
(combined with logistic weights):

>> [gam, sig2] = tunelssvm({X,Y,’f’,[],[],’poly_kernel’}, ’simplex’,...

’rcrossvalidatelssvm’, {10,’mae’},’wlogistic’)

In the case of classification (notice the use of the function misclass)

>> gam = tunelssvm({X,Y,’c’,[],[],’lin_kernel’},’simplex’,...

’leaveoneoutlssvm’, {’misclass’});

>> gam = tunelssvm({X,Y,’c’,[],[],’lin_kernel’},’linesearch’,...

’leaveoneoutlssvm’, {’misclass’});

In the case of the RBF kernel where the 10-fold cross-validation cost function is the number
of misclassifications (misclass):

>> [gam,sig2] = tunelssvm({X,Y,’c’,[],[],’RBF_kernel’}, ’simplex’,...

’crossvalidatelssvm’,{10,’misclass’});

>> [gam,sig2] = tunelssvm({X,Y,’c’,[],[],’RBF_kernel’}, ’gridsearch’,...

’crossvalidatelssvm’,{10,’misclass’})

The most simple algorithm to determine the minimum of a cost function with possibly multiple
optima is to evaluate a grid over the parameter space and to pick the minimum. This procedure
iteratively zooms to the candidate optimum. The StartingValues determine the limits of the grid
over parameter space.

>> Xopt = gridsearch(fun, StartingValues)

This optimization function can be customized by passing extra options and the corresponding
value. These options cannot be changed in the tunelssvm command. The default values
of gridsearch, linesearch or simplex are used when invoking tunelssvm.

>> [Xopt, Yopt, Evaluations, fig] = gridsearch(fun, startvalues, funargs,...

option1,value1,...)

the possible options and their default values are:

’nofigure’ =’figure’;

’maxFunEvals’= 190;

’TolFun’ = .0001;

’TolX’ = .0001;

’grain’ = 10;

’zoomfactor’ = 5;

An example is given:

>> fun = inline(’1-exp(-norm([X(1) X(2)]))’,’X’);

>> gridsearch(fun,[-4 3; 2 -3])

the corresponding grid which is evaluated is shown in Figure A.1.

>> gridsearch(fun,[-3 3; 3 -3],{},’nofigure’,’nofigure’,’MaxFunEvals’,1000)
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Figure A.1: This figure shows the grid which is optimized given the limit values [-4 3; 2 -3].

Full syntax

• Optimization by exhaustive search over a two-dimensional grid:

>> [Xopt, Yopt, Evaluations, fig] = gridsearch(fun, startvalues, funargs,...

option1,value1,...)

Outputs
Xopt Optimal parameter set
Yopt Criterion evaluated at Xopt
Evaluations Used number of iterations
fig Handle to the figure of the optimization

Inputs
CostFunction Function implementing the cost criterion
StartingValues 2*d matrix with limit values of the widest grid
FunArgs(*) Cell with optional extra function arguments of

fun

option(*) The name of the option one wants to change
value(*) The new value of the option one wants to

change
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The different options:

’Nofigure’ ’figure’(*) or ’nofigure’
’MaxFunEvals’ Maximum number of function evaluations (de-

fault: 100)
’GridReduction’ grid reduction parameter (e.g. ’2’: small re-

duction; ‘10’: heavy reduction; default ’5’)
’TolFun’ Minimal toleration of improvement on func-

tion value (default: 0.0001)
’TolX’ Minimal toleration of improvement on X value

(default: 0.0001)
’Grain’ Square root number of function evaluations in

one grid (default: 10)

• Optimization by exhaustive search of linesearch:

>> [Xopt, Yopt, Evaluations, fig] = linesearch(fun, startvalues, funargs,...

option1,value1,...)

Outputs
Xopt Optimal parameter set
Yopt Criterion evaluated at Xopt
iterations Used number of iterations
fig Handle to the figure of the optimization

Inputs
CostFun Function implementing the cost criterion
StartingValues 2*d matrix with limit values of the widest grid
FunArgs(*) Cell with optional extra function arguments of

fun

option(*) The name of the option one wants to change
value(*) The new value of the option one wants to

change

The different options:

’Nofigure’ ’figure’(*) or ’nofigure’
’MaxFunEvals’ Maximum number of function evaluations (de-

fault: 20)
’GridReduction’ grid reduction parameter (e.g. ’1.5’: small re-

duction; ‘10’: heavy reduction; default ’2’)
’TolFun’ Minimal toleration of improvement on func-

tion value (default: 0.01)
’TolX’ Minimal toleration of improvement on X value

(default: 0.01)
’Grain’ Number of evaluations per iteration (default:

10)

Full syntax

• SIMPLEX - multidimensional unconstrained non-linear optimization. Simplex finds a local
minimum of a function, via a function handle fun, starting from an initial point X. The local
minimum is located via the Nelder-Mead simplex algorithm [23], which does not require any
gradient information. opt contains the user specified options via a structure. The different
options are set via a structure with members denoted by opt.*

>> Xopt = simplex(fun,X,opt)
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• The different options:

opts.Chi Parameter governing expansion steps (default:
2)

opts.Delta Parameter governing size of initial simplex
(default: 1.2)

opts.Gamma Parameter governing contraction steps (de-
fault: 0.5)

opts.Rho Parameter governing reflection steps (default:
1)

opts.Sigma Parameter governing shrinkage steps (default:
0.5)

opts.MaxIter Maximum number of optimization steps (de-
fault: 15)

opts.MaxFunEvals Maximum number of function evaluations (de-
fault: 25)

opts.TolFun Stopping criterion based on the relative
change in value of the function in each step
(default: 1e-6)

opts.TolX Stopping criterion based on the change in the
minimizer in each step (default: 1e-6)

See also:

trainlssvm, crossvalidate
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A.3.37 windowize & windowizeNARX

Purpose

Re-arrange the data points into a (block) Hankel matrix for (N)AR(X) time-series modeling

Basic Syntax

>> w = windowize(A, window)

>> [Xw,Yw] = windowizeNARX(X,Y,xdelays, ydelays, steps)

Description

Use windowize function to make a nonlinear AR predictor with a nonlinear regressor. The last
elements of the resulting matrix will contain the future values of the time-series, the others will
contain the past inputs. window is the relative index of data points in matrix A, that are selected
to make a window. Each window is put in a row of matrix W. The matrix W contains as many rows
as there are different windows selected in A.

Schematically, this becomes

>> A = [a1 a2 a3;

b1 b2 b3;

c1 c2 c3;

d1 d2 d3;

e1 e2 e3;

f1 f2 f3;

g1 g2 g3];

>> W = windowize(A, [1 2 3])

W =

a1 a2 a3 b1 b2 b3 c1 c2 c3

b1 b2 b3 c1 c2 c3 d1 d2 d3

c1 c2 c3 d1 d2 d3 e1 e2 e3

d1 d2 d3 e1 e2 e3 f1 f2 f3

e1 e2 e3 f1 f2 f3 g1 g2 g3

The function windowizeNARX converts the time-series and its exogeneous variables into a block
Hankel format useful for training a nonlinear function approximation as a nonlinear ARX model.

Full syntax

• >> Xw = windowize(X, window)

The length of window is denoted by w.

Outputs
Xw (N-w+1)×—w— matrix of the sequences of windows over X

Inputs
X N×1 vector with data points
w w×1 vector with the relative indices of one window

• >> [Xw, Yw, xdim, ydim, n] = windowizeNARX(X, Y, xdelays, ydelays)

>> [Xw, Yw, xdim, ydim, n] = windowizeNARX(X, Y, xdelays, ydelays, steps)
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Outputs
Xw Matrix of the data used for input including the delays
Yw Matrix of the data used for output including the next steps
xdim(*) Number of dimensions in new input
ydim(*) Number of dimensions in new output
n(*) Number of new data points

Inputs
X N×m vector with input data points
Y N×d vector with output data points
xdelays Number of lags of X in new input
ydelays Number of lags of Y in new input
steps(*) Number of future steps of Y in new output (by default 1)

See also:

windowizeNARX, predict, trainlssvm, simlssvm
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