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Abstract—It has been shown that kernel based regression
(KBR) with a least squares loss has some undesirable propéss
from robustness point of view. KBR with more robust loss
functions, e.g. Huber or Logistic losses, often give rise tmore
complicated computations. In classical statistics, robusess is
improved by reweighting the original estimate. We study the
influence of reweighting the LS-KBR estimate using three wél
known weight functions and one new weight function called
Myriad. Our results give practical guidelines in order to choose
the weights, providing robustness and fast convergence. turns
out that Logistic and Myriad weights are suitable reweighting
schemes when outliers are present in the data. In fact, the Miad
shows better performance over the others in the presence of
extreme outliers (e.g. Cauchy distributed errors). These fidings
are then illustrated on toy example as well as on a real life
data sets. Finally, we establish an empirical maxbias curveo
demonstrate the ability of the proposed methodology.

l.
Regression analysis is an important statistical tool ro

INTRODUCTION

whereF; is some given distribution (the ideal nominal model),
G is an arbitrary continuous distribution amds the first pa-
rameter of contamination. This contamination model dessri
the case, where with large probability — €), the data occurs
with distribution F;; and with small probability outliers occur
according to distributiort.

Example 1:e-contamination model with symmetric con-
tamination

F(x) = (1 - e)N(0,1) + eN(0, k*0?),

Example 2:e-contamination model for the mixture of the
Normal and Laplace or double exponential distribution

F(z) = (1—¢€)N(0,1) + eLap(0, \),

Huber considered also the class lf-estimators of location
(also called generalized maximum likelihood estimators) d

0<e<l, k>1.

0<e<1, A>0.

gcribed by some suitable function. The Huber estimator is

it minimizes the maximum asymptotic

tinely applied in most sciences. However, using least sguaf Minimax solution:
techniques, there is an awareness of the dangers posed’#jAnce over all in the gross-error model.
the occurrence of outliers present in the data. Not only the1uber developed a second theory [4], [5] for censored
response variable can be outlying, but also the explanaté'ﬁﬁ"hoo_d ratio tests and exe_lct finite sample confidencerint
part, leading to leverage points. Both types of outliers ma}é?',s' using more general neighborhoods of the normal model.
totally spoil an ordinary least squares (LS) analysis. his approach may be mathematlcally the most rigorous but
To cope with this problem, statistical techniques have beSREMS Very hard to generalize and therefore plays hardly any
developed that are not so easily affected by outliers. ThdQi€ In applications. A third theory proposed by Hampel [3],
methods are called robust or resistant.fifst attemptwas L0] 1S closely related to robustness theory which is more

done by Edgeworth in 1887. He argued that outliers havedgnerally applicable than Huber's first and second theory.

very large influence on a LS loss function because the relsiduk €€ Main concepts are introduced: (i) qualitative raiess,
hich is essentially continuity of the estimator viewed as

are squared. Therefore, he proposed the least absolutesvali'c" . . :
regression estimatorr{ regression). functional in the weak topology; (ii) the influence curve YIC

The second great stefiorward in this class of methods ©" influence function (IF), which describes the first delivat
occurred in the 1960s and early 1970s with fundamental wo?k € estimator, as far as existing; and (iii) the breakdown
of Tukey [1], Huber [2] (minimax approach) and Hampepo'nt (BP), a global robustne.ss measure describing hovv_ many
(influence functions) [3]. Huber [2] gave the first theory opercent gross errors are still tolerated before the estimat

robustness. He considered the general gross-error modefo&gll;gbreaks ?10""”' ded at | o insiahts
ccontamination model Robustness has provided at least two major insights into sta

tistical theory and practice: (i) Relatively small pertations
Ge={F:F(z)=(1—¢)Fo(x) +eG(z),0<e <1}, (1) from nominal models can have very substantial deleterious



effects on many commonly used statistical procedures afid]. From the influence function, several robustness measu
methods (e.g. estimating the mean, F-test for varianciéds). €an be defined: the gross error sensitivity, the local shift
Robust methods are needed for detecting or accommodatsegsitivity and the rejection point, see [3, Section 2.1m] f
outliers in the data [7], [8]. an overview. Mathematically speaking, the influence florcti
From their work the following methods were developeds the set of all partial derivatives of the functiofalin the di-
M-estimators, Generalized/-estimators, R-estimators,L- rection of the point masses. For functionals, there existred
estimators,S-estimators, repeated median estimator, least mesncepts of differentiation i.e. Gateaux, Hadamard orgact,
dian of squares, etc. Detailed information about thesenasti Bouligand and Fréchet. An application of the Bouligand IF
tors as well as methods for robustness measuring can be fooad be found in [15] in order to investigate the robustness
in the books [3], [9]-[11]. See also the book [12] for robugproperties of support vector machines (SVM). The Bouligand
statistical methods witti® providing a systematic treatment oflF has the advantage of being positive homogeneous which
robust procedures with an emphasis on practical applieaitiois in general not true for Hampel's influence function (2).
This paper is organized as follows. Section Il describéshristmann & Van Messem [15] also show that there exists
the measures of robustness and introduces some terminol@gyinteresting relationship between the Bouligand IF ard th
Section Il explains the practical difficulties associatsidh IF: if the Bouligand IF exists, then the IF does also exist and
estimating a regression function when the data is contastdnaboth are equal. Next, we give the definitions of the maxbias
with outliers. Section IV gives the influence function ofdea curve and the breakdown point. Note that some authors can
squares kernel based regression (LS-KBR) and derives a rgive a slightly different definition of the maxbias curvegese
weight function. Section V shows an empirical maxbias cuneg. [16].
for the LS-KBR contaminated with the gross error model. Definition 2 (Maxbias Curve)iet T(F) denote a statisti-

Finally, Section VI states the conclusions. cal functional and let the contamination neighborhood'die
defined byg. for a fraction of contaminatioa. The maxbias
Il. MEASURES OFROBUSTNESS curve is defined by

In order to understand why certain estimators behave the
way they do, it is necessary to look at various measures of B(e, T, F) = ,Eggp T(F) = T(Fp)l. ©)
robustness. There exist numerous approaches towards-the rq. .. .. . .
bustness problem. The approach based on influence functioP%)efm't!on 3 (Breakdown Pomt)?rhe breakdown p°'.”'f*
will be used here. The effect of one outlier on the estimagor ¢ 2" estimatofl’(F,) for the functionall'(¥') at /" is defined
be described by the influence function (IF). The IF describgél
the (approximate and standardized) effect of an additional
observation in any point on a statisticT’, given a (large) From the previous definition it is obvious that the breakdown
sample with distributior¥". Another measure of robustness opoint defines the largest fraction of gross errors thatletiips
an estimator is the maxbias curve. The maxbias curve giué® bias bounded. We will give some examples of influence
the maximal bias that an estimator can suffer from whenfanctions and breakdown points for the mean, median and
fraction of the data come from a contaminated distributiopariance.

By letting the fraction vary between zero and the breakdown

value a curve is obtained. The breakdown value is defined as !ll- OUTLIERS IN NONPARAMETRIC REGRESSION
how much contaminated data an estimator can tolerate befor€onsider 200 observations on the interal1l] and a
it becomes useless. low-order polynomial mean functiom:(X) = 300(X3 —

Let F be a fixed distribution and’(F) a statistical func- 3X* + 3X® — X°). Figure la shows the mean function
tional defined on a s&f. of distributions satisfying thal’ is with normally distributed errors with variance® = 0.32
Gateaux differentiable at the distributidn in domain7' [3]. and two distinct groups of outliers. Figure 1b shows the
Let the estimatorI’'(F,,) of T(F) be the functional of the same mean function, but the errors are generated from the

(T, F) = inf{e > 0|B(e, T, F) = oo}.

sample distribution¥;, . gross error ore-contamination model (1). In this simulation
Definition 1 (Influence Function)The influence function Fy ~ N(0,0.3%), G ~ N(0,10%) and e = 0.3. This
(IF) of T at F' is given by simple example clearly shows that the estimates based on

the L, norm with classical cross-validation (CV) (bold line)
(2) are influenced in a certain region (similar as before) or even

breakdown (in case of the gross error model) in contrast to
in thosex where this limit existsA, denotes the probability estimates based on robust kernel based regression (KBR) wit
measure which puts mass 1 at the paint robust CV (thin line). A fully robust KBR method will be
Hence, the IF reflects the bias caused by adding a few outlidiscussed later in this Section. Another important issue to
at the pointz, standardized by the amounbf contamination. obtain robustness in nonparametric regression is the kerne
Therefore, a bounded IF leads to robust estimators. Note thanction K. Kernels that satisfyK (u) — 0 asu — oo, for
this kind of differentiation of statistical functionals é&sdiffer- X — oo and X — —oo, are bounded irR. These type of
entiation in the sense of von Mises with a kernel functior][13kernels are called decreasing kernels. Using decreasmeglke

IF(z; T, F) = lim T(1—e)F +eA,] —T(F)
T el0 €




leads to quite robust methods with respect to outliers in tisample ofn observationg X;,Y;) € X x Y C R? x R with

X -direction (leverage points). Common choices of decrepsijoint distribution F'yy . First, we give the following definitions
kernels are:K (u) = max((1 — u?),0), K(u) = exp(—u?), taken from [20].

O R Definition 4 ( [20]): Let X be a non-empty set. Then a

. ’ function K : X x X — R is called a kernel ont if there
4 exists a Hilbert spacg with an inner product-, -) and a map
gﬁ ¢ : X — H such that for allz,y € X we have
= K(z,y) = (p(z), ¢(y)) -
2 @ is called the feature map arid is a feature space ok.
B . Definition 5 ( [20]): Let X be a non-empty set ard be a

1 (X))
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x ' T x Hilbert function space ovet’, i.e. a Hilbert space that consists
(@) (b) of functions mapping from¥’ into R.

Fig. 1. Kernel based estimate with (a) normal distributexrer and two o A function K : X x X — R is called a reproducing

groups of outliers; (b) the-contamination model. This clearly shows that the kernel of H if we haveK(- x) c H for all z € X and
estimates based on tlie, norm (bold line) are influenced in a certain region ’

or even breakdown in contrast to estimates based on robsstflmctions the reproducing property:(z) = (m, K (-, x)) holds for
(thin line). all m € H and allz € X.

o The space? is called a Reproducing Kernel Hilbert
Space (RKHS) overX if for all z € X the Dirac
functionald, : H — R defined by

The last issue to acquire a fully robust estimate is the prope
type of cross-validation (CV). When no outliers are present
in the data, CV has been shown to produce tuning parameters
that are asymptotically consistent [17]. Yang [18] showreat t 6z(m) =m(x), meH
under some regularity conditions, for an appropriate ahoic ; .

" , o ; . is continuous.
data splitting ratio, cross-validation is consistent ie sense of Finall d the followina definiti bout the ioint
selecting the better procedure with probability approagHi. inally, we nee e following definition about the join

However, when outliers are present in the data, the use of (gt?;rs'g:gg;gxy For notational ease, we will suppress the
can lead to extremely biased tuning parameters [19] resulti e L
y gp [19] resu IJ,'i)ef|n|t|on 6 ( [20]): Let F' be a distribution ont x ), let

in bad regression estimates. The estimate can also fail whe .

the tuning parameters are determined by standard CV using , Y = [0,00) be a measurable function and Idt|, be
robust smoother. The reason is that CV no longer produce egmed as

reasonable estimate of the prediction error. Thereforeylp f |Fla = / a(y)dF(z,y).

robust CV method is necessary. Figure 2 demonstrates this A )

behavior on the same toy example (see Figure 1). Indeed!fie:(¥) = [y[” for p > 0 we write |F[,,. .

can be clearly seen that CV results in less optimal tuninﬁ Let L : ) x R — [0,00) be a convex loss function. Then
parameters resulting in a bad estimate. Hence, to obtailiya fihe theoretical regularized risk is defined as

robust estimate, every step has to be robust i.e. robust @V wi m., = argmin E [L (Y, m(X))] + v||m|/%,. (4)
a robust smoother based on a decreasing kernel. me
o Consider the mafi’ which assigns to every distributiaofi on

X x Y with |F|, < oo, the functionT'(F) = m, € H. An
expression for the influence function of (4) was proven in[21
Proposition 1 ( [21]): Let # be a RKHS of a bounded
continuous kernelK on X with feature mapy : X — H,
L:YxR — [0,00) be a convex loss function satisfying some
conditions [21] and denot&’(y, r) := dL(y,r)/0r w.r.t. the

L : : second argument of.. Furthermore, letF’ be a distribution
B ' ST "y ' onX x Y with |F|, < co. Then the IF ofT exists for all
X X
@) (b) 2z = (2, 2y) € X x Y and is given by
Fig. 2. (&) normal distributed errors and two groups of eutlj (b) thee- . a—1 /
contamination model. Bold lines represent the estimatedas classical» IF(Z? T, F> =5 {E [L (Ya My (X)> ‘P(X”}
CV and a robust smoother. Thin lines represents estimatssdban a fully . (Zyv mv(zx)) Sflga(zx),

robust procedure.
with m, = —5-E[hyp] and S : H — H defined asS(m) =
IV. THEORETICAL BACKGROUND 2ym + E [L"(Y,m~ (X)) (p(X), m) p(X)].
A. Notation & IF of Kernel Based Regression Methods From this proposition, it follows immediately that the IFlpn

KBR methods estimate a functional relationship betweendéapends or through the term
dependent variabl&” and an independent variabtg using a —L' (2y,m~(22)) S (22



From a robustness point of view, it is important to bound thexists for allz = (z,, z,) € X x ) and is given by

IF. It is obvious that this can be achieved by using a bounded

kernel, e.g. the Gaussian kernel and a loss function with (% Too, F) =

bounded first derivative e.d.; loss or Vapnik'ss-insensitive (S“;,oo—Cw,oo)_l{—E [w(Y—ffn(fo)(X))(Y—m(;’O)(X))@(X)}
loss. TheL, loss on the other hand leads to an unbounded IF

and hence is not robust. + w (zy - m(fo)(zw)) (Zy - m(fo)(zx)) sﬁ(zw)} :

The condition||S, 1 o Cy | < 1 is needed to ensure that

the IF of the initial estimator eventually disappears. beti
Although loss functions with bounded first derivative arehat the operatorsS,, .. and C,, - are independent of the

easy to construct, they lead to more complicated optingnati contaminationz. SinCGH@(??)H%.[ = (p(z), p(r)) = K(x,z),

procedures such as QP problems. In case of least squares KBRIF z; T, F') is bounded if

(LS-KBR) this would mean that the, loss should be replaced

by e.g. anL; loss, what immediately would lead to a QP lw(r)re@)|la = w(r)rlyV/K(,z)

problem. _In what follows we will study an glte_rnatwe Wa¥%e pounded for all(z,7) € R? x R. From Proposition 2, the

of achieving robustness by means of reweighting. This h{%ﬁlowing result immediately follows

the advantage of easily computable estimates i.e. solving ] . .
weighted least squares problem in every iteration. First, w aCorollary 1: Assume that the conditions of Proposition 2

need the following definition concerning the weight funatio gnd _Def|n|t|on 7 are satisfied, therF(z; Too, )| bounded
Definition 7: Form € #, let w : R — [0,1] be a weight implies || IF(z; T, F')||o bounded for bounded kernels.

. . . : : < .
function depending on the residudll— m(X) w.r.t. m. Then Prpof qu anym € H - [mlloc < |[mul| Ko The
. . i result immediately follows for a bounded kernl ]
the following assumptions will be made an : . . : .
An interesting fact which has practical consequences is the

« w(r) is a non-negative bounded Borel measurable funghoice of the kernel function. It is readily seen that if oakets

B. Robustness by Reweighting

tion; a Gaussian kernel, only downweighting the residual is ne&tede
« w is an even function of; as the influence in th& -space is controlled by the kernel. On
+ w is continuous and differentiable with'(r) < 0 for the other hand, taking an unbounded kernel such as the linear
r>0. or polynomial kernel requires a weight function that desesa
A sequence of successive minimizers of a weighted leaytth the residual as well as with to obtain a bounded IF.
squares regularized risk is defined as follows. See also [24] and [25] for similar results regarding ordynar

Definition 8: Let m'”) € # be an initial fit, e.g. obtained LS and [26] for iteratively defined statistics.

by Ordinary unweighted LS-KBR. Let be awe|ght function It does not suffice to derive the IF of the reWeighted LS-
satisfying the conditions in Definition 7. Then tifg + 1) KBR but also to establish conditions for convergence. The

reweighted LS-KBR estimator is defined by following proposition is due to [22].
Proposition 3 ( [22]): Define w(r) = @ with ¢ the
m(f“) —argminE |w(Y — m(f) (X))(Y — m(X))Q} contrast function. Then, reweighted LS-KBR with a bounded
meH (5) kernel converges to a bounded influence, even if the initial
+ v|lm||3,. LS-KBR is not robust, if

cl

db d | h d (c1) ¥ :R — R is a measurable, real, odd function;
It was proved by [22] and see also [23] that, under cert 'crb) 1) is continuous and differentiable;

conditions, the IF of reweighted LS-KBR estimator (5) ic3) 4 is bounded:

bounded _V‘_'he”k — oo and is given as follows. (c4) Ep ¢'(e) > —y whereF, denotes the distribution of the
Proposition 2 ([22]): Denote byT} 1 the maply 1 (F) = errors.

(k+1) tributi i
my . Furthermare, lef" be a distribution o’ x ) with Finally, reweighting is not only useful when outliers are

oo
|[Flo < ooand [y, wly - m™ (z)) dF (z,y) > 0. Denote present in the data but it also leads to a more stable method,
by T\, the mapl(F) = m{™). Denote the operato$, . : especially at heavy tailed distributions.
H — H andCy o : H — H given by
C. Weight Functions

Suw,00(m) =ym +E {w (Y - m(f@(X)) (m, p(X)) @(X)} It is without doubt that the choice of weight function
w plays a significant role in the robustness aspects of the

and smoother. We will demonstrate later that the choice of weigh

Cuooo(m) = functionw has an influence on the speed of convergence [22],

[25]. Table I illustrates three well-known weight functe(l
-E {w' (Yfm(fo)(X)) (Yfm(fo)(X)ym, (X)) e(X)|. is an invariant symmetric convex loss function). For furthe

reading we refer the reader to [9]. We will show another
Further, assume thﬁtS,;})Oon,ooH < 1. Then the IF ofl,  kind of weight function, called Myriad, that exhibits some



remarkable properties. The Myriad is derived from the Max-
imum Likelihood (ML) estimation of a Cauchy distributic ¥
with scaling factord (see below) and can be used as a ro
location estimator in stable noise environments. Givent:
of i.i.d. random variables(y, ..., X,, ~ X and X ~ C((, ),
where the location parameteris to be estimated from da
i.e.( andd > 0 is a scaling factor.

Mean

Median

Myriad

TABLE |

DEFINITIONS FOR THEHUBER, HAMPEL AND LOGISTIC WEIGHT LI % X X
FUNCTIONSw(r) = ¢(r)/r. THE CORRESPONDING LOSZ.(r) AND

CONTRAST FUNCTION# () ARE ALSO GIVEN AND 3,b1,b2 € N\ {0}. @) (b)

Fig. 3.  (a) Myriad cost functions for the observation sarspk; =
Huber Hampel Logistic —3,X2 =8,X3=1,X4 =—2,X5 =5 for § = 20,2,0.2; (b) Influence
1, [r] < b1; function for the mean, median and Myriad.
1, |r|<B bo || tanh(r)
v %7 |r| > B by —by”’ Tl‘ < |[:| <b; T
0, r| > ba
According to (6), the cost function associated with the damp
f Myriad is given by
P(r) /
L(x) = log[6* + 7).
2 b s . . . .
r2, "l < B 2 P Il <t Some insight in the operation of M-estimates is gained thiou
LU e - £ 1 2 8 b <Ir[<be | rtanh(r) 1 the definition of the IF. For an M-estimate, the IF is propor-
0, 7| > b2 tional to the score function [3, p. 101]. For the Myriad (see

also Figure 3b), the IF is given by

The ML principle yields the sample Myriad 9
L'(z) = y(z) = 02+ a2

CA argmax<5>nﬁ !
’ CeR T/ 0% + (X; — ()*’ When using the Myriad as a location estimator, it can be
shown that the Myriad offers a rich class of operation modes
that can be controlled by varying the parameteiWhen the

. n noise is Gaussian, large values otan provide the optimal

G = argminzlog (6% + (X — 0)?]. (6) performance associated with the sample mean, whereas for

CER = highly impulsive noise statistics, the resistance of mtyge

Note that, unlike the sample mean or median, the definition @timators can be achieved by setting low values.oAlso,
the sample Myriad involves the free parametewe will refer the Myriad has a mean property i.e. whén- oo then the
to ¢ as the linearity parameter of the Myriad. The behavior &@mple Myriad reduces to the sample mean. The following
the Myriad estimator is markedly dependent on the valuesof fesults were independently shown by [27] and [23].
linearity parameted. Tuning the linearity parametéradapts ~ Theorem 1 (Mean Property)Given a set of samples
the behavior of the myriad from impulse-resistant modestypX1, ..., X,. The sample Myriad;s converges to the sample
estimators (smalb) to the Gaussian-efficient sample meamean as) — oo, i.e.

(large §). If an observation in the set of input samples has .
a large magnitude such thgX; — ¢| > 4, the cost associated > {arg minZlog [52 4 (X, — <>2]}

which is equivalent to

with this sample is approximatelyg(X; — ¢)? i.e. the log of Goo = 51520 G = 51520 CeR

squared deviation. Thus, much as the sample mean and sample n

median respectively minimize the sum of square and absolute — 1 ZXi'

deviations, the sample myriad (approximately) minimizes t ni4

sum of logarithmic squared deviations. Some intuition can b

gained by plotting the cost function (6) for various valués o Proof: First, we establish upper and lower boundsder
4. Figure 3a depicts the different cost function charadiess Consider the order statisti&¥';) < ... < X, of the sample
obtained foré = 20, 2,0.75 for a sample set of size 5. For aXy,..., X,,. Then, by taking < X(;) = min{Xy,..., X,,}

set of samples defined as above, an M-estimator of locatiand for all:

is defined as the parametérminimizing a sum of the form
> L(X; — ¢), where L is the cost or loss function. In
general, whenL(z) = —log f(z), with f a density, the M-
estimate( corresponds to the ML estimator associated with it follows that (; > X(,. Similarly, one can find thags <

=1

8+ (Xi — X(1))* <0 + (Xi — )%,



X(n). Hence, |

n

55 - arg min H [52 +(X; — 4)2} D. Speed of Convergence-Robustness Tradeoff
Xy ==X 321 Define
= argmin 62" + 6272 X, — )2 +0(8% 4 Y(e)
X<1>Sg<§X<n) ;( ‘ ( ) d=Er, ——= and c=d—Er ¢'(e),
n 10 52n74 . . .. .
— agmin > (Xi— 0%+ (%_2 ) with F, denoting the distribution of the errors, therd
Xy <C<X(ny 5 0 establishes an upper bound on the reduction of the influence

function at each step [22]. The upper bound represents e-trad
off between the reduction of the influence function (speed
of convergence) and the degree of robustness. The higher
the ratio ¢/d, the higher the degree of robustness but the
slower the reduction of the influence function at each step
nd vice versa. In Table Il this upper bound is calculated
or a Normal distribution and a standard Cauchy for the
four types of weighting schemes. Note that the convergence
of the influence function is quite fast, even at heavy tailed
distributions. For Huber and Myriad weights, the convergen
rate decreases rapidly as respectivelyé increases. This
behavior is to be expected, since the largerespectivelyd,
N the less points are downweighted. Also note that the upper
50 — lim fa — arg min H X, — X, poqnd_on the. convergence rate approaches B,as — 0,

6—0 X; ek indicating a high degree of robustness but slow convergence
rate. Therefore, logistic weights offer a good tradeoffimstn
speed of convergence and degree of robustness. Also notice
the small ratio for the Hampel weights indicating a low degre

For § — oo the last term becomes negligible and

) 1 n
(0 — argmin Z(X,- —()? == ZX,-.
Xy=C=Xm) j—1 i

As the Myriad moves away from the linear region (larg
values of §) to lower values ofj, the estimator becomes
more resistant to outliers. Whentends to zero, the myriad
approaches the mode of the sample.

Theorem 2 (Mode Property)Given a set of samples
X1,...,X,. The sample Myriad(; converges to a mode
estimator ford — 0. Further,

X £X;

where K is the set of most repeated values.
Proof: Sinceé > 0, the sample Myriad (6) can be written

as n 2 of robustness. The highest degree of robustness is achigved
(Xi— Q)
arg minH {1 + ZT] using Myriad weights.
CER 5
For small values of, the first term in the sum, i.e. 1, can be |, TABLE Il
. ALUES OF THE CONSTANTS:, d AND c/d FOR THEHUBER, LOGISTIC,
omitted, hence HAMPEL AND MYRIAD WEIGHT FUNCTION AT A STANDARD NORMAL
n 2 n—r(¢) DISTRIBUTION AND A STANDARD CAUCHY. THE BOLD VALUES
(Xz B C) _ i REPRESENT AN UPPER BOUND FOR THE REDUCTION OF THE INFLUENCE
[+ —|=0 (7)
2 062 ’ FUNCTION AT EACH STER
=1
where x(¢) is the number of times that is repeated in the Weight | Parameter|| N(0,1) || €(0,1)
sampleX1, ..., X,,. The right-hand side of (7) is minimized function | _settings c/d c/d
for ¢ when the exponent — (¢) is minimized. Thereforegy Huber BB::OiE) 8:‘2“; 8:;:
will be a maximum ofx(¢) and consequently), will be the Logistic 0.26 0.32
most repeated value in the samp¥g, ..., X,, or the mode. Hampel bé =251 1006 |l 0025
— . . . 2 = ) )
Let x = max; x(X;) and X; € K. Then, vyiad [ 3 =01 593 091
n . (XL _ Xj)2 B n (XL _ Xj)2 6=1 0.47 0.50
I =% ]=1l =%
Xi#X Xi#X;
o 1\ (-t E. Robust Selection of Tuning Parameters
+ - . . . . .
<62) It is shown in Figure 2 that also the model selection

For smalld, the second term in (8) will be small comparedProcedure plays a significant role in obtaining fully robust
to the first term, since this is of ordér (5%)"—”_ Finally, (, estimates. Itis theoretically shown that a robust CV proced

can be computed as follows. differs from the Mean Asymptotic Squared Error (MASE) by
" ) a constant shift and a constant multiple [19]. Neither okthe
(o = argmin H {M] are dependent on the bandwidth. Further, it is shown that thi
XieK xiix, 62 multiple depends on the score function and therefore, also
n on the weight function. To obtain a fully robust procedure
= argmin H |X: — X, for LS-KBR one needs also, besides a robust smoother and

Xiek xi4x; bounded kernel, a robust model selection criterion. Camnsid



for example the robust LOO-CV (RLOO-CV) given by

18 o) 16
1« ,- © : : 8
RLOO-CV(0) = ~ 3" L (Yuml o(Xis0)) . (@ = | | 85

n = ’ 2 . : c
= B L. =
whereL is a robust loss function e.d.;, Huber loss, Myriar & * g Tg”
loSS, 711, 10b IS @ robust smoother anﬁaf;g)b(X,-;H) denote: > 5 : ="
the leave-one-out estimator where poinis left out from * ; b e gm
the training and¢ denotes the tuning parameter vector ,ZWRegionA ; W,

0 05 1 15 2 25 3 35 5 10 15 20 25 30
X

similar principle can be used in robustfold CV. For robus Number of outliers in regiod
counterparts of GCV and complexity criteria see e.g. [28], (a) (b)
[29] and [30]. Robust CV can also be transformed as a location o _

h . . . Fig. 4. (a) In each step, one good point (circled dots) of tie region
estimation problem based dnestimators (timmed mean and ,°_ {z:08 < & < 222} is contaminated by the absolute value of
Winsorized mean) to achieve robustness. See also [31] fostandard Cauchy random variable (full dots) until thenestion becomes

model selection in kernel based regression using the irfrieryseless; (b) Empirical maxbias curve of the LS-KBR estimaio, () (thine
function Iine) and IRLS-KBR estimatofi,, ron(x) (bold line) in a test point: = 1.5.

V. SIMULATIONS

size 10. Model selection was performed using robust LOO-

o ) CV (9). Minimizing the non-smooth robust LOO-CV surface
We compute the empirical maxbias curve (3) for @ LSza5 done via the procedure described in [33] to escape from

KBR method and its robust counterpart iteratively rewesght 54| minima by means of a combination of a state-of-the-art

LS-KBR (IRLS-KBR) on a test point. Given 150 “good” giaha| optimization technique with a simplex method.
equispaced observations according to the relation [32pt&ha As a next example consider the data about the demograph-

A. Empirical Maxbias Curve

4, p. 45] ical information on the 50 states of the USA in 1980. The
Vi =m(ze) +en, k=1,...,150, data set provides information on 25 variables. The goal is to

determine the murder rate per 100,000 population. Thetresul

whereey, ~ N (0,0.1?) and is shown in Table IIl for randomly chosen test sets of size 15.

To illustrate the trade-off between the degree of robustnes
and speed of convergence, the number of iteratigpg are
Let A = {z : 0.8 < z < 2.22} denote a particular regionalso given in Table Ill. The number of iterations, needed by
(consisting of 60 data points) and let= 1.5 be a test point each weight function, confirms the results in Table II.

in that region. In each step, we start to contaminate thenregi

A by deleting one “good” observation and replacing it by a TABLE lll
FOR200SIMULATIONS THE MEDIANS AND MEDIAN ABSOLUTE

“ ” H b H
.bad point (xy, Y}?), see Figure 4a. In each step, the valife  peyiations (BETWEEN BRACKETS) OF THE L1 AND Lo, NORMS ARE
is chosen as the absolute value of a standard Cauchy randomVEN (ON TEST DATA). iyax DENOTES THE NUMBER OF ITERATIONS

variable. We repeat this until the estimation becomes asele =~ NEEDED TO CONVERGE THE BEST RESULTS ARE BOLD FACED
A maxbias plot is shown in Figure 4b where the values of the

m(xy) = 4.26 (exp(—zx) — 4exp(—2zy) + 3exp(—3zy)) .

’ Octane Demographic
LS-KBR estimate (non-robust),(z) and the robust IRLS- weights B B : B B :
KBR estimatei,, () are drawn as a function of the numbe ! <™ ! <™
of outliers in regionA. The tuning parameters are tuned with Huber %Bg 8-% 15 8-31 8-32 s
L LOO-CV for KBR and RLOO-CV (9), based on ab; | g g (0.5%) | ©-10) (0.91) | ©.99)
loss and Myriad weights, for IRLS-KBR. The maxbias curve Hampel || (03) | (0.14) | 2 0.01) | (0.02) | 3
of 7, increases very slightly with the number of outliers KBR . 020 | 051 0.30 | 0.80
Of 1t ron(2) | S€s very sughtly wi » I Logistic || (0.03) | (0.10) | 18 || (0.02) | (0.07) | 10
in region.A and stays bounded right up to the breakdown point. : 020 T 050 013 1 0.79
This is in strong contrast with the LS-KBR estimate, (z) Myriad || (0.03) | (0.09) | 22 || (0.01) | (0.06) | 12
which has a breakdown point equal to zero. SUM 0.28 | 0.56 . 037 | 0.90

(0.03) | (0.13) (0.02) | (0.06)

B. Real Life Data Sets

The octane data consists of NIR absorbance spectra over 226 .
wavelengths ranging from 1102 to 1552 nm. For each of the §9 Importance of Robust Model Selection

production gasoline samples the octane number was measure@dn extreme example to show the absolute necessity of a ro-

which alcohol was added. Table Il shows the result (medi%servations on the iﬂter‘vw7 1] and a low-order po|ynomia|
and median absolute deviation for each method are reportgsBan function

of a Monte Carlo simulation (200 runs) of the IRLS-KBR
and SVM in different norms on a randomly chosen test set of m(X)=1-6X+36X?—53X>+22X°



and X ~ U[0,1]. The errors are generated from the grosgs
error (1) model with the Normal distribution N(0,1) taken
as nominal distribution and the contamination distributie
taken to be a cubed standard Cauchy with= 0.3. We
compare SVM, which is known to be robust, based/igrCV
and SVM based on robust model selection. The result is shov&ﬂ
in Figure 5. This extreme example confirms the fact that, even
if the smoother is robust, also the model selection proaduf®]
has to be robust in order to obtain fully robust estimates. [,

(7]

[11]
[12]

(23]

[14]

[15]

—2F

[16]

0.2 0.4

X

Fig. 5. SVM (bold line) cannot handle these extreme type tifexa and the
estimate becomes useless. SVM based on robust model seléttin line)

can handle these outliers and does not break down. For yswpbses, not
all data is displayed in the figure.

0.6 0.8

[17]
(18]

[19]
VI. CONCLUSION

We reviewed some measures of robustness and inve&?!
gated the robustness of least squares kernel based regressgii]
Although counterintuitive, robustness in the nonparaimetr
regression case can be obtained by using a least SquUSs
cost function by means of iterative reweighting. In order to
achieve a fully robust procedure, three requirements have t
be fulfilled. By means of an upper bound for the reduction of
the influence function in each step, we revealed the existenc
of a tradeoff between speed of convergence and the degre&#f
robustness. Finally, we demonstrated that the Myriad weigh
function is highly robust against (extreme) outliers buhibits  [25]
a slow speed of convergence.
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