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Abstract

We present a simple but effective fully automated frameworkestimating first order derivatives non-
parametrically. Derivative estimation plays an importesie in the exploration of structures in curves
(jump detection and discontinuities), comparison of regi@n curves, analysis of human growth data, etc.
Hence, the study of estimating derivatives nonparamdiiyicmequally important as regression estima-
tion. Via empirical first order derivatives we approximate first order derivative and create a new data
set which can be smoothed by any nonparametric regresdiomaésr. However, the new data sets created
by this technique are not independent and identically ibisted (i.i.d.) random variables anymore. As
a consequence, automated model selection criteria (diz@adorocedures) break down. Therefore, we
modify the model selection criterion so it can handle thigedelency (correlation) without requiring any
prior knowledge about its structure.
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1 Introduction

Ever since the introduction of nonparametric estimatorgimsity estimation, regression, etc. in the mid
1950s and early 1960s, their popularity has increased teeyears. Mainly, this is due to the fact that
statisticians realized that pure parametric thinking inveuestimations often does not meet the need for
flexibility in data analysis. Many of their properties haveeb rigorously investigated and are well un-
derstood, see e.g [4, 11]. Although the importance of resimasestimation is indisputable, sometimes the
derivative of the regression estimate can be equally inapor his is the case in the exploration of structures
in curves [3] (jump detection and discontinuities), infece of significant features in data, trend analysis in
time series [9], comparison of regression curves [7], aislgf human growth data [8], the characteriza-
tion of submicroscopic nanoparticles from scattering ¢2t@and inferring chemical compositions. All the
previous analysis techniques are based on the inferencg slopes (and hence the derivative) of the re-
gression estimates. Therefore, the study of estimatingaties (first and higher orders) nonparametrically
is equally important as regression estimation.

Consider the bivariate data+,Y1), . . . ,(x,,Y;) which form an independent and identically distributed
(i.i.d) sample from a populatiofw,Y’) wherexz € R andY € R. Denote bynm(z) = E[Y] the regression
function. The data is regarded to be generated from the model

Y =m(z) +e, 1)

whereE[e] = 0, Var[e] = 02 < oo andx ande are independent. The aim of this paper is to estimate the
derivativern’ of the regression functiom.

This paper is organized as follows. Our nonparametric egtmof choice is illustrated in Section 2.
The proposed method for estimating first order derivati@garametrically and model selection issues are
discussed in Section 3. Simulations are presented in ®ettiGonclusions are given in Section 5.



2 Least squares support vector machines for regression

Given a training set defined a3, = {(zx,Y%) : 7 € R4 Y, € R;k = 1,...,n}. Then least squares
support vector machines for regression are formulatedisvi®[10]

min J(w,e) = twTw + %Z er @)

w,b,e

wheree;, € R are assumed to be i.i.d. random errors with zero mean and Viaitancey : R? — R™" is
the feature map to the high dimensional feature space ggssfinite dimensional) anay € R™, b € R.
Note that this cost function consists of a residual sum ofsegifitting error and a regularization term,
which is also a standard procedure for the training of Mudtyrer Perceptrons (MLPs). Also, the above
formulation is related to ridge regression.

To solve the optimization problem (2) in the dual space, afends the Lagrangian

1 n n
L(w,b,e; ) = §wTw + %Z e? — Zai{chp(xi) +b+e — Y},
i=1 i=1

with Lagrange multipliersy; € R (called support vectors). The conditions for optimalitg given by

oL "

%:O = w= p(x;)

oL "

%:O — Zizlai:()

8£:O — O[Z-:’yei’ 7::1,...77?/
6ei

32 =0 — wlp(w)+b+e—-Yi=0, i=1,...n.
Q;

After elimination ofw ande the solution yields

I =

with Y = (V,....Y,)T 1, = (1,....DT, a = (a1,...,a,)T andQu = o(z1)To(z;) = K(zg,m1),
with K (z,x;) positive definite, fok,l = 1,...,n. According to Mercer's theorem, the resulting LS-SVM
model for function estimation becomes

0

Y

)

m(z) = Zn: K (z,21) 4 b. (3)
k=1

In this paper we také( (z;,z;) = (27) =42 exp (— ”“2_,1?'”3) (Gaussian kernel).

3 Derivative estimation

In this section we first illustrate the principle of empillifiast order derivatives and how they can be used
together with a nonparametric regression estimator tones#i first order derivatives. As the created data
sets by this method are no longer i.i.d. random variablds-daven model selection procedures will break
down. Second, we illustrate how to handle dependent dateidata-driven procedures.

3.1 Empirical first order derivatives

Given the nonparametric regression estimate (3), it woalteimpting to differentiate it w.r.t. the indepen-
dent variable. Such a procedure can only work well if theiogafregression function is extremely well
estimated. Otherwise, it can lead to wrong derivative et when the data is noisy. This is due to the



fact that we already make an error (maybe small) when estignétie regression function. Differentiating
this estimate will only result in an accumulation of errorsieh increases with the order of the derivative.
A possible solution to avoid this problem is by using the finster difference quotient

_Yi-Yi,

Tj — Ti—1

v

2

as a noise corrupted version of (x;) where the superscrigtl) signifies thatYl.(l) is a noise corrupted
version of the first (true) derivative. Such an approach leentused by [5] to estimate derivatives nonpara-
metrically. Although this seems again intuitively the rigiay, the generated new data will be very noisy
and as a result it will be difficult to estimate the derivativaction. A better way to generate the raw data
for derivative estimation is to use a variance-reducingdincombination of symmetric (aboi)tdifference

quotients
k
Yir; —Yiy
v =3 (_ﬂ —) (4)

= xi+j — xi,j
wherek € N\{0} and the weightsvy, ... ,w; sum up to one. The linear combination (4) is valid for
k+1<i<n—k For2<i<korn—-k+1<i<n-—1we defineYi(l) by replacingzl’;:1 in (4)
by ng wherek(:) = min{i — 1,n — i} and replacinguvy, . . . ,wi by wq/ ng Wy, . Wh(sy/ ng w.
finally, for i = 1 andi = n we definey;") andY;\" to coincide withY;" andY"),. The proportion of
indicesi falling betweerk+1 andn — k approaches 1 asincreases, so this boundary issue becomes smaller
asn becomes larger. Alternatively, one may just Ie’a?é) undefined for indicesnot falling betweerk + 1
andn — k. In this paper we will use the first principle to estimate tleeihtives.

Linear combinations as in (4) are frequently used in finiegzrednt theory and are useful in the numerical
solution of differential equations [6]. However, the wetiglused for solving differential equations are not
appropriate here because of the random errors in model (L)hBosing the weights; = j2/ Zle 2
with j € {1, ...k} the variance oYi(l), fork+1 <i < n—k,is minimized [2]. Since we consider the data
to be one dimensional we can visualize each generated ddta siferent values of.. The optimal value
of k£ can be found for example via leave-one-out cross-validai®O-CV). See the next paragraph for

more details. Figure 1 displays the empirical first dernafor k € {2,6,12,25} generated from model (1)
with m(x) = sin(27x) + cos(27x) + log(4/3 + x), n = 500 equispaced points anrd~ N (0,0.12).
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(d) empirical first derivativek = 6) (e) empirical first derivativék = 12) (f) empirical first derivative(k = 25)

Figure 1: (a) Simulated data set of sime = 500 equispaced points from model (1) with(z) =
sin(27z) + cos(2mz) + log(4/3 + x) ande ~ N(0,0.1%); (b) first order difference quotients which are
barely distinguishable from noise. As a reference, the dervative is also displayed (full line); (c)-(f)
empirical first derivatives fok € {2,6,12,25}.



3.2 Model selection

By using the previous technique, we have created a new dat&sezl,Yl(l)), . ,(a:n,Y,Sl)). This new
data set can now be smoothed to obtain an estimate of theriitst derivative of the regression function.

However, since each;(” is formed as a sum of differences of conseculivésee (4)), théfi(l) i=1....n
are not independent anymore. As a consequence, all modetisel criteria cannot be legitimately be
applied anymore since they are based on model assumptiofd priefly illustrated how to modify the
leave-one-out cross-validation procedure. This sumnsaogsed on [1].

Since our smoother of choice is LS-SVM we require a positienite kernel. Therefore we require a
two-step model selection criteria (see [1]). Consider tlel&taya-Watson (NW) kernel smoother defined
as

n z—=z;\y (1)
m(z) = Z Ii(h—ﬁ’
21 K(=+)

i=1

whereh is the bandwidth of the kerné{. An optimal bandwidtt can for example be found by minimizing
the leave-one-out cross-validation (LOO-CV) score funtti

LOO-CV(h %i( _ il 1(xi;h))2, (5)

wherem (=9 (z;; h) denotes the leave-one-out estimator where poistleft out from the training. For
notational ease, the dependence on the bandwidith be suppressed. Then, accordingto [1] (see Theorem
3), by taking a kernel function satisfying (0) = 0 removes the correlation structure without requiring any
prior knowledge about its structure. Denote a kernel thaatsfying £ (0) = 0 by K. In this paper we
take the kernekK (u) = % |u] exp(—|u|) whereu = (z; — x;)/h. However, since these type of kernels are
never positive (semi) definite, they cannot directly be egablvith our smoother of choice i.e. an LS-SVM.
Therefore, we review a two-step method developed by [1].

First, estimate the function with the NW estimator based on thaelér with bandwidthi; (found by
minimizing (5))

n [ T—T (6)
=1 ZJ:l K ( hbj)
From (6), we calculate the residuals
e =YY —m(x;), fori=1,...n
Now choose€ to be the smallest > 1 such that
= ezez q)_l(l - g)
il = Bk ) ™
z 1 z \/ﬁ

whered® ! denotes the quantile function of the standard normal bistion andx is the significance level,
say 5%.

Secondoncel is selected by (7), the tuning parameters of the LS-SVM (gbandwidthi, and regu-
larization parametey) can be determined by using leagZ-+ 1)-out CV (see Definition 1) or modified CV
combined with a positive definite kernel, e.g. Gaussianddern

Definition 1 (Leave-@1 + 1)-out CV) Leave-Q!/ + 1)-out CV or modified CV (MCV) is defined as
MCV(h) = = Zn: v =m0 () 2 8)
n Pt i 7 )

wherern(= (z;) is the leave4] + 1)-out version ofn(z;), i.e. the observationg:;  ;, l+7) for—1<j<I
are left out to estimaté(z;).

To conclude this section, Algorithm 1 summarizes the moelelcion procedure for LS-SVM with depen-
dent data.



Algorithm 1 Model selection procedure for LS-SVM with dependent data

1: Determineh, in (6) with kernelX by means of LOO-CV

2: Calculate satisfying (7)

3: Determine both tuning parameters for LS-SVM by means ofdg@¥+ 1)-out CV (8) and a positive
definite unimodal kernel.

4 Simulation

First, consider the following two functions(z) = 1 — 6x + 3622 — 53z + 222° andm(x) = sin(27z)
with n = 500 equispaced points. The error variance was set’te= 0.05 ande ~ N(0,02) for both
functions. The value of was tuned via LOO-CV and was set to 6 and 7 respectively fdfitsteand second
function. It is clearly shown that the proposed method isabdg of estimating the first order derivatives
nonparametrically quite accurate (see Figure 2).

15

Figure 2: First order derivative estimation. Estimatedwgive by the proposed method (full line) and true
derivative (dashed line) for both functions. The valug:afas tuned via LOO-CV and was set to 6 and 7
respectively for the first and second function.

Second, intuitively we could first estimate the regressigrcfion based on the given data set and then
differentiate the LS-SVM regression estimate (3) w.r.t.tte independent variable. The next simulation
shows that this idea does not always produce good estinfates aderivative function. Consider the function
m(z) = 1+ zsinz? (and hencen’(z) = sinz? + 222 cos 2%) with n = 500 equispaced points between
[—~1,4]. The error variance was settd = 0.05 ande ~ A (0,02). The value oft = 5 was found via
LOO-CV. Further, we conduct the following Monte Carlo expeent. For 500 repetitions, we calculate
the integrated absolute distance (IAD) between the trueaer m’ and the two estimated versions of the
derivative i.e., based on differentiating the estimategtession functioni.y and the proposed derivative
estimateri’ respectively. Figure 3 shows a typical result of the estimaind Table 1 displays the average
IAD and corresponding standard deviation for the experimiEmis experiment clearly confirms the strength
of the proposed method.

-1 0 1 2 3 4

Figure 3: Comparison between the true derivative (full)ljtlee derivative estimate based on the regression
estimate (dash dotted line) and the proposed derivatiia&is (dashed line).



IAD Jm () = tigegl da | [ |m () — 7' (2)| do

average 13.36 1.78
standard deviatior 0.32 0.047

Table 1: Integrated absolute distances and correspont@dindard deviations for the experiment.

5 Conclusion

We proposed a simple but effective way of estimating dekigatnonparametrically via empirical first order
derivatives. We have shown that this technique producesdse sets which are not independent and
identically distributed (i.i.d.) random variables anymoAs an immediate consequence, all standard model
selection criteria cannot be legitimately applied. We hlustrated how to modify the leave-one-out cross-
validation so it is resistant against non i.i.d data. Findlie method was illustrated on several toy examples.
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