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Abstract

It is well-known that Kernel Based Regression (KBR) with adesquares loss
has some undesirable properties from robustness pointef WBR with more
robust loss functions, e.g. Huber or logistic losses, dfiea rise to more compli-
cated computations and optimization problems. In clabsteadistics, robustness
is improved by reweighting the original estimate. We stuelyeighting the KBR
estimate using four different weight functions. In additiove show that both the
smoother as well as the cross-validation procedure have totwst in order to
obtain a fully robust procedure.

1 Introduction

An important statistical tool routinely applied in mostesttes is regression analysis. Since Edge-
worth first argued that outliers have a very large influencéeast Squares (LS) many robust tech-
nigues have been developed|[7, 11]. These invdlyeegression) -estimators, Generalizetl -
estimators,R-estimators,L-estimators,S-estimators, repeated median estimator, least median of
squares, etc. Detailed information about these estimasowgell as methods for robustness measur-
ing can be found in [8, 12, 14]. Also other type of methodsezhidaptive regression techniques [6]
have also been used to obtain robustness. In these techrigquelaptive combination of estimators
is made in order to obtain robustness. However, all the igcies above were originally proposed
for parametric regression.

The evaluation of a statistical estimator is to determing blose it is to the true parameter. In case
of nonparametric regression popular criteria are integkatjuared error, mean integrated squared
error, mean integrated absolute deviatian Any of these criteria can be used in practice as they are
asymptotically quite similar [10]. In the nonparametrigmession setting the choice of bandwidth
(and regularization parameter) is crucial. In what follomes will denote bandwidth and/or regu-
larization parameter as tuning parameter(s). These tyrangmeters are chosen to minimize the
sum of squares of the prediction errors from all observati@ross-validation (CV) [2] is probably
one of the most popular data-driven methods of tuning patents? selection methods. We show, in
order to obtain a fully robust procedure, that both the simeioas well as the CV procedure have to
be robust.



The rest of the paper is organized as follows. Secflon 2 éxgpthe practical difficulties associated
with estimating the underlying function in the presenceutfiers. In Sectiofil3 we review the basic
principles of iteratively reweighted least squares supygeetor machines and discuss and derive the
properties of the Myriad. Sectidn 4 states the conclusions.

2 Problemswith Outliersin Kernel Based Regression

Some quite fundamental problems occur when regressionitpads are attempted in the presence of
outliers. In [15] a comprehensive study about this topiciieig for parametric techniques. In case
of nonparametric regression e.g. Nadaraya-Watson kestiehator, local polynomial regression,
least squares support vector machines (LS-SVM)itheisk is commonly used. However, the
norm is extremely sensitive to outliers. The breakdown ofikenonparametric regression based on
the L, norm, as well as a possible solution to it, is illustrated byams of a simple toy example in
Figurdl. In all examples LS-SVM (see Sectidn 3) is used a®simao Consider 200 equally spaced
observations on the intervé, 1] and a low-order polynomial mean functigitz) = 300(z3 —

3z + 32° — 25). Figure_La shows the mean function with normally distribigerors with variance
o? = 0.3% and two distinct groups of outliers. Figurel1b shows the samean function, but the
errors are generated from the gross error-oontamination model{ (Fy, G, €) [11]. This model is
defined as follows

U(Fy,G,e) ={F : F(e) = (1 —€e)Fy(e) + eG(e),0 < e < 1},

where Iy is some given distribution (the ideal nominal modél),is an arbitrary continuous dis-
tribution ande is the first parameter of contamination. In this simulatiBn ~ N(0,0.32),

G ~ N(0,10%) ande = 0.3. This simple example clearly shows that the estimates based
the L, norm (bold line) are less stable or even breakdown in contoasstimates based on robust
loss functions (thin line). Another important issue to dbt@bustness in nonparametric regression
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Figure 1: LS-SVM estimates with (a) normal distributed esrand two groups of outliers; (b) the
e-contamination model. This clearly shows that the estisiatesed on thés norm (bold line) are
less stable or even breakdown in contrast to estimates loasedbust loss functions (thin line).

is the kernel functior'. Kernels that satisfy¢ (u) — 0 asu — oo, for z — oo andz — —oo, are
bounded irR. These type of kernels are called decreasing kernels. digaggasing kernels lead to
quite robust methods with respect to outliers in falirection (leverage points). Common choices
of decreasing kernels aré (u) = max((1 — u?),0), K (u) = exp(—u?), K (u) = exp(—|ul), ...

The last issue to acquire a robust estimate is the propefygress-validation (CV). When no out-
liers are presentin the data, CV has been shown to produicgjtparameters that are asymptotically
consistent [9]. Inl[17] it is shown, under some regularitpdibions, that for an appropriate choice
of data splitting ratio cross-validation is consistentia sense of selecting the better procedure with
probability approaching 1. However, when outliers are @néén the data, the use of CV can lead
to extremely biased tuning parameterd [13] resulting in legglession estimates. The estimate can
also fail when the tuning parameters are determined by atdr@dV using a robust smoother. The
reason is that CV no longer produces a reasonable estimtite pfediction error. Therefore, a fully
robust CV method is necessary. Figlife 2 demonstrates thevime on the same toy example as
before. Indeed, it can be clearly seen that CV results indptimal tuning parameters resulting in a
bad estimate. Hence to obtain a fully robust estimate exepylsas to be robust, i.e. robust CV with
a robust smoother based on a decreasing kernel.
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Figure 2: LS-SVM estimates and type of errors as in Fi@lirenk Hold line represents the estimate
based on classicdl; CV and a robust smoother. The thin line represents estirbatesd on a fully
robust procedure.

3 Robust Approachesto Kernel Based Regression

In this section we discuss possible strategies to robudigsical smoothers. In particular we focus
on Least Squares Support Vector Machines (LS-SVM), but #seribed procedures can be gener-
ally applied to other smoothers (Nadaraya-Watson, Peigsthao, local polynomial regression,...).

3.1 Robustnessvia lteratively Reweighting

In order to obtain a robust estimate, one can replacétHess function in the LS-SVM formulation
by e.g. L; or Huber’s loss function. This would lead to a Quadratic Paogming (QP) problem
and hence increasing the computational load. Instead n§usbust cost functions, one can obtain
a robust estimate based upon the previous LS-SVM solutidrer@ training set defined d3, =
{(Xp,Yz) : Xp € RLY, € Rik =1,...,n} of sizen drawn i.i.d. from an unknown distribution
Fxy according toY = m(X) + e, wheree € R are assumed to be i.i.d. random errors with
Ele|X] = 0, Vare] = 02 < oo, m € C*(R) with z > 2, is an unknown real-valued smooth
function andE[Y'|X] = m(X). The optimization problem of finding the vecterandb € R for
regression can be formulated as follows [16]

Et}li),réj(w,e) = LwTw+ %;Ukei )
st. Vi =wlo(Xp)+b+er, k=1,...,n,
where the error variables from the unweighted LS-S¥M= &y, /v (casevy, = 1, Vk) are weighted
by weighting factors), andy : R — R™ is the feature map. By using Lagrange multipliers, the
solution of [1) can be obtained by taking the Karush-Kuhiekeu (KKT) conditions for optimality.
The result is given by the following linear system in the duaiablesy

(tteio) (o) = () @

with D, = diag{L .. L} The weightsy, are based upa#), = dy,/ from the (unweighted)

yvr?” 7 YUn
LS-SVM (D = I,/7), Y = (Y1,.. LY )L, =0, DT a = (a,. .. a,)T andQy =
o(Xi)To(X)) = K(Xy, X;)fork,l =1,...,n, with K a positive definite kernel e.g. the Gaussian
density with bandwidtlth. The resulting weighted LS-SVM model for function estiroatbecomes
() =Y apK(z, Xi) +.
k=1
Instead of weighting only once [16], one can use a weightoigese from Tablg]1 and iteratively
solve [2) a number of times|[4]. This idea is summarized inoAlllpm[7.

3.2 SomePropertiesof the Myriad

It is without doubt that the choice of weight functidn plays a significant role in the robustness
aspects of the smoother. We consider four different weighttion illustrated in Tablgl1. The first



Algorithm 1 Iteratively Reweighted LS-SVM

1: Compute the residuals, = &5/ from the unweighted LS-SVMy, = 1, Vk)

2: repeat _ _

Computes = 1.483 MAD(e"”) from thee(” distribution

Determine weight%,(j) based upon() = e,(j)/é; choose weight functioly” (see Tabl&ll)

4
5. Solve [2) withD., = diag {1 S, .. 1 /(WSP)},
6
7

w

Seti :=i+1

. until consecutive estimateg’ "

andag) are sufficiently close to each other

three are well-known in the field of robust statistics, th&t ne however is less or not known. We
will study some of the properties of the last weight functien the Myriad [1]. The Myriad is
derived from the Maximum Likelihood (ML) estimation of a Gdny distribution with scaling factor
0 (see below) and can be used as a robust location estimat@hile :0ise environments. Given a
set of i.i.d. random variableX, ..., X,, ~ X andX ~ C(8,¢), where the location parametér

is to be estimated from data i,8.andé > 0 is a scaling factor. The ML principle yields the sample
Myriad

R 5 n n 1
ﬂ_arg;nax (;) E—(SQ-F(Xi—B)Q’

which is equivalent to

B = argminZlog [52 + (X — 5)2] . 3)
=
Note that, unlike the sample mean or median, the definitiothefsample Myriad involves the
free parametes. We will refer to ¢ as the linearity parameter of the Myriad. The behavior of
the Myriad estimator is markedly dependent on the valuesdliriearity paramete$. Tuning the
linearity paramete§ adapts the behavior of the myriad from impulse-resistartderype estimators
(small $) to the Gaussian-efficient sample mean (lafye If an observation in the set of input
samples has a large magnitude such {fgt— 5| > 4, the cost associated with this sample is
approximatelylog(X; — )2 i.e. the log of squared deviation. Thus, much as the samp&me
and sample median respectively minimize the sum of squateahsolute deviations, the sample
myriad (approximately) minimizes the sum of logarithmimaced deviations. Some intuition can
be gained by plotting the cost function [ (3) for variousued ofs. Figure3a depicts the different
cost function characteristics obtained fore= 20, 2,0.75 for a sample set of size 5. For the a set
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Figure 3: (a) Myriad cost functions for the observation slEs; = —3, X, =8, X35 =1, X, =
—2, X5 = 5foré = 20,2,0.2; (b) Influence function for the mean, median and Myriad.

of samples defined as above, an M-estimator of location iseldfas the parametgrminimizing
a sum of the fornd_"_, p(X; — 3), wherep is the cost or loss function. In general, whe) =

—log f (), with f a density, the M-estimaté corresponds to the ML estimator associated vyith
According to [3), the cost function associated with the dariyriad is given by

p(x) = log[o? + 7.



Some insight into the operation of M-estimates is gainedugh the definition of the influence
function (IF) [8]. For an M-estimate the IF is proportionalthe score function. For the Myriad (see
also Figuré3b), the IF is given by

(@) = (@) =

T

Table 1: Definitions for the Huber, Hampel, Logistic and Mytiweight functiond/(-). The corre-
sponding los®(-) and score functiog(-) are also given.

Huber Hampel Logistic Myriad
. . 1 if [r] < b1; 2
1, ifr] < B ot tanh(r) 1
1% : 21l by < || < bo; —
") { % it rl 2 5. { (1)7,24717 :f |:|7>|l;|.7 i " 0% + 12
r? it | < B e <y
p(T) { /3|;.| _ 12 i r| > B’ %: if by < |r| < ba; rtanh(r) 1Og(62 + TQ)
207 - 0, if |r| > ba.

3.3 Robust Selection of Tuning Parameters

It is shown in Figuré€R that also the CV procedure plays anifiagmt role in the robustness proper-
ties of used method. Leung (2005)[[13] theoretically shdves & robust CV procedure differs from
the Mean Asymptotic Squared ErrdviASE) by a constant shift and a constant multiple. Neither
of these is dependent on the bandwidth. Further, it is shbatthis multiple depends on the score
function and therefore also on the weight function. To abtafully robust procedure for KBR one
needs (i) a robust smoother and (ii) a robust CV (RCV) prooetased on the robust smoother or
more formal

RCV(0) = % Xn:L (Yi —m—i(X;;0)),

whereL(-) is a robust loss function e.d.;, Huber loss, Myriad lossj: is a robust smoother and
m_;(X;; h,v) denotes the leave-one-out estimator where poigteft out from the training and
denotes the parameter vector e.g. when using the Myriadhtg#ig= (h, v, d).

3.4 Speed of Convergence-Robustness Trade-off

In a functional analysis setting it has been showriin [3] d&]dHat the influence function|[7] of
reweighted Least Squares Kernel Based Regression (LS-MER)ya bounded kernel converges to
bounded influence function, even when the initial LS-KBR @ robust, if ()¢ : R — Ris a
measurable, real, odd function, (i) is continuous and differentiable, (iiijy is bounded and (iv)
Ep, ¢'(e) > 0 whereP, denotes the distribution of the errors. This condition cameédaxed inta)

is increasing. Define

d= Epe %@) and ¢ = d—]‘__‘)pe ¢/(€)7

then it can be showrl|[5] that/d establishes an upper bound on the reduction of the influence
function at each step. The upper bound represents a trdtetafeen the reduction of the influence
function (speed of convergence) and the degree of robussté® higher the ratio/d the higher
the degree of robustness but the slower the reduction ohtheence function at each step and vice
versa. In Tabl€]2 this upper bound is calculated for a Norrstidution and a standard Cauchy
for the four types of weighting schemes. Note that the cayemee of the influence function is
quite fast, even at heavy tailed distributions. For Hubet Biyriad weights, the convergence rate
decreases rapidly asrespectively increases. This behavior is to be expected, since the lgrger
respectively, the less points are downweighted. Also note that the uppandon the convergence
rate approaches 1 @ ¢ — 0, indicating a high degree of robustness but slow convergeme.

A good choice between convergence and robustness is thetadgistic weights. Also notice the
small ratio for the Hampel weights indicating a low degreeafifustness.



Table 2: Values of the constantsd andc¢/d for the Huber, Logistic, Hampel and Myriad weight
function at a standard Normal distribution and a standandcBa The bold values represent an
upper bound for the reduction of the influence function ahestep.

Weight | Parameter] N(0,1) C(0,1)
function | settings c d c/d c d c/d
B=05 0.32 [ 0.71] 0.46 0.26 | 0.55 | 0.47
Huber | 8= 0.22 [ 0.91] 0.25 022 | 0.72 | 0.31
Logistic 0.22 [ 0.82] 0.26 0.21 | 0.66 | 0.32
Hampel lb’; =25 | 0.006| 0.99| 0.006 || 0.02 | 0.78 | 0.025
Myriad | § = 0.1 0.11 | 0.12| 0.92 0.083| 0.091| 0.91
=1 0.31 | 0.66| 0.47 025 | 0.50 | 0.50

4 Conclusions

In this paper we have compared four different type of weigimictions and their use in iterative
reweighted LS-SVM. By using an upper bound for the reduatibtine influence function we have
demonstrated the existence of a trade-off between speeashwéyence and the degree of robust-
ness. The Myriad weight function is highly robust againgtr@me) outliers but has a slow speed
of convergence. A good compromise between speed of comveegad robustness can be achieved
by using Logistic weights. To obtain a fully robust solutiove showed that the smoother needs to
be robust as well as the CV procedure.
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