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Abstract—It has been shown that kernel based regression
(KBR) with a least squares loss has some undesirable properties
from robustness point of view. KBR with more robust loss
functions, e.g. Huber or Logistic losses, often give rise tomore
complicated computations. In classical statistics, robustness is
improved by reweighting the original estimate. We study the
influence of reweighting the LS-KBR estimate using three well-
known weight functions and one new weight function called
Myriad. Our results give practical guidelines in order to choose
the weights, providing robustness and fast convergence. Itturns
out that Logistic and Myriad weights are suitable reweighting
schemes when outliers are present in the data. In fact, the Myriad
shows better performance over the others in the presence of
extreme outliers (e.g. Cauchy distributed errors). These findings
are then illustrated on toy example as well as on a real life
data sets. Finally, we establish an empirical maxbias curveto
demonstrate the ability of the proposed methodology.

I. I NTRODUCTION

Regression analysis is an important statistical tool rou-
tinely applied in most sciences. However, using least squares
techniques, there is an awareness of the dangers posed by
the occurrence of outliers present in the data. Not only the
response variable can be outlying, but also the explanatory
part, leading to leverage points. Both types of outliers may
totally spoil an ordinary least squares (LS) analysis.

To cope with this problem, statistical techniques have been
developed that are not so easily affected by outliers. These
methods are called robust or resistant. Afirst attemptwas
done by Edgeworth in 1887. He argued that outliers have a
very large influence on a LS loss function because the residuals
are squared. Therefore, he proposed the least absolute values
regression estimator (L1 regression).

The second great stepforward in this class of methods
occurred in the 1960s and early 1970s with fundamental work
of Tukey [1], Huber [2] (minimax approach) and Hampel
(influence functions) [3]. Huber [2] gave the first theory of
robustness. He considered the general gross-error model or
ǫ-contamination model

Gǫ = {F : F (x) = (1 − ǫ)F0(x) + ǫG(x), 0 ≤ ǫ ≤ 1}, (1)

whereF0 is some given distribution (the ideal nominal model),
G is an arbitrary continuous distribution andǫ is the first pa-
rameter of contamination. This contamination model describes
the case, where with large probability(1− ǫ), the data occurs
with distributionF0 and with small probabilityǫ outliers occur
according to distributionG.

Example 1:ǫ-contamination model with symmetric con-
tamination

F (x) = (1− ǫ)N (0, 1) + ǫN (0, κ2σ2), 0 ≤ ǫ ≤ 1, κ > 1.

Example 2:ǫ-contamination model for the mixture of the
Normal and Laplace or double exponential distribution

F (x) = (1− ǫ)N (0, 1) + ǫLap(0, λ), 0 ≤ ǫ ≤ 1, λ > 0.

Huber considered also the class ofM -estimators of location
(also called generalized maximum likelihood estimators) de-
scribed by some suitable function. The Huber estimator is
a minimax solution: it minimizes the maximum asymptotic
variance over allF in the gross-error model.

Huber developed a second theory [4], [5] for censored
likelihood ratio tests and exact finite sample confidence inter-
vals, using more general neighborhoods of the normal model.
This approach may be mathematically the most rigorous but
seems very hard to generalize and therefore plays hardly any
role in applications. A third theory proposed by Hampel [3],
[6] is closely related to robustness theory which is more
generally applicable than Huber’s first and second theory.
Three main concepts are introduced: (i) qualitative robustness,
which is essentially continuity of the estimator viewed as
functional in the weak topology; (ii) the influence curve (IC)
or influence function (IF), which describes the first derivative
of the estimator, as far as existing; and (iii) the breakdown
point (BP), a global robustness measure describing how many
percent gross errors are still tolerated before the estimator
totally breaks down.

Robustness has provided at least two major insights into sta-
tistical theory and practice: (i) Relatively small perturbations
from nominal models can have very substantial deleterious



effects on many commonly used statistical procedures and
methods (e.g. estimating the mean, F-test for variances). (ii)
Robust methods are needed for detecting or accommodating
outliers in the data [7], [8].

From their work the following methods were developed:
M -estimators, GeneralizedM -estimators,R-estimators,L-
estimators,S-estimators, repeated median estimator, least me-
dian of squares, etc. Detailed information about these estima-
tors as well as methods for robustness measuring can be found
in the books [3], [9]–[11]. See also the book [12] for robust
statistical methods withR providing a systematic treatment of
robust procedures with an emphasis on practical applications.

This paper is organized as follows. Section II describes
the measures of robustness and introduces some terminology.
Section III explains the practical difficulties associatedwith
estimating a regression function when the data is contaminated
with outliers. Section IV gives the influence function of least
squares kernel based regression (LS-KBR) and derives a new
weight function. Section V shows an empirical maxbias curve
for the LS-KBR contaminated with the gross error model.
Finally, Section VI states the conclusions.

II. M EASURES OFROBUSTNESS

In order to understand why certain estimators behave the
way they do, it is necessary to look at various measures of
robustness. There exist numerous approaches towards the ro-
bustness problem. The approach based on influence functions
will be used here. The effect of one outlier on the estimator can
be described by the influence function (IF). The IF describes
the (approximate and standardized) effect of an additional
observation in any pointx on a statisticT , given a (large)
sample with distributionF . Another measure of robustness of
an estimator is the maxbias curve. The maxbias curve gives
the maximal bias that an estimator can suffer from when a
fraction of the data come from a contaminated distribution.
By letting the fraction vary between zero and the breakdown
value a curve is obtained. The breakdown value is defined as
how much contaminated data an estimator can tolerate before
it becomes useless.

Let F be a fixed distribution andT (F ) a statistical func-
tional defined on a setGǫ of distributions satisfying thatT is
Gâteaux differentiable at the distributionF in domainT [3].
Let the estimatorT (F̂n) of T (F ) be the functional of the
sample distributionFn.

Definition 1 (Influence Function):The influence function
(IF) of T at F is given by

IF(x;T, F ) = lim
ǫ↓0

T [(1− ǫ)F + ǫ∆x]− T (F )

ǫ
(2)

in thosex where this limit exists.∆x denotes the probability
measure which puts mass 1 at the pointx.
Hence, the IF reflects the bias caused by adding a few outliers
at the pointx, standardized by the amountǫ of contamination.
Therefore, a bounded IF leads to robust estimators. Note that
this kind of differentiation of statistical functionals isa differ-
entiation in the sense of von Mises with a kernel function [13],

[14]. From the influence function, several robustness measures
can be defined: the gross error sensitivity, the local shift
sensitivity and the rejection point, see [3, Section 2.1c] for
an overview. Mathematically speaking, the influence function
is the set of all partial derivatives of the functionalT in the di-
rection of the point masses. For functionals, there exist several
concepts of differentiation i.e. Gâteaux, Hadamard or compact,
Bouligand and Fréchet. An application of the Bouligand IF
can be found in [15] in order to investigate the robustness
properties of support vector machines (SVM). The Bouligand
IF has the advantage of being positive homogeneous which
is in general not true for Hampel’s influence function (2).
Christmann & Van Messem [15] also show that there exists
an interesting relationship between the Bouligand IF and the
IF: if the Bouligand IF exists, then the IF does also exist and
both are equal. Next, we give the definitions of the maxbias
curve and the breakdown point. Note that some authors can
give a slightly different definition of the maxbias curve, see
e.g. [16].

Definition 2 (Maxbias Curve):Let T (F ) denote a statisti-
cal functional and let the contamination neighborhood ofF be
defined byGǫ for a fraction of contaminationǫ. The maxbias
curve is defined by

B(ǫ, T, F ) = sup
F∈Gǫ

|T (F )− T (F0)|. (3)

Definition 3 (Breakdown Point):The breakdown pointǫ⋆

of an estimatorT (F̂n) for the functionalT (F ) atF is defined
by

ǫ⋆(T, F ) = inf{ǫ > 0|B(ǫ, T, F ) = ∞}.

From the previous definition it is obvious that the breakdown
point defines the largest fraction of gross errors that stillkeeps
the bias bounded. We will give some examples of influence
functions and breakdown points for the mean, median and
variance.

III. O UTLIERS IN NONPARAMETRIC REGRESSION

Consider 200 observations on the interval[0, 1] and a
low-order polynomial mean functionm(X) = 300(X3 −
3X4 + 3X5 − X6). Figure 1a shows the mean function
with normally distributed errors with varianceσ2 = 0.32

and two distinct groups of outliers. Figure 1b shows the
same mean function, but the errors are generated from the
gross error orǫ-contamination model (1). In this simulation
F0 ∼ N(0, 0.32), G ∼ N(0, 102) and ǫ = 0.3. This
simple example clearly shows that the estimates based on
the L2 norm with classical cross-validation (CV) (bold line)
are influenced in a certain region (similar as before) or even
breakdown (in case of the gross error model) in contrast to
estimates based on robust kernel based regression (KBR) with
robust CV (thin line). A fully robust KBR method will be
discussed later in this Section. Another important issue to
obtain robustness in nonparametric regression is the kernel
functionK. Kernels that satisfyK(u) → 0 as u → ∞, for
X → ∞ andX → −∞, are bounded inR. These type of
kernels are called decreasing kernels. Using decreasing kernels



leads to quite robust methods with respect to outliers in the
X-direction (leverage points). Common choices of decreasing
kernels are:K(u) = max((1 − u2), 0), K(u) = exp(−u2),
K(u) = exp(−|u|), . . .
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Fig. 1. Kernel based estimate with (a) normal distributed errors and two
groups of outliers; (b) theǫ-contamination model. This clearly shows that the
estimates based on theL2 norm (bold line) are influenced in a certain region
or even breakdown in contrast to estimates based on robust loss functions
(thin line).

The last issue to acquire a fully robust estimate is the proper
type of cross-validation (CV). When no outliers are present
in the data, CV has been shown to produce tuning parameters
that are asymptotically consistent [17]. Yang [18] showed that,
under some regularity conditions, for an appropriate choice of
data splitting ratio, cross-validation is consistent in the sense of
selecting the better procedure with probability approaching 1.
However, when outliers are present in the data, the use of CV
can lead to extremely biased tuning parameters [19] resulting
in bad regression estimates. The estimate can also fail when
the tuning parameters are determined by standard CV using a
robust smoother. The reason is that CV no longer produces a
reasonable estimate of the prediction error. Therefore, a fully
robust CV method is necessary. Figure 2 demonstrates this
behavior on the same toy example (see Figure 1). Indeed, it
can be clearly seen that CV results in less optimal tuning
parameters resulting in a bad estimate. Hence, to obtain a fully
robust estimate, every step has to be robust i.e. robust CV with
a robust smoother based on a decreasing kernel.
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Fig. 2. (a) normal distributed errors and two groups of outliers; (b) theǫ-
contamination model. Bold lines represent the estimate based on classicalL2

CV and a robust smoother. Thin lines represents estimates based on a fully
robust procedure.

IV. T HEORETICAL BACKGROUND

A. Notation & IF of Kernel Based Regression Methods

KBR methods estimate a functional relationship between a
dependent variableX and an independent variableY , using a

sample ofn observations(Xi, Yi) ∈ X × Y ⊆ R
d × R with

joint distributionFXY . First, we give the following definitions
taken from [20].

Definition 4 ( [20]): Let X be a non-empty set. Then a
function K : X × X → R is called a kernel onX if there
exists a Hilbert spaceH with an inner product〈·, ·〉 and a map
ϕ : X → H such that for allx, y ∈ X we have

K(x, y) = 〈ϕ(x), ϕ(y)〉 .

ϕ is called the feature map andH is a feature space ofK.
Definition 5 ( [20]): Let X be a non-empty set andH be a

Hilbert function space overX , i.e. a Hilbert space that consists
of functions mapping fromX into R.

• A function K : X × X → R is called a reproducing
kernel ofH if we haveK(·, x) ∈ H for all x ∈ X and
the reproducing propertym(x) = 〈m,K(·, x)〉 holds for
all m ∈ H and allx ∈ X .

• The spaceH is called a Reproducing Kernel Hilbert
Space (RKHS) overX if for all x ∈ X the Dirac
functionalδx : H → R defined by

δx(m) = m(x), m ∈ H

is continuous.
Finally, we need the following definition about the joint
distribution FXY . For notational ease, we will suppress the
subscriptXY .

Definition 6 ( [20]): Let F be a distribution onX ×Y, let
a : Y → [0,∞) be a measurable function and let|F |a be
defined as

|F |a =

∫

X×Y

a(y)dF (x, y).

If a(y) = |y|p for p > 0 we write |F |p.
Let L : Y × R → [0,∞) be a convex loss function. Then

the theoretical regularized risk is defined as

mγ = argmin
m∈H

E [L (Y,m(X))] + γ‖m‖2H. (4)

Consider the mapT which assigns to every distributionF on
X × Y with |F |a < ∞, the functionT (F ) = mγ ∈ H. An
expression for the influence function of (4) was proven in [21].

Proposition 1 ( [21]): Let H be a RKHS of a bounded
continuous kernelK on X with feature mapϕ : X → H,
L : Y×R → [0,∞) be a convex loss function satisfying some
conditions [21] and denoteL′(y, r) := ∂L(y, r)/∂r w.r.t. the
second argument ofL. Furthermore, letF be a distribution
on X × Y with |F |a < ∞. Then the IF ofT exists for all
z = (zx, zy) ∈ X × Y and is given by

IF(z;T, F ) =S−1 {E [L′ (Y,mγ(X))ϕ(X)]}

− L′ (zy,mγ(zx))S
−1ϕ(zx),

with mγ = − 1
2γ E[hϕ] andS : H → H defined asS(m) =

2γm+ E [L′′(Y,mγ(X)) 〈ϕ(X), m〉ϕ(X)].
From this proposition, it follows immediately that the IF only
depends onz through the term

−L′ (zy,mγ(zx))S
−1ϕ(zx).



From a robustness point of view, it is important to bound the
IF. It is obvious that this can be achieved by using a bounded
kernel, e.g. the Gaussian kernel and a loss function with
bounded first derivative e.g.L1 loss or Vapnik’sε-insensitive
loss. TheL2 loss on the other hand leads to an unbounded IF
and hence is not robust.

B. Robustness by Reweighting

Although loss functions with bounded first derivative are
easy to construct, they lead to more complicated optimization
procedures such as QP problems. In case of least squares KBR
(LS-KBR) this would mean that theL2 loss should be replaced
by e.g. anL1 loss, what immediately would lead to a QP
problem. In what follows we will study an alternative way
of achieving robustness by means of reweighting. This has
the advantage of easily computable estimates i.e. solving a
weighted least squares problem in every iteration. First, we
need the following definition concerning the weight function.

Definition 7: For m ∈ H, let w : R → [0, 1] be a weight
function depending on the residualY −m(X) w.r.t. m. Then
the following assumptions will be made onw

• w(r) is a non-negative bounded Borel measurable func-
tion;

• w is an even function ofr;
• w is continuous and differentiable withw′(r) ≤ 0 for
r > 0.

A sequence of successive minimizers of a weighted least
squares regularized risk is defined as follows.

Definition 8: Let m(0)
γ ∈ H be an initial fit, e.g. obtained

by ordinary unweighted LS-KBR. Letw be a weight function
satisfying the conditions in Definition 7. Then the(k + 1)th

reweighted LS-KBR estimator is defined by

m(k+1)
γ =argmin

m∈H

E
[

w(Y −m(k)
γ (X))(Y −m(X))2

]

+ γ‖m‖2H.
(5)

It was proved by [22] and see also [23] that, under certain
conditions, the IF of reweighted LS-KBR estimator (5) is
bounded whenk → ∞ and is given as follows.

Proposition 2 ([22]): Denote byTk+1 the mapTk+1(F ) =

m
(k+1)
γ . Furthermore, letF be a distribution onX × Y with

|F |2 < ∞ and
∫

X×Y
w(y −m

(∞)
γ (x)) dF (x, y) > 0. Denote

by T∞ the mapT∞(F ) = m
(∞)
γ . Denote the operatorsSw,∞ :

H → H andCw,∞ : H → H given by

Sw,∞(m) = γm+ E
[

w
(

Y −m(∞)
γ (X)

)

〈m, ϕ(X)〉ϕ(X)
]

and

Cw,∞(m) =

− E
[

w′
(

Y−m(∞)
γ (X)

)(

Y−m(∞)
γ (X)

)

〈m, ϕ(X)〉ϕ(X)
]

.

Further, assume that‖S−1
w,∞ ◦Cw,∞‖ < 1. Then the IF ofT∞

exists for allz = (zx, zy) ∈ X × Y and is given by

IF(z;T∞, F ) =

(Sw,∞−Cw,∞)
−1
{

−E
[

w
(

Y−m(∞)
γ (X)

)(

Y−m(∞)
γ (X)

)

ϕ(X)
]

+ w
(

zy −m(∞)
γ (zx)

)(

zy −m(∞)
γ (zx)

)

ϕ(zx)
}

.

The condition‖S−1
w,∞ ◦ Cw,∞‖ < 1 is needed to ensure that

the IF of the initial estimator eventually disappears. Notice
that the operatorsSw,∞ and Cw,∞ are independent of the
contaminationz. Since‖ϕ(x)‖2H = 〈ϕ(x), ϕ(x)〉 = K(x, x),
the IF(z;T∞, F ) is bounded if

‖w(r)rϕ(x)‖H = w(r)|r|
√

K(x, x)

is bounded for all(x, r) ∈ R
d × R. From Proposition 2, the

following result immediately follows
Corollary 1: Assume that the conditions of Proposition 2

and Definition 7 are satisfied, then‖ IF(z;T∞, F )‖H bounded
implies ‖ IF(z;T∞, F )‖∞ bounded for bounded kernels.

Proof: For anym ∈ H : ‖m‖∞ ≤ ‖m‖H‖K‖∞. The
result immediately follows for a bounded kernelK.

An interesting fact which has practical consequences is the
choice of the kernel function. It is readily seen that if one takes
a Gaussian kernel, only downweighting the residual is needed
as the influence in theX-space is controlled by the kernel. On
the other hand, taking an unbounded kernel such as the linear
or polynomial kernel requires a weight function that decreases
with the residual as well as withx to obtain a bounded IF.
See also [24] and [25] for similar results regarding ordinary
LS and [26] for iteratively defined statistics.

It does not suffice to derive the IF of the reweighted LS-
KBR but also to establish conditions for convergence. The
following proposition is due to [22].

Proposition 3 ( [22]): Define w(r) = ψ(r)
r

with ψ the
contrast function. Then, reweighted LS-KBR with a bounded
kernel converges to a bounded influence, even if the initial
LS-KBR is not robust, if

(c1) ψ : R → R is a measurable, real, odd function;
(c2) ψ is continuous and differentiable;
(c3) ψ is bounded;
(c4) EFe

ψ′(e) > −γ whereFe denotes the distribution of the
errors.

Finally, reweighting is not only useful when outliers are
present in the data but it also leads to a more stable method,
especially at heavy tailed distributions.

C. Weight Functions

It is without doubt that the choice of weight function
w plays a significant role in the robustness aspects of the
smoother. We will demonstrate later that the choice of weight
functionw has an influence on the speed of convergence [22],
[25]. Table I illustrates three well-known weight functions (L
is an invariant symmetric convex loss function). For further
reading we refer the reader to [9]. We will show another
kind of weight function, called Myriad, that exhibits some



remarkable properties. The Myriad is derived from the Max-
imum Likelihood (ML) estimation of a Cauchy distribution
with scaling factorδ (see below) and can be used as a robust
location estimator in stable noise environments. Given a set
of i.i.d. random variablesX1, . . . , Xn ∼ X andX ∼ C(ζ, δ),
where the location parameterζ is to be estimated from data
i.e. ζ̂ andδ > 0 is a scaling factor.

TABLE I
DEFINITIONS FOR THEHUBER, HAMPEL AND LOGISTIC WEIGHT

FUNCTIONSw(r) = ψ(r)/r. THE CORRESPONDING LOSSL(r) AND

CONTRAST FUNCTIONψ(r) ARE ALSO GIVEN AND β, b1, b2 ∈ N \ {0}.

Huber Hampel Logistic

w(r)

{

1, |r| < β
β

|r|
, |r| ≥ β











1, |r| < b1;
b2−|r|
b2−b1

, b1 ≤ |r| ≤ b2

0, |r| > b2

tanh(r)

r

ψ(r)

L(r)

{

r2, |r| < β

β|r| − β2

2
,|r| ≥ β











r2, |r| < b1

b2r
2−|r3|

b2−b1
, b1≤|r|≤b2

0, |r| > b2

r tanh(r)

The ML principle yields the sample Myriad

ζ̂δ = argmax
ζ∈R

(

δ

π

)n n
∏

i=1

1

δ2 + (Xi − ζ)2
,

which is equivalent to

ζ̂δ = argmin
ζ∈R

n
∑

i=1

log
[

δ2 + (Xi − ζ)2
]

. (6)

Note that, unlike the sample mean or median, the definition of
the sample Myriad involves the free parameterδ. We will refer
to δ as the linearity parameter of the Myriad. The behavior of
the Myriad estimator is markedly dependent on the value of its
linearity parameterδ. Tuning the linearity parameterδ adapts
the behavior of the myriad from impulse-resistant mode-type
estimators (smallδ) to the Gaussian-efficient sample mean
(large δ). If an observation in the set of input samples has
a large magnitude such that|Xi− ζ| ≫ δ, the cost associated
with this sample is approximatelylog(Xi− ζ)2 i.e. the log of
squared deviation. Thus, much as the sample mean and sample
median respectively minimize the sum of square and absolute
deviations, the sample myriad (approximately) minimizes the
sum of logarithmic squared deviations. Some intuition can be
gained by plotting the cost function (6) for various values of
δ. Figure 3a depicts the different cost function characteristics
obtained forδ = 20, 2, 0.75 for a sample set of size 5. For a
set of samples defined as above, an M-estimator of location
is defined as the parameterζ minimizing a sum of the form
∑n

i=1 L(Xi − ζ), whereL is the cost or loss function. In
general, whenL(x) = − log f(x), with f a density, the M-
estimateζ̂ corresponds to the ML estimator associated withf .

δ = 0.75

δ = 2

δ = 20

X1 X2X3X4 X5

(a)

Mean

Median

Myriad

ψ

(b)

Fig. 3. (a) Myriad cost functions for the observation samples X1 =
−3,X2 = 8,X3 = 1,X4 = −2,X5 = 5 for δ = 20, 2, 0.2; (b) Influence
function for the mean, median and Myriad.

According to (6), the cost function associated with the sample
Myriad is given by

L(x) = log[δ2 + x2].

Some insight in the operation of M-estimates is gained through
the definition of the IF. For an M-estimate, the IF is propor-
tional to the score function [3, p. 101]. For the Myriad (see
also Figure 3b), the IF is given by

L′(x) = ψ(x) =
2x

δ2 + x2
.

When using the Myriad as a location estimator, it can be
shown that the Myriad offers a rich class of operation modes
that can be controlled by varying the parameterδ. When the
noise is Gaussian, large values ofδ can provide the optimal
performance associated with the sample mean, whereas for
highly impulsive noise statistics, the resistance of mode-type
estimators can be achieved by setting low values ofδ. Also,
the Myriad has a mean property i.e. whenδ → ∞ then the
sample Myriad reduces to the sample mean. The following
results were independently shown by [27] and [23].

Theorem 1 (Mean Property):Given a set of samples
X1, . . . , Xn. The sample Myriad̂ζδ converges to the sample
mean asδ → ∞, i.e.

ζ̂∞ = lim
δ→∞

ζ̂δ = lim
δ→∞

{

argmin
ζ∈R

n
∑

i=1

log
[

δ2 + (Xi − ζ)2
]

}

=
1

n

n
∑

i=1

Xi.

Proof: First, we establish upper and lower bounds forζ̂δ.
Consider the order statisticX(1) ≤ . . . ≤ X(n) of the sample
X1, . . . , Xn. Then, by takingζ < X(1) = min{X1, . . . , Xn}
and for all i

δ2 + (Xi −X(1))
2 < δ2 + (Xi − ζ)2,

it follows that ζ̂δ ≥ X(1). Similarly, one can find that̂ζδ ≤



X(n). Hence,

ζ̂δ = argmin
X(1)≤ζ≤X(n)

n
∏

i=1

[

δ2 + (Xi − ζ)2
]

= argmin
X(1)≤ζ≤X(n)

δ2n + δ2n−2
n
∑

i=1

(Xi − ζ)2 +O(δ2n−4)

= argmin
X(1)≤ζ≤X(n)

n
∑

i=1

(Xi − ζ)2 +
O(δ2n−4)

δ2n−2
.

For δ → ∞ the last term becomes negligible and

ζ̂∞ → argmin
X(1)≤ζ≤X(n)

n
∑

i=1

(Xi − ζ)2 =
1

n

n
∑

i=1

Xi.

As the Myriad moves away from the linear region (large
values of δ) to lower values ofδ, the estimator becomes
more resistant to outliers. Whenδ tends to zero, the myriad
approaches the mode of the sample.

Theorem 2 (Mode Property):Given a set of samples
X1, . . . , Xn. The sample Myriadζ̂δ converges to a mode
estimator forδ → 0. Further,

ζ̂0 = lim
δ→0

ζ̂δ = argmin
Xj∈K

n
∏

Xi 6=Xj

|Xi −Xj |,

whereK is the set of most repeated values.
Proof: Sinceδ > 0, the sample Myriad (6) can be written

as

argmin
ζ∈R

n
∏

i=1

[

1 +
(Xi − ζ)2

δ2

]

.

For small values ofδ, the first term in the sum, i.e. 1, can be
omitted, hence

n
∏

i=1

[

1 +
(Xi − ζ)2

δ2

]

= O

(

1

δ2

)n−κ(ζ)

, (7)

whereκ(ζ) is the number of times thatζ is repeated in the
sampleX1, . . . , Xn. The right-hand side of (7) is minimized
for ζ when the exponentn−κ(ζ) is minimized. Therefore,̂ζ0
will be a maximum ofκ(ζ) and consequently,̂ζ0 will be the
most repeated value in the sampleX1, . . . , Xn or the mode.

Let κ = maxj κ(Xj) andXj ∈ K. Then,
n
∏

Xi 6=Xj

[

1 +
(Xi −Xj)

2

δ2

]

=

n
∏

Xi 6=Xj

[

(Xi −Xj)
2

δ2

]

+O

(

1

δ2

)(n−κ)−1

.

(8)

For small δ, the second term in (8) will be small compared
to the first term, since this is of orderO

(

1
δ2

)n−κ
. Finally, ζ̂0

can be computed as follows.

ζ̂0 = argmin
Xj∈K

n
∏

Xi 6=Xj

[

(Xi −Xj)
2

δ2

]

= argmin
Xj∈K

n
∏

Xi 6=Xj

|Xi −Xj| .

D. Speed of Convergence-Robustness Tradeoff

Define

d = EFe

ψ(e)

e
and c = d− EFe

ψ′(e),

with Fe denoting the distribution of the errors, thenc/d
establishes an upper bound on the reduction of the influence
function at each step [22]. The upper bound represents a trade-
off between the reduction of the influence function (speed
of convergence) and the degree of robustness. The higher
the ratio c/d, the higher the degree of robustness but the
slower the reduction of the influence function at each step
and vice versa. In Table II this upper bound is calculated
for a Normal distribution and a standard Cauchy for the
four types of weighting schemes. Note that the convergence
of the influence function is quite fast, even at heavy tailed
distributions. For Huber and Myriad weights, the convergence
rate decreases rapidly asβ respectivelyδ increases. This
behavior is to be expected, since the largerβ respectivelyδ,
the less points are downweighted. Also note that the upper
bound on the convergence rate approaches 1 asβ, δ → 0,
indicating a high degree of robustness but slow convergence
rate. Therefore, logistic weights offer a good tradeoff between
speed of convergence and degree of robustness. Also notice
the small ratio for the Hampel weights indicating a low degree
of robustness. The highest degree of robustness is achievedby
using Myriad weights.

TABLE II
VALUES OF THE CONSTANTSc, d AND c/d FOR THEHUBER, LOGISTIC,
HAMPEL AND MYRIAD WEIGHT FUNCTION AT A STANDARD NORMAL

DISTRIBUTION AND A STANDARD CAUCHY. THE BOLD VALUES
REPRESENT AN UPPER BOUND FOR THE REDUCTION OF THE INFLUENCE

FUNCTION AT EACH STEP.

Weight Parameter N(0, 1) C(0, 1)
function settings c/d c/d

β = 0.5 0.46 0.47
Huber

β = 1 0.25 0.31
Logistic 0.26 0.32

Hampel b1 = 2.5
0.006 0.025b2 = 3

δ = 0.1 0.92 0.91Myriad
δ = 1 0.47 0.50

E. Robust Selection of Tuning Parameters

It is shown in Figure 2 that also the model selection
procedure plays a significant role in obtaining fully robust
estimates. It is theoretically shown that a robust CV procedure
differs from the Mean Asymptotic Squared Error (MASE) by
a constant shift and a constant multiple [19]. Neither of these
are dependent on the bandwidth. Further, it is shown that this
multiple depends on the score function and therefore, also
on the weight function. To obtain a fully robust procedure
for LS-KBR one needs also, besides a robust smoother and
bounded kernel, a robust model selection criterion. Consider



for example the robust LOO-CV (RLOO-CV) given by

RLOO-CV(θ) =
1

n

n
∑

i=1

L
(

Yi, m̂
(−i)
n,rob(Xi; θ)

)

, (9)

whereL is a robust loss function e.g.L1, Huber loss, Myriad
loss, m̂n,rob is a robust smoother and̂m(−i)

n,rob(Xi; θ) denotes
the leave-one-out estimator where pointi is left out from
the training andθ denotes the tuning parameter vector. A
similar principle can be used in robustv-fold CV. For robust
counterparts of GCV and complexity criteria see e.g. [28],
[29] and [30]. Robust CV can also be transformed as a location
estimation problem based onL-estimators (trimmed mean and
Winsorized mean) to achieve robustness. See also [31] for
model selection in kernel based regression using the influence
function.

V. SIMULATIONS

A. Empirical Maxbias Curve

We compute the empirical maxbias curve (3) for a LS-
KBR method and its robust counterpart iteratively reweighted
LS-KBR (IRLS-KBR) on a test point. Given 150 “good”
equispaced observations according to the relation [32, Chapter
4, p. 45]

Yk = m(xk) + ek, k = 1, . . . , 150,

whereek ∼ N (0, 0.12) and

m(xk) = 4.26 (exp(−xk)− 4 exp(−2xk) + 3 exp(−3xk)) .

Let A = {x : 0.8 ≤ x ≤ 2.22} denote a particular region
(consisting of 60 data points) and letx = 1.5 be a test point
in that region. In each step, we start to contaminate the region
A by deleting one “good” observation and replacing it by a
“bad” point (xk, Y bk ), see Figure 4a. In each step, the valueY bk
is chosen as the absolute value of a standard Cauchy random
variable. We repeat this until the estimation becomes useless.
A maxbias plot is shown in Figure 4b where the values of the
LS-KBR estimate (non-robust)̂mn(x) and the robust IRLS-
KBR estimatem̂n,rob(x) are drawn as a function of the number
of outliers in regionA. The tuning parameters are tuned with
L2 LOO-CV for KBR and RLOO-CV (9), based on anL1

loss and Myriad weights, for IRLS-KBR. The maxbias curve
of m̂n,rob(x) increases very slightly with the number of outliers
in regionA and stays bounded right up to the breakdown point.
This is in strong contrast with the LS-KBR estimatêmn(x)
which has a breakdown point equal to zero.

B. Real Life Data Sets

The octane data consists of NIR absorbance spectra over 226
wavelengths ranging from 1102 to 1552 nm. For each of the 39
production gasoline samples the octane number was measured.
It is well known that the octane data set contains six outliers to
which alcohol was added. Table III shows the result (median
and median absolute deviation for each method are reported)
of a Monte Carlo simulation (200 runs) of the IRLS-KBR
and SVM in different norms on a randomly chosen test set of
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Fig. 4. (a) In each step, one good point (circled dots) of the the region
A = {x : 0.8 ≤ x ≤ 2.22} is contaminated by the absolute value of
a standard Cauchy random variable (full dots) until the estimation becomes
useless; (b) Empirical maxbias curve of the LS-KBR estimator m̂n(x) (thine
line) and IRLS-KBR estimator̂mn,rob(x) (bold line) in a test pointx = 1.5.

size 10. Model selection was performed using robust LOO-
CV (9). Minimizing the non-smooth robust LOO-CV surface
was done via the procedure described in [33] to escape from
local minima by means of a combination of a state-of-the-art
global optimization technique with a simplex method.

As a next example consider the data about the demograph-
ical information on the 50 states of the USA in 1980. The
data set provides information on 25 variables. The goal is to
determine the murder rate per 100,000 population. The result
is shown in Table III for randomly chosen test sets of size 15.
To illustrate the trade-off between the degree of robustness
and speed of convergence, the number of iterationsimax are
also given in Table III. The number of iterations, needed by
each weight function, confirms the results in Table II.

TABLE III
FOR 200SIMULATIONS THE MEDIANS AND MEDIAN ABSOLUTE

DEVIATIONS (BETWEEN BRACKETS) OF THEL1 AND L∞ NORMS ARE
GIVEN (ON TEST DATA). iMAX DENOTES THE NUMBER OF ITERATIONS

NEEDED TO CONVERGE. THE BEST RESULTS ARE BOLD FACED.

Octane Demographic

weights L1 L∞ imax L1 L∞ imax

Huber
0.19 0.51

15
0.31 0.83

8(0.03) (0.10) (0.01) (0.06)
IRLS

Hampel
0.22 0.55

2
0.33 0.97

3(0.03) (0.14) (0.01) (0.02)
KBR

Logistic
0.20 0.51

18
0.30 0.80

10(0.03) (0.10) (0.02) (0.07)

Myriad
0.20 0.50

22
0.13 0.79

12(0.03) (0.09) (0.01) (0.06)

SVM
0.28 0.56

-
0.37 0.90

-(0.03) (0.13) (0.02) (0.06)

C. Importance of Robust Model Selection

An extreme example to show the absolute necessity of a ro-
bust model selection procedure (9) is given next. Consider 200
observations on the interval[0, 1] and a low-order polynomial
mean function

m(X) = 1− 6X + 36X2 − 53X3 + 22X5



and X ∼ U [0, 1]. The errors are generated from the gross
error (1) model with the Normal distribution N(0,1) taken
as nominal distribution and the contamination distribution is
taken to be a cubed standard Cauchy withǫ = 0.3. We
compare SVM, which is known to be robust, based onL2-CV
and SVM based on robust model selection. The result is shown
in Figure 5. This extreme example confirms the fact that, even
if the smoother is robust, also the model selection procedure
has to be robust in order to obtain fully robust estimates.
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Fig. 5. SVM (bold line) cannot handle these extreme type of outliers and the
estimate becomes useless. SVM based on robust model selection (thin line)
can handle these outliers and does not break down. For visualpurposes, not
all data is displayed in the figure.

VI. CONCLUSION

We reviewed some measures of robustness and investi-
gated the robustness of least squares kernel based regression.
Although counterintuitive, robustness in the nonparametric
regression case can be obtained by using a least squares
cost function by means of iterative reweighting. In order to
achieve a fully robust procedure, three requirements have to
be fulfilled. By means of an upper bound for the reduction of
the influence function in each step, we revealed the existence
of a tradeoff between speed of convergence and the degree of
robustness. Finally, we demonstrated that the Myriad weight
function is highly robust against (extreme) outliers but exhibits
a slow speed of convergence.
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