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Abstract

We present a simple but effective fully automated frameworkfor estimating first order derivatives non-
parametrically. Derivative estimation plays an importantrole in the exploration of structures in curves
(jump detection and discontinuities), comparison of regression curves, analysis of human growth data, etc.
Hence, the study of estimating derivatives nonparametrically is equally important as regression estima-
tion. Via empirical first order derivatives we approximate the first order derivative and create a new data
set which can be smoothed by any nonparametric regression estimator. However, the new data sets created
by this technique are not independent and identically distributed (i.i.d.) random variables anymore. As
a consequence, automated model selection criteria (data-driven procedures) break down. Therefore, we
modify the model selection criterion so it can handle this dependency (correlation) without requiring any
prior knowledge about its structure.
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1 Introduction

Ever since the introduction of nonparametric estimators for density estimation, regression, etc. in the mid
1950s and early 1960s, their popularity has increased over the years. Mainly, this is due to the fact that
statisticians realized that pure parametric thinking in curve estimations often does not meet the need for
flexibility in data analysis. Many of their properties have been rigorously investigated and are well un-
derstood, see e.g [4, 11]. Although the importance of regression estimation is indisputable, sometimes the
derivative of the regression estimate can be equally important. This is the case in the exploration of structures
in curves [3] (jump detection and discontinuities), inference of significant features in data, trend analysis in
time series [9], comparison of regression curves [7], analysis of human growth data [8], the characteriza-
tion of submicroscopic nanoparticles from scattering data[2] and inferring chemical compositions. All the
previous analysis techniques are based on the inference about slopes (and hence the derivative) of the re-
gression estimates. Therefore, the study of estimating derivatives (first and higher orders) nonparametrically
is equally important as regression estimation.

Consider the bivariate data(x1,Y1), . . . ,(xn,Yn) which form an independent and identically distributed
(i.i.d) sample from a population(x,Y ) wherex ∈ R andY ∈ R. Denote bym(x) = E[Y ] the regression
function. The data is regarded to be generated from the model

Y = m(x) + e, (1)

whereE[e] = 0, Var [e] = σ2 < ∞ andx ande are independent. The aim of this paper is to estimate the
derivativem′ of the regression functionm.

This paper is organized as follows. Our nonparametric estimator of choice is illustrated in Section 2.
The proposed method for estimating first order derivatives nonparametrically and model selection issues are
discussed in Section 3. Simulations are presented in Section 4. Conclusions are given in Section 5.



2 Least squares support vector machines for regression

Given a training set defined asDn = {(xk,Yk) : xk ∈ R
d, Yk ∈ R; k = 1, . . . ,n}. Then least squares

support vector machines for regression are formulated as follows [10]

min
w,b,e

J (w,e) = 1
2w

Tw + γ
2

n
∑

k=1

e2k

s.t. Yk = wTϕ(xk) + b+ ek, k = 1, . . . ,n,

(2)

whereek ∈ R are assumed to be i.i.d. random errors with zero mean and finite variance,ϕ : Rd → R
nh is

the feature map to the high dimensional feature space (possibly infinite dimensional) andw ∈ R
nh , b ∈ R.

Note that this cost function consists of a residual sum of squares fitting error and a regularization term,
which is also a standard procedure for the training of Multi-Layer Perceptrons (MLPs). Also, the above
formulation is related to ridge regression.

To solve the optimization problem (2) in the dual space, one defines the Lagrangian

L(w,b,e;α) =
1

2
wTw +

γ

2

n
∑

i=1

e2i −
n
∑

i=1

αi{wTϕ(xi) + b+ ei − Yi},

with Lagrange multipliersαi ∈ R (called support vectors). The conditions for optimality are given by
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∂L

∂w
= 0 → w =

∑n
i=1 αiϕ(xi)

∂L

∂b
= 0 → ∑n

i=1 αi = 0

∂L

∂ei
= 0 → αi = γei, i = 1, . . . ,n

∂L

∂αi
= 0 → wTϕ(xi) + b+ ei − Yi = 0, i = 1, . . . ,n.

After elimination ofw ande the solution yields
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]

,

with Y = (Y1, . . . ,Yn)
T , 1n = (1, . . . ,1)T , α = (α1, . . . ,αn)

T andΩkl = ϕ(xk)
Tϕ(xl) = K(xk,xl),

with K(xk,xl) positive definite, fork,l = 1, . . . ,n. According to Mercer’s theorem, the resulting LS-SVM
model for function estimation becomes

m̂(x) =

n
∑

k=1

α̂kK(x,xk) + b̂. (3)

In this paper we takeK(xi,xj) = (2π)−d/2 exp
(

− ‖xi−xj‖
2

2

2h2

)

(Gaussian kernel).

3 Derivative estimation

In this section we first illustrate the principle of empirical first order derivatives and how they can be used
together with a nonparametric regression estimator to estimate first order derivatives. As the created data
sets by this method are no longer i.i.d. random variables, data-driven model selection procedures will break
down. Second, we illustrate how to handle dependent data in the data-driven procedures.

3.1 Empirical first order derivatives

Given the nonparametric regression estimate (3), it would be tempting to differentiate it w.r.t. the indepen-
dent variable. Such a procedure can only work well if the original regression function is extremely well
estimated. Otherwise, it can lead to wrong derivative estimates when the data is noisy. This is due to the



fact that we already make an error (maybe small) when estimating the regression function. Differentiating
this estimate will only result in an accumulation of errors which increases with the order of the derivative.
A possible solution to avoid this problem is by using the firstorder difference quotient

Y
(1)
i =

Yi − Yi−1

xi − xi−1

as a noise corrupted version ofm′(xi) where the superscript(1) signifies thatY (1)
i is a noise corrupted

version of the first (true) derivative. Such an approach has been used by [5] to estimate derivatives nonpara-
metrically. Although this seems again intuitively the right way, the generated new data will be very noisy
and as a result it will be difficult to estimate the derivativefunction. A better way to generate the raw data
for derivative estimation is to use a variance-reducing linear combination of symmetric (abouti) difference
quotients

Y
(1)
i =

k
∑

j=1

wj ·
(

Yi+j − Yi−j

xi+j − xi−j

)

, (4)

wherek ∈ N\{0} and the weightsw1, . . . ,wk sum up to one. The linear combination (4) is valid for

k + 1 ≤ i ≤ n − k. For2 ≤ i ≤ k or n − k + 1 ≤ i ≤ n − 1 we defineY (1)
i by replacing

∑k
j=1 in (4)

by
∑k(i)

j=1 wherek(i) = min{i− 1,n− i} and replacingw1, . . . ,wk byw1/
∑k(i)

j=1 wj , . . . ,wk(i)/
∑k(i)

j=1 wj .

finally, for i = 1 andi = n we defineY (1)
1 andY (1)

n to coincide withY (1)
2 andY (1)

n−1. The proportion of
indicesi falling betweenk+1 andn−k approaches 1 asn increases, so this boundary issue becomes smaller
asn becomes larger. Alternatively, one may just leaveY

(1)
i undefined for indicesi not falling betweenk+1

andn− k. In this paper we will use the first principle to estimate the derivatives.
Linear combinations as in (4) are frequently used in finite element theory and are useful in the numerical

solution of differential equations [6]. However, the weights used for solving differential equations are not
appropriate here because of the random errors in model (1). By choosing the weightswj = j2/

∑k
l=1 l

2

with j ∈ {1, . . . ,k} the variance ofY (1)
i , for k+1 ≤ i ≤ n−k, is minimized [2]. Since we consider the data

to be one dimensional we can visualize each generated data set for different values ofk. The optimal value
of k can be found for example via leave-one-out cross-validation (LOO-CV). See the next paragraph for
more details. Figure 1 displays the empirical first derivative fork ∈ {2,6,12,25} generated from model (1)
with m(x) = sin(2πx) + cos(2πx) + log(4/3 + x), n = 500 equispaced points ande ∼ N (0,0.12).
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Figure 1: (a) Simulated data set of sizen = 500 equispaced points from model (1) withm(x) =
sin(2πx) + cos(2πx) + log(4/3 + x) ande ∼ N (0,0.12); (b) first order difference quotients which are
barely distinguishable from noise. As a reference, the truederivative is also displayed (full line); (c)-(f)
empirical first derivatives fork ∈ {2,6,12,25}.



3.2 Model selection

By using the previous technique, we have created a new data set i.e. (x1,Y
(1)
1 ), . . . ,(xn,Y

(1)
n ). This new

data set can now be smoothed to obtain an estimate of the first order derivative of the regression function.
However, since eachY (1)

i is formed as a sum of differences of consecutiveY (see (4)), theY (1)
i i = 1 . . . ,n

are not independent anymore. As a consequence, all model selection criteria cannot be legitimately be
applied anymore since they are based on model assumption (1). We briefly illustrated how to modify the
leave-one-out cross-validation procedure. This summary is based on [1].

Since our smoother of choice is LS-SVM we require a positive definite kernel. Therefore we require a
two-step model selection criteria (see [1]). Consider the Nadaraya-Watson (NW) kernel smoother defined
as

m̂(x) =

n
∑

i=1

K(x−xi

h )Y
(1)
i

∑n
j=1 K(

x−xj

h )
,

whereh is the bandwidth of the kernelK. An optimal bandwidthh can for example be found by minimizing
the leave-one-out cross-validation (LOO-CV) score function

LOO-CV(h) =
1

n

n
∑

i=1

(

Y
(1)
i − m̂(−i)(xi;h)

)2

, (5)

wherem̂(−i)(xi;h) denotes the leave-one-out estimator where pointi is left out from the training. For
notational ease, the dependence on the bandwidthh will be suppressed. Then, according to [1] (see Theorem
3), by taking a kernel function satisfyingK(0) = 0 removes the correlation structure without requiring any
prior knowledge about its structure. Denote a kernel that issatisfyingK(0) = 0 by K̃. In this paper we
take the kernel̃K(u) = 1

2 |u| exp(−|u|) whereu = (xi − xj)/h. However, since these type of kernels are
never positive (semi) definite, they cannot directly be applied with our smoother of choice i.e. an LS-SVM.
Therefore, we review a two-step method developed by [1].

First, estimate the function with the NW estimator based on the kernel K̃ with bandwidtĥhb (found by
minimizing (5))

m̂(x) =

n
∑

i=1

K̃
(

x−xi

ĥb

)

Y
(1)
i

∑n
j=1 K̃

(

x−xj

ĥb

) . (6)

From (6), we calculate the residuals

êi = Y
(1)
i − m̂(xi), for i = 1, . . . ,n.

Now choosel to be the smallestq ≥ 1 such that

|rq| =
∣

∣

∣

∣

∣

∑n−q
i=1 êiêi+q
∑n

i=1 ê
2
i

∣

∣

∣

∣

∣

≤ Φ−1(1− α
2 )√

n
, (7)

whereΦ−1 denotes the quantile function of the standard normal distribution andα is the significance level,
say 5%.

Second, oncel is selected by (7), the tuning parameters of the LS-SVM (kernel bandwidthh and regu-
larization parameterγ) can be determined by using leave-(2l+1)-out CV (see Definition 1) or modified CV
combined with a positive definite kernel, e.g. Gaussian kernel.

Definition 1 (Leave-(2l+ 1)-out CV) Leave-(2l+ 1)-out CV or modified CV (MCV) is defined as

MCV(h) =
1

n

n
∑

i=1

(

Y
(1)
i − m̂(−i)(xi)

)2

, (8)

wherem̂(−i)(xi) is the leave-(2l+1)-out version ofm(xi), i.e. the observations(xi+j ,Y
(1)
i+j) for −l ≤ j ≤ l

are left out to estimatêm(xi).

To conclude this section, Algorithm 1 summarizes the model selection procedure for LS-SVM with depen-
dent data.



Algorithm 1 Model selection procedure for LS-SVM with dependent data

1: Determinêhb in (6) with kernelK̃ by means of LOO-CV
2: Calculatel satisfying (7)
3: Determine both tuning parameters for LS-SVM by means of leave-(2l + 1)-out CV (8) and a positive

definite unimodal kernel.

4 Simulation

First, consider the following two functionsm(x) = 1 − 6x + 36x2 − 53x3 + 22x5 andm(x) = sin(2πx)
with n = 500 equispaced points. The error variance was set toσ2 = 0.05 ande ∼ N (0,σ2) for both
functions. The value ofk was tuned via LOO-CV and was set to 6 and 7 respectively for thefirst and second
function. It is clearly shown that the proposed method is capable of estimating the first order derivatives
nonparametrically quite accurate (see Figure 2).
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Figure 2: First order derivative estimation. Estimated derivative by the proposed method (full line) and true
derivative (dashed line) for both functions. The value ofk was tuned via LOO-CV and was set to 6 and 7
respectively for the first and second function.

Second, intuitively we could first estimate the regression function based on the given data set and then
differentiate the LS-SVM regression estimate (3) w.r.t. tothe independent variable. The next simulation
shows that this idea does not always produce good estimates of the derivative function. Consider the function
m(x) = 1 + x sinx2 (and hencem′(x) = sinx2 + 2x2 cosx2) with n = 500 equispaced points between
[−1,4]. The error variance was set toσ2 = 0.05 ande ∼ N (0,σ2). The value ofk = 5 was found via
LOO-CV. Further, we conduct the following Monte Carlo experiment. For 500 repetitions, we calculate
the integrated absolute distance (IAD) between the true derivativem′ and the two estimated versions of the
derivative i.e., based on differentiating the estimated regression function̂m′

reg and the proposed derivative
estimatem̂′ respectively. Figure 3 shows a typical result of the estimates and Table 1 displays the average
IAD and corresponding standard deviation for the experiment. This experiment clearly confirms the strength
of the proposed method.
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Figure 3: Comparison between the true derivative (full line), the derivative estimate based on the regression
estimate (dash dotted line) and the proposed derivative estimate (dashed line).



IAD
∫

|m′(x) − m̂′
reg| dx

∫

|m′(x)− m̂′(x)| dx

average 13.36 1.78

standard deviation 0.32 0.047

Table 1: Integrated absolute distances and corresponding standard deviations for the experiment.

5 Conclusion

We proposed a simple but effective way of estimating derivatives nonparametrically via empirical first order
derivatives. We have shown that this technique produces newdata sets which are not independent and
identically distributed (i.i.d.) random variables anymore. As an immediate consequence, all standard model
selection criteria cannot be legitimately applied. We haveillustrated how to modify the leave-one-out cross-
validation so it is resistant against non i.i.d data. Finally, the method was illustrated on several toy examples.
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