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Abstract

We present a fully automated framework to estimate derivatives nonparametrically with-
out estimating the regression function. Derivative estimation plays an important role in
the exploration of structures in curves (jump detection and discontinuities), comparison
of regression curves, analysis of human growth data, etc. Hence, the study of estimat-
ing derivatives is equally important as regression estimation itself. Via empirical deriva-
tives we approximate the qth order derivative and create a new data set which can be
smoothed by any nonparametric regression estimator. We derive L1 and L2 rates and
establish consistency of the estimator. The new data sets created by this technique are
no longer independent and identically distributed (i.i.d.) random variables anymore. As
a consequence, automated model selection criteria (data-driven procedures) break down.
Therefore, we propose a simple factor method, based on bimodal kernels, to effectively deal
with correlated data in the local polynomial regression framework.

Keywords: nonparametric derivative estimation, model selection, empirical derivative,
factor rule
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1. Introduction

The next section describes previous methods and objectives for nonparametric derivative
estimation. Also, a brief summary of local polynomial regression is given.

1.1 Previous Methods And Objectives

Ever since the introduction of nonparametric estimators for density estimation, regres-
sion, etc. in the mid 1950s and early 1960s, their popularity has increased over the years.
Mainly, this is due to the fact that statisticians realized that pure parametric thinking in
curve estimations often does not meet the need for flexibility in data analysis. Many of
their properties have been rigorously investigated and are well understood, see e.g. Fan
and Gijbels (1996), Györfi et al. (2002) and Tsybakov (2009). Although the importance
of regression estimation is indisputable, sometimes the first or higher order derivatives of
the regression function can be equally important. This is the case in the exploration of
structures in curves (Chaudhuri and Marron, 1999; Gijbels and Goderniaux, 2004) (jump
detection and discontinuities), inference of significant features in data, trend analysis in time
series (Rondonotti et al., 2007), comparison of regression curves (Park and Kang, 2008),
analysis of human growth data (Müller, 1988; Ramsay and Silverman, 2002), the charac-
terization of submicroscopic nanoparticles from scattering data (Charnigo et al., 2007) and
inferring chemical compositions. Also, estimation of derivatives of the regression function
is required for plug-in bandwidth selection strategies (Wand and Jones, 1995) and in the
construction of confidence intervals (Eubank and Speckman, 1993).

It would be tempting to differentiate the estimated nonparametric estimate m̂(x) w.r.t.
the independent variable to obtain the first order derivative of the regression function.
However, such a procedure can only work well if the original regression function is extremely
well estimated. Otherwise, it can lead to wrong derivative estimates when the data is noisy.
Therefore, it can be expected that straightforward differentiation of the regression estimate
m̂(x) will result in an accumulation of errors which increase with the order of the derivative.

In the literature there are two main approaches to nonparametric derivative estimation:
Regression/smoothing splines and local polynomial regression. In the context of derivative
estimation, Stone (1985) has shown that spline derivative estimators can achieve the optimal
L2 rate of convergence. Asymptotic bias and variance properties and asymptotic normality
have been established by Zhou and Wolfe (2000). In case of smoothing splines, Ramsay
(1998) noted that choosing the smoothing parameter is tricky. He stated that data-driven
methods are generally poor guides and some user intervention is nearly always required. In
fact, Wahba and Wang (1990) demonstrated that the smoothing parameter for a smoothing
spline depends on the integer q while minimizing

∑n
i=1(m̂

(q)(xi)−m(q)(xi))
2. Jarrow et al.

(2004) suggested an empirical bias bandwidth criterion to estimate the first derivative via
semiparametric penalized splines.

Early works discussing kernel based derivative estimation include Gasser and Müller
(1984) and Härdle and Gasser (1985). Müller et al. (1987) and Härdle (1990) proposed a
generalized version of the cross-validation technique to estimate the first derivative via kernel
smoothing using difference quotients. Their cross-validation technique is related to modified
cross-validation for correlated errors proposed by Chu and Marron (1991). Although the
use of difference quotients may be natural, their variances are proportional to n2 in case
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of equispaced design. Therefore, this type of cross-validation will be spoiled due to the
large variability. In order to improve on the previous methods, Müller et al. (1987) also
proposed a factor method to estimate a derivative via kernel smoothing. A variant of the
factor method was also used by Fan and Gijbels (1995).

In case of local polynomial regression (Fan and Gijbels, 1996), the estimation of the
qth derivative is straightforward. One can estimate m(q)(x) via the intercept coefficient of
the qth derivative (local slope) of the local polynomial being fitted at x, assuming that the
degree p is larger or equal to q. Note that this estimate of the derivative is, in general, not
equal to the qth derivative of the estimated regression function m̂(x). Asymptotic properties
as well as asymptotic normality were established by Fan and Gijbels (1996). Strong uniform
consistency properties were shown by Delecroix and Rosa (2007).

As mentioned before, two problems inherently present in nonparametric derivative es-
timation are the unavailability of the data for derivative estimation (only regression data
is given) and bandwidth or smoothing selection. In what follows we investigate a new way
to compute derivatives of the regression function given the data (x1, Y1), . . . , (xn, Yn). This
procedure is based on the creation of a new data set via empirical derivatives. A minor
drawback of this approach is the fact the data are correlated and hence poses a threat to
classical bandwidth selection methods. In order to deal with correlated data we extend our
previous work (De Brabanter et al., 2011) and derive a factor method based on bimodal
kernels to estimate the derivatives of the unknown regression function.

This paper is organized as follows. Next, we give a short introduction to local polynomial
fitting. Section 2 illustrates the principle of empirical first order derivatives and their use
within the local polynomial regression framework. We derive bias and variance of empirical
first order derivatives and establish pointwise consistency. Further, the behavior at the
boundaries of empirical first order derivatives is described. Section 3 generalizes the idea
of empirical first order derivatives to higher order derivatives. Section 4 discusses the
problem of bandwidth selection in the presence of correlated data. In Section 5 we conduct
a Monte Carlo experiment to compare the proposed method with two often used methods
for derivative estimation. Finally, Section 6 states the conclusions.

1.2 Local Polynomial Regression

Consider the bivariate data (x1, Y1), . . . , (xn, Yn) which form an independent and identically
distributed (i.i.d) sample from a population (x, Y ) where x belongs to X ⊆ R and Y ∈ R.
If X denotes the closed real interval [a, b] then xi = a + (i − 1)(b − a)/(n − 1). Denote by
m(x) = E[Y ] the regression function. The data is regarded to be generated from the model

Y = m(x) + e, (1)

where E[e] = 0, Var[e] = σ2 < ∞, x and e are independent and m is twice continuously
differentiable on X . Suppose that (p + 1)th derivative of m at the point x0 exists. Then,
the unknown regression function m can be locally approximated by a polynomial of order
p. A Taylor expansion yields, for x in a neighborhood of x0,

m(x) ≈
p
∑

j=0

m(j)(x0)

j!
(x− x0)

j ≡
p
∑

j=0

βj(x− x0)
j . (2)
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This polynomial is fitted locally by the following weighted least squares regression problem:

min
βj∈R

n
∑

i=1

{

Yi −
p
∑

j=0

βj (xi − x0)
j}2Kh(xi − x0), (3)

where βj are the solutions to the weighted least squares problem, h is the bandwidth
controlling the size of the local neighborhood and Kh(·) = K(·/h)/h with K a kernel
function assigning weights to each point. From the Taylor expansion (2) it is clear that
m̂(q)(x0) = q!β̂q is an estimator for m(q)(x0), q = 0, 1, . . . , p. For local polynomial fitting
p−q should be taken to be odd as shown in Ruppert and Wand (1994) and Fan and Gijbels
(1996). In matrix notation (3) can be written as:

min
β

{(y−Xβ)T W(y−Xβ)},

where y = (Y1, . . . , Yn)
T , β = (β0, . . . , βp)

T and

X =







1 (x1 − x0) · · · (x1 − x0)
p

...
...

...
1 (xn − x0) · · · (xn − x0)

p






,

and W the n× n diagonal matrix of weights

W = diag{Kh(xi − x0)}.

The solution vector is given by least squares theory and yields

β̂ = (XT WX)−1 XT Wy .

2. Derivative Estimation

In this section we first illustrate the principle of empirical first order derivatives and how
they can be used within the local polynomial regression framework to estimate first order
derivatives of the unknown regression function.

2.1 Empirical Derivatives And Its Properties

Given a local polynomial regression estimate (3), it would be tempting to differentiate it
w.r.t. the independent variable. Such a procedure can lead to wrong derivative estimates
when the data is noisy and will deteriorate quickly when calculating higher order derivatives.
A possible solution to avoid this problem is by using the first order difference quotient

Y
(1)
i =

Yi − Yi−1

xi − xi−1

as a noise corrupted version of m′(xi) where the superscript (1) signifies that Ŷ
(1)
i is a noise

corrupted version of the first (true) derivative. Such an approach has been used by Müller
et al. (1987) and Härdle (1990) to estimate first order derivatives via kernel smoothing.
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Such an approach produces a very noisy estimate of the derivative which is of the order
O(n2) and as a result it will be difficult to estimate the derivative function. For equispaced
design yields

Var(Y
(1)
i ) =

1

(xi − xi−1)2
(Var(Yi) +Var(Yi−1)) =

2σ2

(xi − xi−1)2
=

2σ2(n− 1)2

d(X )2
,

where d(X ) := supX − inf X . In order to reduce the variance we use a variance-reducing
linear combination of symmetric (about i) difference quotients

Y
(1)
i = Y (1)(xi) =

k
∑

j=1

wj ·
(

Yi+j − Yi−j

xi+j − xi−j

)

, (4)

where the weights w1, . . . , wk sum up to one. The linear combination (4) is valid for k+1 ≤
i ≤ n− k and hence k ≤ (n− 1)/2. For 2 ≤ i ≤ k or n− k+1 ≤ i ≤ n− 1 we define Y

(1)
i by

replacing
∑k

j=1 in (4) by
∑k(i)

j=1 where k(i) = min{i − 1, n − i} and replacing w1, . . . , wk(i)

by w1/
∑k(i)

j=1wj, . . . , wk(i)/
∑k(i)

j=1wj . Finally, for i = 1 and i = n we define Y
(1)
1 and Y

(1)
n

to coincide with Y
(1)
2 and Y

(1)
n−1. The proportion of indices i falling between k+1 and n− k

approaches 1 as n increases, so this boundary issue becomes smaller as n becomes larger.

Alternatively, one may just leave Y
(1)
i undefined for indices i not falling between k+ 1 and

n− k. This latter approach will be used in the remaining of the paper, except in Figure 1
where we want to illustrate the boundary issues.

Linear combinations such as (4) are frequently used in finite element theory and are
useful in the numerical solution of differential equations (Iserles, 1996). However, the weights
used for solving differential equations are not appropriate here because of the random errors
in model (1). Therefore, we need to optimize the weights so that minimum variance is
attained. This result is stated in Proposition 1.

Proposition 1 Assume model (1) holds with equispaced design and let
∑k

j=1wj = 1. Then,
for k + 1 ≤ i ≤ n− k, the weights

wj =
6j2

k(k + 1)(2k + 1)
, j = 1, . . . , k

minimize the variance of Y
(1)
i in (4).

Proof: see Appendix A. �

Figure 1a displays the empirical first derivative for k ∈ {2, 5, 7, 12} generated from model (1)
with m(x) =

√

x(1− x) sin((2.1π)/(x + 0.05)), x ∈ [0.25, 1] for 300 equispaced points and
e ∼ N (0, 0.12). For completeness the first order difference quotient is also shown. Even
for a small k, it can be seen that the empirical first order derivatives are noise corrupted
versions of the true derivative m′. In contrast, difference quotients produce an extreme
noisy version of the true derivative (Figure 1b). Also, note the large amplitude of the signal
constructed by difference quotients. When k is large, empirical first derivatives are biased
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(b) difference quotient
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(c) empirical derivative (k = 2)
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(d) empirical derivative (k = 5)
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(e) empirical derivative (k = 7)
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(f) empirical derivative (k = 12)

Figure 1: (a) Simulated data set of size n = 300 equispaced points from model (1) with
m(x) =

√

x(1− x) sin((2.1π)/(x + 0.05)) and e ∼ N (0, 0.12); (b) first order
difference quotients which are barely distinguishable from noise. As a reference,
the true derivative is also displayed (full line); (c)-(f) empirical first derivatives
for k ∈ {2, 5, 7, 12}.

near local extrema of the true derivative (see Figure 1f). Further, the boundary issues are
clearly visible in Figure 4a through Figure 1f for i ∈ [1, k + 1] ∪ [n− k, n].

The next two theorems give asymptotic results on the bias and variance and establish
pointwise consistency of the empirical first order derivatives.

Theorem 2 Assume model (1) holds with equispaced design and m is twice continuously
differentiable on X ⊆ R. Further, assume that the second order derivative m(2) is finite on
X . Then the bias and variance of the empirical first order derivative, with weights assigned
by Proposition 1, satisfy

bias(Y
(1)
i ) = O(n−1k) and Var(Y

(1)
i ) = O(n2k−3)

uniformly for k + 1 ≤ i ≤ n− k.

Proof: see Appendix B. �

Theorem 3 (Pointwise consistency) Assume k→∞ as n→∞ such that nk−3/2→0 and
n−1k → 0. Further assume that m is twice continuously differentiable on X ⊆ R . Then,
for the minimum variance weights given in Proposition 1, we have for any ǫ > 0

P
(

|Y (1)
i −m′(xi)| ≥ ǫ

)

→ 0.
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Proof: see Appendix C. �

According to Theorem 2 and Theorem 3, the bias and variance of the empirical first order
derivative tends to zero and k → ∞ faster than O(n2/3) but slower than O(n). The
optimal rate at which k → ∞ such that the mean squared error (MSE) of the empirical
first order derivatives will tend to zero at the fastest possible rate is a direct consequence
of Theorem 2. This optimal L2 rate is achieved for k = O(n4/5) and consequently, the

MSE(Y
(1)
i ) = E(Y

(1)
i − m′(xi))

2 = O(n−2/5 + n−1/5). Similar, one can also establish the

rate of the mean absolute deviation (MAD) or L1 rate of the estimator i.e. E |Y (1)
i −m′(xi)|.

By Jensen’s inequality

E |Y (1)
i −m′(xi)| ≤ E |Y (1)

i −E(Y
(1)
i )|+ |E(Y

(1)
i )−m′(xi)|

≤
√

Var(Y
(1)
i ) + bias(Y

(1)
i ) = O(n−1/5),

for the optimal L1 rate of k = O(n4/5) (equal to the optimal L2 rate). Under the same

conditions as Theorem 3, it is easy to show that E |Y (1)
i −m′(xi)| → 0. Even though we know

the optimal asymptotic order of k, the question still remains how to choose k in practice.
In many data analyses, one would like to get a quick idea what the value of k should be. In
such a case a rule of thumb can be very suitable. Such a rule can be somewhat crude but
it possesses simplicity and is easily computable. In order to derive a suitable expression for
the MSE, we start from the bias and variance expressions for the empirical derivatives. An
upperbound for the MSE is given by (see also the proof of Theorem 2)

MSE(Y
(1)
i ) = bias2(Y

(1)
i ) +Var(Y

(1)
i )

≤ 9k2(k + 1)2B2d(X )2

16(n − 1)2(2k + 1)2
+

3σ2(n− 1)2

k(k + 1)(2k + 1)d(X )2
, (5)

where B = supx∈X |m(2)(x)|. Setting the derivative of (5) w.r.t. k to zero yields

3B2d(X )4k3(1 + k)3(1 + 2k + 2k2) = 8(1 + 8k + 18k2 + 12k3)(n− 1)4σ2. (6)

Solving (6), with the constraint that k > 0, can be done by means of any root finding
algorithm and will result in the value k for which the MSE is lowest. However, a much
simpler rule of thumb and without much loss of accuracy is obtained by only considering
the highest order terms yielding

k =

(

16σ2

B2 d(X )4

)1/5

n4/5.

The above quantity contains some unknown quantities and need to be estimated. The error
variance σ2 can be estimated by means of Hall’s

√
n-consistent estimator (Hall et al., 1990)

σ̂2 =
1

n− 2

n−2
∑

i=1

(0.809Yi − 0.5Yi+1 − 0.309Yi+2)
2.
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For the second unknown quantity B one can use the local polynomial regression estimate of
order p = 3 leading to the following (rough) estimate of the second derivative m̂(2)(x0) = 2β̂2
(see also Section 1). Consequently, a rule of thumb selector for k is given by

k̂ =

(

16 σ̂2

(supx0∈X
|m̂(2)(x0)|)2 d(X )4

)1/5

n4/5. (7)

The result of the rule of thumb (7) is a value for k which is real. In practice we round the
obtained k value closest to the next integer value. As an alternative, one could also consider
cross-validation or complexity criteria in order to find an optimal value for k.

2.2 Behavior At The Boundaries

Recall that for the boundary region (2 ≤ i ≤ k and n−k+1 ≤ i ≤ n−1) the weights in the
derivative (4) and the range of the sum are slightly modified. Such a modification allows for
an automatic bias correction at the boundaries. This can be seen as follows. Let the first
(q + 1) derivatives of m be continuous on X . Then a Taylor series of m in a neighborhood
of xi yields

m(xi+j) = m(xi) +

q
∑

l=1

1

l!

(

jd(X )

n− 1

)l

m(l)(xi) +O
(

(j/n)q+1
)

and

m(xi−j) = m(xi) +

q
∑

l=1

1

l!

(−jd(X )

n− 1

)l

m(l)(xi) +O
(

(j/n)q+1
)

.

From the above series it follows that

E(Y
(1)
i ) =

k
∑

j=1

wj
m(xi+j)−m(xi−j)

xi+j − xi−j

=
n− 1

2d(X )

k
∑

j=1

wj

∑q
l=1

1
l!

(

jd(X )
n−1

)l
m(l)(xi)−

∑q
l=1

1
l!

(

−jd(X )
n−1

)l
m(l)(xi) +O

(

(j/n)q+1
)

j
.

By noticing that all even orders of the derivative cancel out, the previous result can be
written as

E(Y
(1)
i ) =

n− 1

2d(X )

k
∑

j=1

wj

j





2jd(X )

n− 1
m′(xi) +

q
∑

l=3,5,...

2

l!

(

jd(X )

n− 1

)l

m(l)(xi) +O
(

(j/n)q+1
)





= m′(xi)

k
∑

j=1

wj +

q
∑

l=3,5,...

m(l)(xi)

k
∑

j=1

wj

l!

jl−1d(X )l−1

(n− 1)l−1
+O

(

(j/n)q
)

.

For 2 ≤ i ≤ k, the sum in the first term is not equal to 1. This immediately follows from the
definition of the derivative in (4). Therefore, the length of the sum k has to be replaced with
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k(i) = i− 1. Let 0 ≤ κ =
∑k(i)

j=1wj < 1 for 2 ≤ i ≤ k. Then, the bias of the derivative (4)
is given by

bias(Y
(1)
i ) = (κ− 1)m′(xi) +

q
∑

l=3,5,...

m(l)(xi)

k
∑

j=1

wj

l!

jl−1d(X )l−1

(n− 1)l−1
+O

(

n−q/5
)

,

where
∑k

j=1
wj

l!
jl−1d(X )l−1

(n−1)l−1
= O(n−(l−1)/5) since k = O(n4/5). However, in order to obtain

an automatic bias correction at the boundaries, we can make κ = 1 by normalizing the sum
leading to the following estimator

Y
(1)
i =

k(i)
∑

j=1

wj
∑k(i)

j=1wj

(

Yi+j − Yi−j

xi+j − xi−j

)

(8)

at the boundaries. Also notice that the bias at the boundaries is of the same order as in
the interior.

Unfortunately, this bias correction comes at a prize i.e. increased variance at the bound-
aries. The variance of (8), for k(i) = i− 1, is given by

Var(Y
(1)
i ) =

σ2(n− 1)2

2d(X )2

k(i)
∑

j=1

w2
j

(

∑k(i)
j=1wj

)2

1

j2
=

3σ2(n− 1)2

d(X )2
1

i(i− 1)(2i − 1)
.

Then, at the boundary (for 2 ≤ i ≤ k), it follows that an upper bound for the variance is
given by

Var(Y
(1)
i ) ≤ σ2(n − 1)2

2d(X )2

and a lower bound by

Var(Y
(1)
i ) ≥ 3σ2(n − 1)2

d(X )2
1

k(k − 1)(2k − 1)

≥ 3σ2(n − 1)2

d(X )2
1

k(k + 1)(2k + 1)
.

Hence, the variance will be largest (but limited) for i = 2 and will decrease for growing
i till i = k. Also, from the last inequality it follows that variance at the boundaries will
always be larger or equal than the variance of the interior. An analogue calculation shows
the same result for n− k + 1 ≤ i ≤ n− 1 by setting k(i) = n− i.

3. Higher Order Empirical Derivatives

In this section, we generalize the idea of first order empirical derivatives to higher order
derivatives. Let q denote the order of the derivative and assume further that q ≥ 2, then
higher order empirical derivatives can be defined inductively as

Y
(l)
i =

kl
∑

j=1

wj,l ·
(

Y
(l−1)
i+j − Y

(l−1)
i−j

xi+j − xi−j

)

with l ∈ {2, . . . , q}, (9)
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where k1, k2, . . . , kq are positive integers (not necessary equal), the weights at each level l

sum up to one and Y
(0)
i = Yi by definition. As with the first order empirical derivative, a

boundary issue arises with expression (9) when i <
∑q

l=1 kl +1 or i > n−∑q
l=1 kl. Similar

to (4), a boundary correction can be used. Although, the qth order derivatives are linear
in the weights at level q, they are not linear in the weights at all levels. As such, no simple
formulas for variance minimizing weights exist. Fortunately, simple weight sequences exist
which control the asymptotic bias and variance quite well assuming that k1, . . . , kq increase
appropriately with n (see Theorem 4).

Theorem 4 Assume model (1) holds with equispaced design and let
∑kl

j=1wj,l = 1. Further
assume that the first (q+1) derivatives of m are continuous on the interval X . Assume that
there exist λ ∈ (0, 1) and cl ∈ (0,∞) such that kln

−λ → cl for n → ∞ and l ∈ {1, 2, . . . , q}.
Further, assume that

wj,1 =
6j2

k1(k1 + 1)(2k1 + 1)
for j = 1, . . . , k1,

and

wj,l =
2j

kl(kl + 1)
for j = 1, . . . , kl and l ∈ {2, . . . , q}.

Then the asymptotic bias and variance of the empirical qth order derivative are given by

bias(Y
(q)
i ) = O(nλ−1) and Var(Y

(q)
i ) = O(n2q−2λ(q+1/2))

uniformly for
∑q

l=1 kq + 1 < i < n−∑q
l=1 kq.

Proof: see Appendix C. �

An interesting consequence of Theorem 4 is that the order of the bias of the empirical
derivative estimator does not depend on the order of the derivative q. The following two
corollaries are a direct consequence of Theorem 4. Corollary 5 states that the L2 rate of
convergence (and L1 rate) will be slower for increasing orders of derivatives q i.e. higher
order derivatives are progressively more difficult to estimate. Corollary 5 suggests that the
MSE of the qth order empirical derivative will tend to zero for λ ∈ ( 2q

2q+1 , 1) prescribing e.g.

kq = O(n2(q+1)/(2q+3)). Similar results can be obtained for the MAD. Corollary 6 proves L2

and L1 consistency.

Corollary 5 Under the assumptions of Theorem 4, for the weight sequences defined in
Theorem 4, the asymptotic mean squared error and asymptotic mean absolute deviation are
given by

E(Y
(q)
i −m(q)(xi))

2 = O(n2(λ−1)+n2q−2λ(q+1/2)) and E |Y (q)
i −m(q)(xi)| = O(nλ−1+nq−λ(q+1/2)).

Corollary 6 Under the assumptions of Theorem 4, for the weight sequences defined in
Theorem 4 and λ ∈ ( 2q

2q+1 , 1), it follows that

E(Y
(q)
i −m(q)(xi))

2 → 0 and E |Y (q)
i −m(q)(xi)| → 0, n → ∞.

10
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4. Bandwidth Selection For Correlated Data

From (4), it is clear that for the newly generated data set the i.i.d. assumption is no longer
valid since it is a weighted sum of differences of the original data set. In such cases, it
is known that data-driven bandwidth selectors and plug-ins break down (Opsomer et al.,
2001; De Brabanter et al., 2011). In this paper we extend the idea of De Brabanter et al.
(2011) and develop a factor rule based on bimodal kernels to determine the bandwidth.
They showed, under mild conditions on the kernel function and for equispaced design, that
by using a kernel satisfying K(0) = 0 the correlation structure is removed without any
prior knowledge about its structure. Further, they showed that bimodal kernels introduce
extra bias and variance yielding in a slightly wiggly estimate. In what follows we develop
a relation between the bandwidth of a unimodal kernel and the bandwidth of a bimodal
kernel. Consequently, the estimate based on this bandwidth will be smoother than the one
based on a bimodal kernel.

Assume the following model for the qth order derivative

Y (q)(x) = m(q)(x) + ε

and assume that m has two continuous derivatives. Further, let Cov(εi, εi+l) = γl < ∞
for all l and assume that

∑

∞

l=1 l|γl| < ∞. Then, if h → ∞ and nh → ∞ as n → ∞,
the bandwidth h that minimizes the mean integrated squared error (MISE) of the local
polynomial regression estimator (3) with p odd under correlation is given by (Simonoff,
1996; Fan and Gijbels, 1996)

ĥ = Cp(K)

[

(σ2 + 2
∑

∞

l=1 γl) d(X )
∫

{m(p+1)(u)}2 du

]1/(2p+3)

n−1/(2p+3), (10)

where

Cp(K) =

[

{(p + 1)!}2
∫

K⋆2
p (u) du

2(p + 1){
∫

up+1K⋆
p(u) du}2

]1/(2p+3)

and K⋆
p denotes the equivalent kernel defined as

K⋆
p(u) = (1 0 · · · 0)











µ0 µ1 · · · µp

µ1 µ2 · · · µp+1
...

...
. . .

...
µp µp+1 · · · µ2p











−1









1
u
...
up











K(u),

with µj =
∫

ujK(u) du. Since the bandwidth hb based on a symmetric bimodal kernel K
has a similar expression as (10) for a unimodal kernel, one can express h as a function of
hb resulting into a factor method. It is easily verified that

ĥ = Cp(K,K)ĥb,

where

Cp(K,K) =

[

∫

K⋆2
p (u) du {

∫

up+1K
⋆
p(u) du}2

∫

K
⋆2
p (u) du {

∫

up+1K⋆
p (u) du}2

]1/(2p+3)

.
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The factor Cp(K,K) is easy to calculate and Table 1 lists some of these factors for dif-
ferent unimodal kernels and for various odd orders of polynomials p. We take K(u) =
(2/

√
π)u2 exp(−u2) as bimodal kernel.

p Gaussian Uniform Epanechnikov Triangular Biweight Triweight

1 1.16231 2.02248 2.57312 2.82673 3.04829 3.46148
3 1.01431 2.45923 2.83537 2.98821 3.17653 3.48541
5 0.94386 2.79605 3.09301 3.20760 3.36912 3.62470

Table 1: The factor Cp(K,K) for different unimodal kernels and for various odd orders of
polynomials p with K(u) = (2/

√
π)u2 exp(−u2) as bimodal kernel.

5. Simulations

5.1 First Order Derivative Estimation

We evaluate the proposed method for derivative estimation with several other methods used
in the literature i.e. via the local slope in local polynomial regression with p = 3 (R package
locpol (Cabrera, 2009)) and penalized smoothing splines (R package pspline (Ramsey and
Ripley, 2010)). For the latter we have used quintic splines (Newell and Einbeck, 2007) to
estimate the first order derivative. All smoothing parameters were determined by weighted
generalized cross-validation (WGCV(q)) defined as

WGCV(q) =
1

n

n
∑

i=1

si

(

Y
(q)
i − m̂

(q)
n (xi)

1− trace(L)/n

)2

,

with si = 1{∑q
l=1 kl + 1 ≤ i ≤ n −∑q

l=1 kl} and let L be the smoother matrix of the
local polynomial regression estimate. The Gaussian kernel has been used for all kernel
methods. The proposed method uses K(u) = (2/

√
π)u2 exp(−u2) as bimodal kernel. The

corresponding sets of bandwidths of the bimodal kernel hb were {0.04, 0.045, . . . , 0.095} and
k1 was determined in each run by (7). Consider the following two functions

m(x) = sin2(2πx) + log(4/3 + x) for x ∈ [−1, 1] (11)

and
m(x) = 32e−8(1−2x)2(1− 2x) for x ∈ [0, 1], (12)

In a first simulation we show a typical result for the first order derivative (q = 1) of (11)
and (12), its first order empirical derivative (see Figure 2). The data sets are of size n = 1000
and are generated from model (1) with e ∼ N(0, σ2) for σ = 0.03 (regression function (11))
and σ = 0.1 (regression function (12)). To smooth the noisy derivative data we have chosen
a local polynomial regression estimate of order p = 3. For the Monte Carlo study, we
constructed data sets size with n = 500 and generated the function

m(x) =
√

x(1− x) sin

(

2.1π

x+ 0.05

)

for x ∈ [0.25, 1]

12
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Figure 2: Illustration of the noisy empirical first order derivative (data points), smoothed
empirical first order derivative based on a local polynomial regression estimate
of order p = 3 (bold line) and true derivative (bold dashed line). (a) First order
derivative of regression function (11) with k1 = 7; (b) First order derivative of
regression function (12) with k1 = 12.

100 times according to model (1) with e ∼ N(0, σ2) and σ = 0.1. As measure of comparison
we chose the adjusted mean absolute error defined as

MAEadjusted =
1

481

490
∑

i=10

|m̂′
n(xi)−m′(xi)|.

This criterion was chosen to ignore boundary effects in the estimation for the three methods.
The result of the Monte Carlo study for (12) is given in Figure 3. From the Monte Carlo
experiment, it is clear that all three methods yield similar results and no method supersedes
the other.

5.2 Second Order Derivative Estimation

As before, all smoothing parameters were determined by weighted generalized cross-validation
(WGCV(q)) for q = 2. A typical result for the second order derivative (q = 2) of (11)
and (12) and its second order empirical derivative is shown in Figure 4. To smooth the
noisy derivative data we have chosen a local polynomial regression estimate of order p = 3.
The question that arises is the following: How to tune k1 and k2 for second order derivative
estimation? Consider a set of candidate values of k1 and k2 e.g. {5,. . . ,40}. Note that,
according to Corollary 5, the order of kq should increase with q. The size of the set is de-
termined both by the computational time that one is willing to invest and by the maximum
fraction of the observation weights s1, . . . , sn that one is willing to set to 0 in order to cir-
cumvent the aforementioned boundary issues. In order to have a fair comparison among the
values of k1 and k2, one should use the same observation weights for all candidate values.

13
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Figure 3: Result of the Monte Carlo study for the proposed method and two other well-
known methods for first order derivative estimation.

Therefore, the largest value determines the weights. To choose the value k1 and k2 from
the candidate set, we can take k1 and k2 that minimize WGCV(2). A similar strategy can
be used to determine kq. We have chosen to tune k1 according to the way described above
and not via (7) because the optimal k1 for first derivatives is not necessarily the optimal
one to be used for estimating second derivatives. From the simulations, it is clear that the
variance is larger for increasing q for λ ∈ ( 2q

2q+1 , 1) (the order of the bias remains the same).
This was already confirmed by Theorem 4.

For the Monte Carlo study, we constructed data sets are of size n = 1500 and generated
the function

m(x) = 8e−(1−5x)3(1−7x) for x ∈ [0, 0.5]

100 times according to model (1) with e ∼ N(0, σ2) and σ = 0.1. As measure of comparison
we chose the adjusted mean absolute error defined as

MAEadjusted =
1

1401

1450
∑

i=50

|m̂(2)
n (xi)−m(2)(xi)|.

This criterion was chosen to ignore boundary effects in the estimation. We evaluate the
proposed method for derivative estimation with the local slope in local polynomial regres-
sion with p = 5 and penalized smoothing splines. For the latter we have used septic
splines (Newell and Einbeck, 2007) to estimate the second order derivative. The result of
the Monte Carlo study is shown in Figure 5. As before, all three methods perform equally
well and show similar variances.
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Figure 4: Illustration of the noisy empirical second order derivative (data points), smoothed
empirical second order derivative based on a local polynomial regression estimate
of order p = 3 (bold line) and true derivative (bold dashed line). (a) Second order
derivative of regression function (11) with k1 = 6 and k2 = 10; (b) Second order
derivative of regression function (12) with k1 = 3 and k2 = 25.
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Figure 5: Result of the Monte Carlo study for the proposed method and two other well-
known methods for second order derivative estimation.

6. Conclusion

In this paper we proposed a methodology to estimate derivatives nonparametrically without
estimating the regression function. We derived L1 and L2 rates and established consistency
of the estimator. The newly created data sets based on empirical derivatives are no longer
independent and identically distributed (i.i.d.) random variables. In order to effectively
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deal with the non-i.i.d. nature of the data, we proposed a simple factor method, based on
bimodal kernels, for the local polynomial regression framework. Further, we showed that
the order bias of the empirical derivative does not depend on the order of the derivative q
and that slower rates of convergence are to be expected for increasing orders of derivatives
q. However, our technique has also a drawback w.r.t. the design assumptions. All our
results have been derived for equispaced design. In many practical applications and data
coming from industrial sensors (e.g. process industry, robotics, nanoparticles, growth data)
equispaced data is often available since sensors are measuring at predefined times, see
e.g. Charnigo et al. (2007) and Patan (2008). However, our approach does not cover all
possible applications i.e. application with inherent random design. In this case the weight
sequence would depend on the design density, which in practice has to be estimated.
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Appendix A. Proof Of Proposition 1

Using the fact that xi+j − xi−j = 2j(n − 1)−1d(X ), where d(X ) := supX − inf X , yields

Var(Y
(1)
i ) = Var





k
∑

j=1

wj ·
(

Yi+j − Yi−j

xi+j − xi−j

)





= Var





(

1−
k
∑

j=2

wj

)

Yi+1 − Yi−1

xi+1 − xi−1
+

k
∑

j=2

wj ·
(

Yi+j − Yi−j

xi+j − xi−j

)





=
σ2(n− 1)2

2 d(X )2







(

1−
k
∑

j=2

wj

)2

+

k
∑

j=2

w2
j

j2







.
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Setting the partial derivatives to zero gives

2

(

1−
k
∑

j=2

wj

)

=
2wj

j2
, j = 2, . . . , k,

and hence j2w1 = wj . Normalizing such that the weights sum up to one yields

wj =
j2

∑k
i=1 i

2
=

6j2

k(k + 1)(2k + 1)
j = 1, . . . , k.

Appendix B. Proof Of Theorem 2

Since m is twice continuously differentiable, the following Taylor expansions are valid for
m(xi+j) and m(xi−j) round xi:

m(xi+j) = m(xi) + (xi+j − xi)m
′(xi) +

(xi+j − xi)
2

2
m(2)(ζi,i+j)

and

m(xi−j) = m(xi) + (xi−j − xi)m
′(xi) +

(xi−j − xi)
2

2
m(2)(ζi−j,i),

where ζi,i+j ∈]xi, xi+j [ and ζi−j,i ∈]xi−j , xi[. Using the above Taylor series and the fact that
xi+j −xi−j = 2j(n−1)−1d(X ) and (xi+j −xi) =

1
2 (xi+j −xi−j), it follows that the absolute

value of the bias of Y
(1)
i is given by

∣

∣

∣

∣

∣

∣

k
∑

j=1

wj
m(xi+j)−m(xi−j)

xi+j − xi−j
−m′(xi)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k
∑

j=1

wj
(xi+j − xi−j)[m

(2)(ζi,i+j)−m(2)(ζi−j,i)]

8

∣

∣

∣

∣

∣

∣

≤ sup
x∈X

|m(2)(x)|

∣

∣

∣

∣

∣

∣

k
∑

j=1

wj
(xi+j − xi−j)

4

∣

∣

∣

∣

∣

∣

=
supx∈X |m(2)(x)|(n − 1)−1d(X )

2

k
∑

j=1

j3
∑k

i=1 i
2

=
3k(k + 1) supx∈X |m(2)(x)|d(X )

4(n − 1)(2k + 1)

= O(kn−1)
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uniformly over i. Using Proposition 1, the variance of Y
(1)
i yields

Var(Y
(1)
i ) =

σ2(n− 1)2

2 d(X )2







(

1−
k
∑

j=2

wj

)2

+

k
∑

j=2

w2
j

j2







=
σ2(n− 1)2

2 d(X )2

k
∑

j=1

w2
j

j2

=
σ2(n− 1)2

2d(X )2

k
∑

j=1

36j2

k2(k + 1)2(2k + 1)2

=
3σ2(n− 1)2

k(k + 1)(2k + 1)d(X )2
= O(n2k−3)

uniformly over i.

Appendix C. Proof of Theorem 3

Due to Chebyshev’s inequality, it suffices to show that the mean squared error (MSE) goes
to zero, i.e.

lim
n→∞

MSE(Y
(1)
i ) → 0. (13)

Under the conditions k → ∞ as n → ∞ such that n−1k → 0 and nk−3/2 → 0, the bias and
variance go to zero (see Theorem 2). Hence, condition (13) is fulfilled.

Appendix D. Proof Of Theorem 4

The first step is to notice that there exist λ ∈ (0, 1) and c1 ∈ (0,∞) (see Theorem 3)
so that the bias and variance of the first order empirical derivative can be written as

bias(Y
(1)
i ) = O(nλ−1) and Var(Y

(1)
i ) = O(n2−3λ) uniformly over i for k1n

−λ → c1 as
n → ∞. Next, we continue the proof by induction. For the bias, assume that the first
(q + 1) derivatives of m are continuous on the compact interval X . Hence, all O(·)-terms
are uniformly over i. For any l ∈ {0, 1, . . . , q}, a Taylor series yields

m(l)(xi±j) = m(l)(xi) +

q−l
∑

p=1

(

± jd(X )
n−1

)p

p!
m(p+l)(xi) +O

(

(j/n)q−l+1
)

. (14)

The expected value of the first order empirical derivative is given by (see Section 2)

E(Y
(1)
i ) = m′(xi) +

q
∑

p=3,5,...

m(p)(xi)

k1
∑

j=1

wj,1

p!

jp−1d(X )p−1

(n− 1)p−1
+O

(

nq(λ−1)
)

,

with

θp,1 =

k1
∑

j=1

wj,1

p!

jp−1d(X )p−1

(n− 1)p−1
= O

(

n(p−1)(λ−1)
)

,
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for k1n
−λ → c1 as n → ∞. Suppose that for l ∈ {2, . . . , q} and kln

−λ → cl, where
cl ∈ (0,∞), as n → ∞

E(Y
(l−1)
i ) = m(l−1)(xi) +

q
∑

p=l+1,l+3,...

θp,l−1m
(p)(xi) +O

(

n(q−l+2)(λ−1)
)

(15)

for θp,l−1 = O
(

n(p−l+1)(λ−1)
)

. We now prove that

E(Y
(l)
i ) = m(l)(xi) +

q
∑

p=l+2,l+4,...

θp,lm
(p)(xi) +O

(

n(q−l+1)(λ−1)
)

for θp,l = O
(

n(p−l)(λ−1)
)

. Using (14) and (15) yields for ∆ = E(Y
(l−1)
i+j )−E(Y

(l−1)
i−j )

∆ =m(l−1)(xi+j) +

q
∑

p=l+1,l+3,...

θp,l−1m
(p)(xi+j)−m(l−1)(xi−j)−

q
∑

p=l+1,l+3,...

θp,l−1m
(p)(xi−j) +O

(

n(q−l+2)(λ−1)
)

=

q−l+1
∑

p=1

(

jd(X )
n−1

)p

p!
m(p+l−1)(xi) +O

(

(j/n)q−l+2
)

+

q
∑

p=l+1,l+3,...

θp,l−1



m(p)(xi) +

q−p
∑

s=1

(

jd(X )
n−1

)s

s!
m(p+s)(xi) +O

(

(j/n)q−p+1
)





−
q−l+1
∑

p=1

(

−jd(X )
n−1

)p

p!
m(p+l−1)(xi) +O

(

(j/n)q−l+2
)

−
q
∑

p=l+1,l+3,...

θp,l−1



m(p)(xi) +

q−p
∑

s=1

(

−jd(X )
n−1

)s

s!
m(p+s)(xi)+O

(

(j/n)q−p+1
)



+O
(

n(q−l+2)(λ−1)
)

.

Rearranging and grouping term gives

∆

xi+j − xi−j
= m(l)(xi) +

q−l+1
∑

p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi) +O

(

(j/n)q−l+1
)

+

q
∑

p=l+1,l+3,...

θp,l−1







q−p
∑

s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi) +O

(

(j/n)q−p
)







+
n− 1

2jd(X )
O
(

n(q−l+2)(λ−1)
)

.
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Multiplying all the above terms by wj,l =
j

∑kl
i=1 i

and summing over j = 1, 2, . . . , kl results

in

E(Y
(l)
i ) = m(l)(xi)

+

kl
∑

j=1

j
∑kl

i=1 i

q−l+1
∑

p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi) (16)

+

kl
∑

j=1

j
∑kl

i=1 i
O
(

(j/n)q−l+1
)

(17)

+

kl
∑

j=1

j
∑kl

i=1 i

q
∑

p=l+1,l+3,...

θp,l−1

q−p
∑

s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi) (18)

+

kl
∑

j=1

j
∑kl

i=1 i

q
∑

p=l+1,l+3,...

θp,l−1O
(

(j/n)q−p
)

(19)

+

kl
∑

j=1

j
∑kl

i=1 i

n− 1

2jd(X )
O
(

n(q−l+2)(λ−1)
)

. (20)

The terms (17), (19) and (20) all yield O(n(q−l+1)(λ−1)) for θp,l−1 = O(n(p−l+1)(λ−1)). Sim-
ilar, the terms (16) and (18) yield

∑q
p=l+2,l+4,... θp,lm

(p)(xi) for θp,l = O
(

n(p−l)(λ−1)
)

for

kln
−λ → cl as n → ∞. As a consequence, the bias of Y

(l)
i is given by

bias(Y
(l)
i ) = E(Y

(l)
i )−m(l)(xi) =

q
∑

p=l+2,l+4,...

θp,lm
(p)(xi) +O(n(λ−1)) = O(nλ−1).

For the variance, we proceed in a similar way. Note that Var(Y
(1)
i ) = O(n2−3λ)

uniformly over i. Assume that Var(Y
(l−1)
i ) = O(n2(l−1)−2λ(l−1/2)) uniformly over i for

l ∈ {2, 3, . . . , q}. The proof will be complete if we show that Var(Y
(l)
i ) = O(n2l−2λ(l+1/2)).

The variance of Y
(l)
i is given by

Var(Y
(l)
i ) =

(n− 1)2

4d(X )2
Var





kl
∑

j=1

wj,l

j

(

Y
(l−1)
i+j − Y

(l−1)
i−j

)





≤ (n− 1)2

2d(X )2



Var





kl
∑

j=1

wj,l

j
Y

(l−1)
i+j



+Var





kl
∑

j=1

wj,l

j
Y

(l−1)
i−j







 .

For aj ∈ N \ {0}, j = 1, . . . , kl, the variance is upperbounded by

Var(Y
(l)
i ) ≤ (n− 1)2

d(X )2





kl
∑

j=1

aj
w2
j,l

j2



O(n2(l−1)−2λ(l−1/2)).
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As in the proof of the bias, the choice of the weights become clear. If we choose wj,l =
j

∑kl
i=1

i

for l ≥ 2 then
∑kl

j=1 aj
w2

j,l

j2
= O(n−2λ). Then, for kln

−λ → cl as n → ∞, it readily follows

that Var(Y
(l)
i ) = O(n2l−2λ(l+1/2)).
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