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Abstract
It is well-known that Kernel Based Regression (KBR) with a least squares loss
has some undesirable properties from robustness point of view. KBR with more
robust loss functions, e.g. Huber or logistic losses, oftengive rise to more compli-
cated computations and optimization problems. In classical statistics, robustness
is improved by reweighting the original estimate. We study reweighting the KBR
estimate using four different weight functions. In addition, we show that both the
smoother as well as the cross-validation procedure have to be robust in order to
obtain a fully robust procedure.

1 Introduction

An important statistical tool routinely applied in most sciences is regression analysis. Since Edge-
worth first argued that outliers have a very large influence onLeast Squares (LS) many robust tech-
niques have been developed [7, 11]. These involveL1 regression,M -estimators, GeneralizedM -
estimators,R-estimators,L-estimators,S-estimators, repeated median estimator, least median of
squares, etc. Detailed information about these estimatorsas well as methods for robustness measur-
ing can be found in [8, 12, 14]. Also other type of methods called adaptive regression techniques [6]
have also been used to obtain robustness. In these techniques an adaptive combination of estimators
is made in order to obtain robustness. However, all the techniques above were originally proposed
for parametric regression.

The evaluation of a statistical estimator is to determine how close it is to the true parameter. In case
of nonparametric regression popular criteria are integrated squared error, mean integrated squared
error, mean integrated absolute deviation,. . . Any of these criteria can be used in practice as they are
asymptotically quite similar [10]. In the nonparametric regression setting the choice of bandwidth
(and regularization parameter) is crucial. In what followswe will denote bandwidth and/or regu-
larization parameter as tuning parameter(s). These tuningparameters are chosen to minimize the
sum of squares of the prediction errors from all observations. Cross-validation (CV) [2] is probably
one of the most popular data-driven methods of tuning parameter(s) selection methods. We show, in
order to obtain a fully robust procedure, that both the smoother as well as the CV procedure have to
be robust.
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The rest of the paper is organized as follows. Section 2 explains the practical difficulties associated
with estimating the underlying function in the presence of outliers. In Section 3 we review the basic
principles of iteratively reweighted least squares support vector machines and discuss and derive the
properties of the Myriad. Section 4 states the conclusions.

2 Problems with Outliers in Kernel Based Regression
Some quite fundamental problems occur when regression techniques are attempted in the presence of
outliers. In [15] a comprehensive study about this topic is given for parametric techniques. In case
of nonparametric regression e.g. Nadaraya-Watson kernel estimator, local polynomial regression,
least squares support vector machines (LS-SVM) theL2 risk is commonly used. However, theL2

norm is extremely sensitive to outliers. The breakdown of kernel nonparametric regression based on
theL2 norm, as well as a possible solution to it, is illustrated by means of a simple toy example in
Figure 1. In all examples LS-SVM (see Section 3) is used as smoother. Consider 200 equally spaced
observations on the interval[0, 1] and a low-order polynomial mean functionf(x) = 300(x3 −
3x4 +3x5 − x6). Figure 1a shows the mean function with normally distributed errors with variance
σ2 = 0.32 and two distinct groups of outliers. Figure 1b shows the samemean function, but the
errors are generated from the gross error orǫ-contamination modelU(F0, G, ǫ) [11]. This model is
defined as follows

U(F0, G, ǫ) = {F : F (e) = (1 − ǫ)F0(e) + ǫG(e), 0 ≤ ǫ ≤ 1},

whereF0 is some given distribution (the ideal nominal model),G is an arbitrary continuous dis-
tribution andǫ is the first parameter of contamination. In this simulationF0 ∼ N(0, 0.32),
G ∼ N(0, 102) and ǫ = 0.3. This simple example clearly shows that the estimates basedon
theL2 norm (bold line) are less stable or even breakdown in contrast to estimates based on robust
loss functions (thin line). Another important issue to obtain robustness in nonparametric regression
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Figure 1: LS-SVM estimates with (a) normal distributed errors and two groups of outliers; (b) the
ǫ-contamination model. This clearly shows that the estimates based on theL2 norm (bold line) are
less stable or even breakdown in contrast to estimates basedon robust loss functions (thin line).

is the kernel functionK. Kernels that satisfyK(u) → 0 asu → ∞, for x → ∞ andx → −∞, are
bounded inR. These type of kernels are called decreasing kernels. Usingdecreasing kernels lead to
quite robust methods with respect to outliers in theX-direction (leverage points). Common choices
of decreasing kernels are:K(u) = max((1 − u2), 0),K(u) = exp(−u2),K(u) = exp(−|u|), . . .

The last issue to acquire a robust estimate is the proper typeof cross-validation (CV). When no out-
liers are present in the data, CV has been shown to produce tuning parameters that are asymptotically
consistent [9]. In [17] it is shown, under some regularity conditions, that for an appropriate choice
of data splitting ratio cross-validation is consistent in the sense of selecting the better procedure with
probability approaching 1. However, when outliers are present in the data, the use of CV can lead
to extremely biased tuning parameters [13] resulting in badregression estimates. The estimate can
also fail when the tuning parameters are determined by standard CV using a robust smoother. The
reason is that CV no longer produces a reasonable estimate ofthe prediction error. Therefore, a fully
robust CV method is necessary. Figure 2 demonstrates this behavior on the same toy example as
before. Indeed, it can be clearly seen that CV results in lessoptimal tuning parameters resulting in a
bad estimate. Hence to obtain a fully robust estimate every step has to be robust, i.e. robust CV with
a robust smoother based on a decreasing kernel.
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Figure 2: LS-SVM estimates and type of errors as in Figure 1. The bold line represents the estimate
based on classicalL2 CV and a robust smoother. The thin line represents estimatesbased on a fully
robust procedure.

3 Robust Approaches to Kernel Based Regression
In this section we discuss possible strategies to robustifyclassical smoothers. In particular we focus
on Least Squares Support Vector Machines (LS-SVM), but the described procedures can be gener-
ally applied to other smoothers (Nadaraya-Watson, Priestley-Chao, local polynomial regression,...).

3.1 Robustness via Iteratively Reweighting

In order to obtain a robust estimate, one can replace theL2 loss function in the LS-SVM formulation
by e.g. L1 or Huber’s loss function. This would lead to a Quadratic Programming (QP) problem
and hence increasing the computational load. Instead of using robust cost functions, one can obtain
a robust estimate based upon the previous LS-SVM solution. Given a training set defined asDn =
{(Xk, Yk) : Xk ∈ R

d, Yk ∈ R; k = 1, . . . , n} of sizen drawn i.i.d. from an unknown distribution
FXY according toY = m(X) + e, wheree ∈ R are assumed to be i.i.d. random errors with
E[e|X ] = 0, Var[e] = σ2 < ∞, m ∈ Cz(R) with z ≥ 2, is an unknown real-valued smooth
function andE[Y |X ] = m(X). The optimization problem of finding the vectorw andb ∈ R for
regression can be formulated as follows [16]

min
w,b,e

J (w, e) = 1
2w

Tw + γ
2

n
∑

k=1

vke
2
k

s.t. Yk = wTϕ(Xk) + b+ ek, k = 1, . . . , n,

(1)

where the error variables from the unweighted LS-SVMêk = α̂k/γ (casevk = 1, ∀k) are weighted
by weighting factorsvk andϕ : Rd → R

nh is the feature map. By using Lagrange multipliers, the
solution of (1) can be obtained by taking the Karush-Kuhn-Tucker (KKT) conditions for optimality.
The result is given by the following linear system in the dualvariablesα

(

0 1Tn
1n Ω+Dγ

)(

b
α

)

=

(

0
Y

)

, (2)

withDγ = diag
{

1
γv1

, . . . , 1
γvn

}

. The weightsvk are based upon̂ek = α̂k/γ from the (unweighted)

LS-SVM (Dγ = In/γ), Y = (Y1, . . . , Yn)
T , 1n = (1, . . . , 1)T , α = (α1, . . . , αn)

T andΩkl =
ϕ(Xk)

Tϕ(Xl) = K(Xk, Xl) for k, l = 1, . . . , n, withK a positive definite kernel e.g. the Gaussian
density with bandwidthh. The resulting weighted LS-SVM model for function estimation becomes

m̂(x) =

n
∑

k=1

α̂kK(x,Xk) + b̂.

Instead of weighting only once [16], one can use a weighting scheme from Table 1 and iteratively
solve (2) a number of times [4]. This idea is summarized in Algorithm 1.

3.2 Some Properties of the Myriad

It is without doubt that the choice of weight functionV plays a significant role in the robustness
aspects of the smoother. We consider four different weight function illustrated in Table 1. The first
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Algorithm 1 Iteratively Reweighted LS-SVM

1: Compute the residualŝek = α̂k/γ from the unweighted LS-SVM (vk = 1, ∀k)
2: repeat
3: Computês = 1.483MAD(e

(i)
k ) from thee(i)k distribution

4: Determine weightsv(i)k based uponr(i) = e
(i)
k /ŝ; choose weight functionV (see Table 1)

5: Solve (2) withDγ = diag
{

1/(γv
(i)
1 ), . . . , 1/(γv

(i)
n )

}

,

6: Seti := i+ 1
7: until consecutive estimatesα(i−1)

k andα(i)
k are sufficiently close to each other

three are well-known in the field of robust statistics, the last one however is less or not known. We
will study some of the properties of the last weight functioni.e. the Myriad [1]. The Myriad is
derived from the Maximum Likelihood (ML) estimation of a Cauchy distribution with scaling factor
δ (see below) and can be used as a robust location estimator in stable noise environments. Given a
set of i.i.d. random variablesX1, . . . , Xn ∼ X andX ∼ C(β, δ), where the location parameterβ
is to be estimated from data i.e.β̂ andδ > 0 is a scaling factor. The ML principle yields the sample
Myriad

β̂ = argmax
β

(

δ

π

)n n
∏

i=1

1

δ2 + (Xi − β)2
,

which is equivalent to

β̂ = argmin
β

n
∑

i=1

log
[

δ2 + (Xi − β)2
]

. (3)

Note that, unlike the sample mean or median, the definition ofthe sample Myriad involves the
free parameterδ. We will refer to δ as the linearity parameter of the Myriad. The behavior of
the Myriad estimator is markedly dependent on the value of its linearity parameterδ. Tuning the
linearity parameterδ adapts the behavior of the myriad from impulse-resistant mode-type estimators
(small δ) to the Gaussian-efficient sample mean (largeδ). If an observation in the set of input
samples has a large magnitude such that|Xi − β| ≫ δ, the cost associated with this sample is
approximatelylog(Xi − β)2 i.e. the log of squared deviation. Thus, much as the sample mean
and sample median respectively minimize the sum of square and absolute deviations, the sample
myriad (approximately) minimizes the sum of logarithmic squared deviations. Some intuition can
be gained by plotting the cost function in (3) for various values ofδ. Figure 3a depicts the different
cost function characteristics obtained forδ = 20, 2, 0.75 for a sample set of size 5. For the a set

δ = 0.75

δ = 2

δ = 20

X1 X2X3X4 X5

(a)

Mean

Median

Myriad

ψ

(b)

Figure 3: (a) Myriad cost functions for the observation samplesX1 = −3, X2 = 8, X3 = 1, X4 =
−2, X5 = 5 for δ = 20, 2, 0.2; (b) Influence function for the mean, median and Myriad.

of samples defined as above, an M-estimator of location is defined as the parameterβ minimizing
a sum of the form

∑n

i=1 ρ(Xi − β), whereρ is the cost or loss function. In general, whenρ(x) =
− log f(x), with f a density, the M-estimatêβ corresponds to the ML estimator associated withf .
According to (3), the cost function associated with the sample Myriad is given by

ρ(x) = log[δ2 + x2].
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Some insight into the operation of M-estimates is gained through the definition of the influence
function (IF) [8]. For an M-estimate the IF is proportional to the score function. For the Myriad (see
also Figure 3b), the IF is given by

ρ′(x) = ψ(x) =
2x

δ2 + x2
.

Table 1: Definitions for the Huber, Hampel, Logistic and Myriad weight functionsV (·). The corre-
sponding lossρ(·) and score functionψ(·) are also given.

Huber Hampel Logistic Myriad

V (r)

{

1, if |r| < β;
β

|r|
, if |r| ≥ β.







1, if |r| < b1;
b2−|r|
b2−b1

, if b1 ≤ |r| ≤ b2;
0, if |r| > b2.

tanh(r)

r

δ2

δ2 + r2

ψ(r)

ρ(r)

{

r2, if |r| < β;
β|r| − 1

2
c2, if |r| ≥ β.







r2, if |r| < b1;
b2r

2−|r3|
b2−b1

, if b1 ≤ |r| ≤ b2;
0, if |r| > b2.

r tanh(r) log(δ2 + r2)

3.3 Robust Selection of Tuning Parameters

It is shown in Figure 2 that also the CV procedure plays an significant role in the robustness proper-
ties of used method. Leung (2005) [13] theoretically shows that a robust CV procedure differs from
the Mean Asymptotic Squared Error (MASE) by a constant shift and a constant multiple. Neither
of these is dependent on the bandwidth. Further, it is shown that this multiple depends on the score
function and therefore also on the weight function. To obtain a fully robust procedure for KBR one
needs (i) a robust smoother and (ii) a robust CV (RCV) procedure based on the robust smoother or
more formal

RCV (θ) =
1

n

n
∑

i=1

L (Yi − m̂−i(Xi; θ)) ,

whereL(·) is a robust loss function e.g.L1, Huber loss, Myriad loss,̂m is a robust smoother and
m̂−i(Xi;h, γ) denotes the leave-one-out estimator where pointi is left out from the training andθ
denotes the parameter vector e.g. when using the Myriad weightsθ = (h, γ, δ).

3.4 Speed of Convergence-Robustness Trade-off

In a functional analysis setting it has been shown in [3] and [5] that the influence function [7] of
reweighted Least Squares Kernel Based Regression (LS-KBR)with a bounded kernel converges to
bounded influence function, even when the initial LS-KBR is not robust, if (i)ψ : R → R is a
measurable, real, odd function, (ii)ψ is continuous and differentiable, (iii)ψ is bounded and (iv)
EPe

ψ′(e) > 0 wherePe denotes the distribution of the errors. This condition can be relaxed intoψ
is increasing. Define

d = EPe

ψ(e)

e
and c = d− EPe

ψ′(e),

then it can be shown [5] thatc/d establishes an upper bound on the reduction of the influence
function at each step. The upper bound represents a trade-off between the reduction of the influence
function (speed of convergence) and the degree of robustness. The higher the ratioc/d the higher
the degree of robustness but the slower the reduction of the influence function at each step and vice
versa. In Table 2 this upper bound is calculated for a Normal distribution and a standard Cauchy
for the four types of weighting schemes. Note that the convergence of the influence function is
quite fast, even at heavy tailed distributions. For Huber and Myriad weights, the convergence rate
decreases rapidly asβ respectivelyδ increases. This behavior is to be expected, since the largerβ
respectivelyδ, the less points are downweighted. Also note that the upper bound on the convergence
rate approaches 1 asβ, δ → 0, indicating a high degree of robustness but slow convergence rate.
A good choice between convergence and robustness is therefore Logistic weights. Also notice the
small ratio for the Hampel weights indicating a low degree ofrobustness.
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Table 2: Values of the constantsc, d andc/d for the Huber, Logistic, Hampel and Myriad weight
function at a standard Normal distribution and a standard Cauchy. The bold values represent an
upper bound for the reduction of the influence function at each step.

Weight Parameter N(0, 1) C(0, 1)
function settings c d c/d c d c/d

β = 0.5 0.32 0.71 0.46 0.26 0.55 0.47
Huber β = 1 0.22 0.91 0.25 0.22 0.72 0.31

Logistic 0.22 0.82 0.26 0.21 0.66 0.32

Hampel
b1 = 2.5

0.006 0.99 0.006 0.02 0.78 0.025
b2 = 3
δ = 0.1 0.11 0.12 0.92 0.083 0.091 0.91Myriad
δ = 1 0.31 0.66 0.47 0.25 0.50 0.50

4 Conclusions

In this paper we have compared four different type of weight functions and their use in iterative
reweighted LS-SVM. By using an upper bound for the reductionof the influence function we have
demonstrated the existence of a trade-off between speed of convergence and the degree of robust-
ness. The Myriad weight function is highly robust against (extreme) outliers but has a slow speed
of convergence. A good compromise between speed of convergence and robustness can be achieved
by using Logistic weights. To obtain a fully robust solution, we showed that the smoother needs to
be robust as well as the CV procedure.

Acknowledgments
Research supported by Research Council KUL: GOA AMBioRICS,GOA MaNet, CoE EF/05/006 Optimization in Engineering(OPTEC), IOF-SCORES4CHEM,
several PhD/post-doc & fellow grants; Flemish Government:FWO: PhD/postdoc grants, projects G.0452.04 (new quantum algorithms), G.0499.04 (Statistics),
G.0211.05 (Nonlinear), G.0226.06 (cooperative systems and optimization), G.0321.06 (Tensors), G.0302.07 (SVM/Kernel), G.0320.08 (convex MPC), G.0558.08
(Robust MHE), G.0557.08 (Glycemia2), G.0588.09 (Brain-machine) research communities (ICCoS, ANMMM, MLDM); G.0377.09 (Mechatronics MPC), IWT: PhD
Grants, McKnow-E, Eureka-Flite+, SBO LeCoPro, SBO Climaqs, POM, Belgian Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems, control
and optimization, 2007-2011); EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIS, EMBOCOM, Contract Research: AMINAL, Other: Helmholtz,
viCERP, ACCM, Bauknecht, Hoerbiger. BDM is a full professorat the Katholieke Universiteit Leuven, Belgium. JS is a professor at the Katholieke Universiteit
Leuven, Belgium.

References
[1] Arce, G. R. (2005)Nonlinear Signal Processing: A Statistical ApproachWiley

[2] Burman, P. (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods.
Biometrika76(3):503–514

[3] Christmann, A., Steinwart, I. (2004) Consistency and Robustness of Kernel Based Regression in Convex Risk Minimization. Bernoulli
13(3):799–819

[4] De Brabanter K., Pelckmans K., De Brabanter J., DebruyneM., Suykens J.A.K., Hubert M., De Moor B. (2009) Robustness of Kernel
Based Regression: a Comparison of Iterative Weighting Schemes. in Proc. of the 19th International Conference on Artificial Neural
Networks (ICANN)pp. 100-110.

[5] Debruyne, M., Christmann, A., Hubert, M., Suykens, J.A.K. (2010) Robustness of reweighted Least Squares Kernel Based Regression.
Journal of Multivariate Analysis101(2):447–643
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